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INTRODUCTION

It is well-known that elastomers exhibit a reduction of stiffness after the first loading cycle of a fatigue experiment. This phenomenon was studied in details by Mullins [I] and is widely known as the Mulli11s effect. Authors propose different approaches to include this phenomenon in constitutive equations: see Bueche [START_REF] Bueche | I 960 Molecular basis of the Mullins effect[END_REF], Simo [3) or Miche [START_REF] Miehe | Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials[END_REF], for example. Particularly, Miehe uses the classical theory of damage mechanics [START_REF] Lemaitre | Meca11ique des materiaux so/ides[END_REF] and separates the damage function in two terms. The first terrn is discontinuous and only depends on the maximum stretch reached during the strain history. The second term stands for the cumulating damage, which is a function of the arclength of the loading curves. It can be shown experimentally that the discontinuous part of the damage. function is sufficient to describe the material damage because 80% of the Mullins effect take place during the first loading cycle.

The present paper deals with the experimental determination of the discontinuous damage function for a natural rubber. The constitutive equation is build by simply associating a classical hyperelastic model with a damage function that only depends on the maximum stretch. Viscous and hysteresis effects are neglected. That is the reason why the study is performed on loading curves and unloading curves are considered similar to loading curves.

EXPERIMENTS

The material studied is a carbon black-filled rubber. Uni-axial cyclic tests are conducted on flat coupon specimens under controlled strain. The specimens were prepared and tested by Trelleborg/Modyn. For different strain levels (from 25% to 250%), specimens were submitted to five loading and unloading cycles at constant strain rate. An example of experimental data is presented in Figure I. In the present paper, the Mullins effect is described with a damage function which corrects the strain energy function. The new strain energy function is the product between the damage function (1-M) (or K) and the idealised strain energy, W 0 which corresponds to the undamaged virgin material:

• • W(C,M)=(l-M).W 0 (C )=K.W 0 (C) (2) 
In this equation. M is called the damage parameter and C stands for the right Cauchy Green strain tensor. Thus, the lirst Piola-Kirchoff principal stresses are given by:

aw 1C =-- 1 a-t I i:;;; 1,3 (3) 
where A; are the principal stretch ratios.

Then:

rc. = (1-M)awo , . a-t, (4) 
II was observed experimentally that the damage function M only depends on the maximum stretch ratio previously undergone by •the material. Consequently, K=l•M is a function of the parameter A..w.r• This function evolves differently according to the loading curve considered:

• on the first loading curve, A.na.r is equal to the current value of the uniaxial loading stretch A. and K changes on the curve,

• on the second loading curve ~ is constant (equal to the maximum value attained on the first curve) then K remains constant. Finally, for every points of the second loading curve, the first Piola-Kirchoff stress tensor is proportional to the corresponding stress tensor of the ideal material defined previously: 1t = K tc 11 [START_REF] Lemaitre | Meca11ique des materiaux so/ides[END_REF] DETERMINATION OF THE DAMAGE FUNCTION Using reduced experimental data described above, the stress-strain relationship reduces to a sequence of loading curves at different maximum strains. The reduced data are presented in Figure 2. As mentioned above, the function K evolves according to the loading curve considered:

• on the first curve: K is evolving as loading increases because A_. is growing along the curve : K = K (A.)

• on the second curve: K is constant

K = K(.t_ )= K(XA) as A._ =A.~
• on the third curve: K is constant K = K(A.,_ )= K(X,) as A..,.. =A.~ Denoting 1ft. n 1 , n 3 the stresses on first, second and third curves, respectively, we obtain the following relations :

tr 1 (A.) = K(.t)rc 0 (A) (6)
tr 2 (A)=K(XA)tr 0 (A.)=K 2 tr 0 (A) (7) tr 3 (A.)=K(A.~)1C 0 (A.)=K 3 1C 0 {A.)

(8)
As coefficients K 1 IU'C constant for i greater than I, second loading curves corresponding to different maximum strain values are proponional. Through the end of the paper, notations given in Table I are used.

Second loadina curve at

Coefficient K (i-1)•25% Ki i from 2 to 11 Table 1. Proponionality factors between the second loading curves and the first loading curve.

As mentioned above, the undamaged ideal material, i.e. its strain energy function W 0 and the corresponding stresses lf( 1 , will remain unknown and the determination of K1 can not be performed directly. Therefore, coefficients K 1 and K1 are linked together by the ratio of stresses on the second loading curves, 1r; and ~:

Ki _ ~o _ n, (9) Kj-n 1 / -n 1 /no
Recalling that our model is based on the hypothesis of constant K; on every loading curves i, we plot the evolution of the ratio KIK 1 • 1 for every i. An example of such curves is shown in Figure 3. These curves present two different parts: for small strains the ratio is constant and for large strains it decreases. This second pan of the curve can be related to the Slrain hardening phenomenon well-known in rubberlike materials. The same observations can be made for all ratios K/K;. 1 • Therefore il is possible to identify the coefficient K/K;. 1 on the first part ,of .the previous curves, noting that a damage model which only depends on the maximum strain is not sufficient to predict accurately the end of second loading curves, i.e. the connection between secondary curves and the first curve After the determination of all ratios, it becomes possible to study the evolution of the K/K 1 ratios (K 2 is defined by the first second loading curve denoted curve 2 in figure 2). Figure 4 presents the evolution of this ratio versus the corresponding maximum stretch imposed during experiments. The curve obtained can be identified as a decreasing exponential function:

K A B r -a<'--11 t] -= + Le - Kz (10)
Moreover, we must notice that for A.,tu:~ 0, the material is unstretched (so, it is not damaged). It is still on the ideal curve and it implies that:

A=I/K 2 (II)
Equation ( I 0) becomes :

K =I+ 8' [e•a(A--I> -I) (12) with B'= B.K 2 (13) 
Noting B'= M ... the discontinuous damage function can be written under the following form:

M = M -(1 -e -aiA_, -II) (14) 
Note that this expression is obtained experimentally and that it coincides with the theoretical form proposed by Miehe [START_REF] Miehe | Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials[END_REF].

Remark on the limitation of our model : the coefficients that connect the second loading curves being determined, we can superimpose the calculated second loading curve on the same graph. Figure 5 Illustrates the superposition of the second loading curves calculated using the proportionality factors K; and the last second loading curve (at 250%). For small values of the stretch, these curves are superimposed, but they tend to separate each other as the hardening occurs. It illustrates the limitation of the present model, and it confirms the previous remark concerning the form of the curve KIK 1 + 1 versus A.. Stretch In traction direction Figure 5. Superposition of the second loading curves.

MODEL IDENTIFICATION

In order to identify the complete constitutive equation, i.e. hyperelasticity and damage, we consider the classical hyperelastic Ogden's model [START_REF] Ogden | Large deformation isotropic elasticity -on the correlation of theory and experiment f(lr incompressible rubberlikesolids[END_REF]. Moreover, we assume that the rubber remains incompressible.

Here, the three terms version of the model is adopted. The corresponding strain energy function is given by: W= ±,.Un(~• +A;• +A;• -3) . (15) ,..,a,.

where A; are the principal stretches and (J.ln, a,),.s 1 , 1 are the material parameters.

For uniaxial extension test, the relation between the first Piola-Kirchoff stress tr and the stretch A. in the loading direction is:

..!£_1 1r = :r..u •. (A."--1 -A. 2 ) (16)
• With the damage function this equation becomes:

n(t) = (t-~~x(A.{t'))}4P •. (Aa,-l -f~-1 ) (17)
• The parameters of this constitutive equation are identified using experimental data. Results are presented in Figure 6. The results are in . good agreement with experimental data except for small strains. The present work proposes an experimental method to determine the Mullins effect in natural rubber.

The method is based on the classical theory of damage mechanics.

The damage function obtained by this approach is similar to the theoretical function proposed by Miehe [ 4].

Moreover using the Ogden strain energy function, the cyclic behaviour of the material is successfully identified.

Nevertheless, the important phenomenon of strain hardening observed at the connections between secondary loading curves and the first loading curve in not reproduced by our model. Further work is in progress to take into account the strain-hardening in the damage behaviour.
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 I Figure I. Cyclic loading at a given strain level As mentioned above, we are only interested in determining the discontinuous part of the damage that takes place during the first loading cycle. Therefore, only the two first cycles are considered. Moreover, hysteresis is removed and only the two first loading curves are studied. These curves are mentfoned on the Figure I.

Figure 2 .

 2 Figure 2. Reduced experimental data.
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 3 Figure 3. Evolution of the ratio KIK 7 versus strain.
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 4 Figure 4. Evolution of K!K 1 according to the maximum stretch.
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Figure 6 .

 6 Figure 6. Comparison between theoretical results and experimental data.