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Equations of pressuremeter curve with an elastic strain - softening plas
model

C.Dano & P.Y. Hicher
Civil Engineering Laboratory of Nantes Saint-Nazaire, Ecole Centrale of Nantes, France

ABSTRACT: We propose analytical expressions of the juremeter curve that generalise previ
equations found in the literature. We consider a linear elastic plastic model with strain-softening, assumir
Mohr-Coulomb vyield surface. The softening behaviour affects either the cohesion or the friction angle. Th
parameters are required to describe the softening behaviour. We finally show the effect of each of these f
parameters on the pressuremeter curve.

1 INTRODUCTION

The development of numerical methods has enable?2l THE CONSTITUTIVE MODEL
to interpret the pressuremeter tests otherwise th
through the conventional pressuremete
characteristics  (limit  pressure, pressuremetefhe model adopted is a linear and isotropic elastic
modulus) (French Standard NF P 94-110, 1991plastic model with a post-failure strain softening.
American Standard ASTM D 4719-87, 1994).The elastic part typically obeys the Hooke’s law:
Indeed, for a design purpose, the identification

procedure of constitutive model parameters bﬁ ‘}‘XTrE)'lJ’z“xE (1)
inverse analysis of these in situ tests has known Rherec

] . ) = stress tensok, = strain tensorh andu =
g[e;l‘t %g%ess (Shao et al. 1991 Kasdi 1994; Zemi’émé’s constants, | = identity matrix. In this paper,

This mathematical approach consists i e also use the Young's modulus E and the
PP Poisson’s ratiov instead of the Lamé’s constants.

optimising the values of the model by cOmMparisong osses and strains are negative in compression anc
between experimental and computed results

Depending on the degree of refinement of theDOS'tlve 'n extension. - :
o , We also assume Mohr-Coulomb vyield functions:

constitutive model, computations can be performed
either numerically using a finite element code orFl(c_y,kl)z(03—01)+sin¢><(03+01)
analytically. In the last case, the linear elastic — (2a)
perfectly plastic model with a non standard Mohr-— 2CX kl(sg)xcos‘b
Coulomb failure criterion (Fig. 1) has been usually
considered in the literature (Hughes et al. 1977F2(g.k2)=(03—01)+ kz(gg)xsin¢x(03+ol) (2b)
Monnet & Khlif 1994; Monnet & Chemaa 1995; —
Bornarel 1999). where C = cohesion, # friction angle. g and g are

However, by means of finite elementrespetively the major and the minor principal
computations, Prevost & Hoég (1975), Carter &stresses. kand k are equal to unity at the peak
Yeung (1985) have shown the effect of a strairstrengh.
hardening or a strain softening behaviour on the The yield function (Eqg. 2a) is considered in the
stress distribution around the pressure probe and, aase of cohesive and frictional materials for which
a consequence, on the pressuremeter curve itself. WWiee cohesion is gradually reduced (C-softening mod-
therefore develop analytical expressions of thel). The friction angle is kept constant in the plastic
pressuremeter curve considering a gradual loss adomain.
resistance from the peak strength to the residual
strength (Fig. 1).

.1 Elasticity and yield functions



K = 1-sin¢

c Perfectly plastic model : 4b
( ¢)peak ,,,,,,,,,,,, o p 1+ Slnq) ( )
Reduction of
o o resistance .
5 e Parameter [3 n = 1-xsiny (40
g B | X 1+ xsiny
= dk / de P (€. 0)y,
Lol d
a Softening
% plastic model 2.2 The strain softening behaviour
nf;’(;t”lﬂ;E As previously done by Yuritzinn (1981), we assume
that he functions kand k linearly decrease with the
1 deviavric plastic strain £ such as:
Deviatoric strain € K (83) =1+a gl =1+ Ge(Sf _ 82) i=172 (5)
Elasti 1 Softening Perfectly where 0. represents the softening rate. For low
astic ‘ . . .
domain | Plastic plastic values of the paramete, the decrease of resistance
w” | domain domain is quite slow and the softening domain is quite wide
- ‘ | whereas high values ofie account for brittle
IS o ; behavour.
% | Identification | - The constitutive model is characterised by eight
Q of v | ‘ Identification . . .
= ‘ ‘ of X parameters since three_ dimensionless parameigrs (
E | ! B, X) areadded to the five parametels (1, ¢, C, )
S | ‘ l of the linear elastic perfectly plastic Mohr-Coulomb
> | | I
| . Identification model.
‘ \ of Y
Deviatoric strain € 3 EQUATIONS OF THE PRESSUREMETER

Figure 1. The constitutive model. CURVES
The determination of the pressuremeter curve, that is
to say the relation that links the pressure p into the
probe to the deformation at the cavity wall u(a)/a
(u(@) is the displacement of the wall, a the initial
radius of the borehole), is a typical mechanical
problem of cavity expansion into an infinite medium
(Hughes et al. 1977; Yu & Houlsby 1991).

The yied function (Egq. 2b) applies to purely
frictional materials for which the friction angle
gradually decreaseg-softening model).

At the residual strength, in the perfect plasticity
domain, the functionskand k are equal to the
addiional parameter of the model 3

Before clarifying the functionsikand k, let us

reci®e that the plastic strains follow a non-standard . .
ﬁow rule: g 3.1 Additional assumptions

o 0G 0) In order to obtain an analytical expression, the
de” = d¢ xa—o_ (3a) following assumptions have to be made:
_ o _ _ - hypothesis of small strains: elastic strafhand
where G = plastic potential is written in the  plastc straine” are related to the total stragrby

following way: the partition rule:
G(g) = (03 _01)+X xsiny x (03 + O'1) (3b) e=¢e+¢P (6)
where & = plastic multiplier, = dilatancy angle — isotropic initial stress state: in other words, the
identified at the maximal rate of dilating volumetric ~ coefficient of earth pressure at resg i equal to
strains andy = reduction ratio X < 1) of the 1 _ _ _ _ _
dilatancy in the perfect plasticity domain. — homayeneous and isotropic medium, isotropic
We also consider the following notations: strainsoftening; _ o
— axisymmetrical problem with a cylindrical co-

R = 2Cx cosh (4a) ordinates system (rf, z) where the subscript r

1+sing meansthe radial directionf the circumferential

one an z the vertical one;



— the assumption of plane strain conditions is

practically justified by the use of guard cells on l
both sides of the probe; \
- the vertical stress remains the intermediate p, Elastic domain Strain-softening

principal stress; rEe plastic domain
- in the plastic domain following the peak strength, ™. ¥  -b -
the ehstic strain remains constant and equal to its S

value at peak. F

— { { N -
3.2 General equations L ber fect
\‘\ ————— - plasticity
For sake of simplicity, we just precise the general 7 . domain
equatons required to solve the mechanical problem. 777
More details concerning the mathematical / \

developments can be found in (Dano 2001). The
problem is governed by:
— the equilibrium equations in the horizontal plane:

dor (r) Oe(r)_or(r) —
dr r =0 (7) In all cases, the combination of equations (1), (2),
(3), (6), (7), (8) and (9) leads to a first order

— the compatibility rules that link the displacementsgjfferential equation with a second member such as:
u to the strains:
do(r)

Figure 2. Successive behaviours around the cavity.

£ (1) = du(r) o +0,(r)xg(r)=h(r) (10)
T ar
(r) (8)  where he functions g(r) and h(r) depend on the
go(r)=—- function k. The solution can be formally written:
r
— the initial and boundary conditions: at the cavity o,( ) = e‘G(’)X[TH H(r)x eG(r)dr} (11)
yvall, the radial stress; is equal to the_pressure p r
into the probe, apart from the minus sign: where G = primitive of the function g and T’ =
Or(r= a)=—p p>0 (9a) constant determined by the use of the continuity
conditions.
whereas to infinity, we assume that the soil is We have also to express the variation of the
undisturbed: functions'lg anq ke With the_ radius r from t_he center
, (r ~ oo) — 0> 0 (9b) of thecavity. It is quite straightforward to find that:
1+n,
where p = initial earth pressure at rest; k(r)= [14, 2aek_§j - ZO(ek_g(Ej =
— the corstitutive model; C c\r (122)
— the continuity of the radial stress at the interfaces 1+n,
respetively between the elastic domain and thek10+kn[_j
softening plastic domain (for r = ¢) and between
the softening plastic domain and the perfec&Nith
plasticity domain (for r = b) (Fig. 2).
k_2 _ & cosp + p, xsing (12b)
C 2u

3.3 Mathematical developments
In orde to determine the plastic radii b and ¢ and

Distinct expressions of the pressuremeter curve hawbe pressuresppand R, we finally assume that the

to be considered depending on the value of theatio between the radii c and b is set to a constant

pressure p into the probe. Indeed, for small values ofalue R, when the perfectly plastic state is reached.

the pressure, clearly for p <;pthe soil behaves This implies that:

elastcally until the yield shear strength is reached.

Then, for a value of the pressure p greater thaap

softening plastic zone develops concentrically to the

borehole. Finally, for pressures greater than the

perfedly plastic zone develops also concentrically.



The ratio of the radii c and a in (Eq. 17) is

Len identified by optimization of the subsequent
R = Ccl _ 1+ 1-B (13) polynomial functions deduced from the equilibrium
™ b, Ky equations (Eg. 7).
20(6? For the C-softening model, the polynomial
function is:
The evolution of R, as a function obie andp is - n
presented in Figure 3. Then, we show that: _Rky N x[gj " Rk (Ej b o (18)
—0 N, ERhu S =
p= G cos+ px(1+sind) (14) 1-k, a n,+k,\a
2 2Ky Sing _ ki Rk, . Rky
_ . N, =—-p, —2UxX—— + 19
Poa =Py XM (2 n)(2kyo sin@) ¢ Rraosine (15a) 1= 7R~ A ¢ 1-k, n+k, (19)
with For the ¢-softening model, the polynomial
n b + K. SinbRE™ function is:
M :|: KO S I’II) -k11S ¢ lim :| (15b) ten N2
1+sin¢ . . (cYy T
1+ K_o sing + k118|n¢(j N
p : H =p (20)
Pl 1+sing a
3.4 Equations of the pressuremeter curve
3.4.1 Elastic domain with
If the pressure p into the probe is less thantpen 5
the soil behaves completely elastically. The equatiorN2 = : (21a)
of the pressuremeter curve is typically: (1+ n)(1+ ky,sing)
@ = ﬂ (16) _ 2k108in¢
a 2u Ny=7—— = (21b)
(1+ kosing)
This equation becomes suitable for ¢.>
3.4.3 Perfect plasticity domain
104 E 1T T TTTIT HHHH‘ HHHH‘ HHHH‘ T Flna"y’ If p IS greater than pQ then a perfec;tly
0 plastic zone develops. Fora < b, the deformation
) Parameter p| — 04 at the cavity wall is given by:
1000 ; e 06 «
- ——08 1+n kl + (n _1)73 1+n
100 = 09 ua) _ b ™ X 2 b)Y ™
g —L =g, (b)— + 1-|— 22
5 e oss =&l )u rn { (a (22)
10 £ ! | .
E E E with
o L i 1-
1 = = _ +”1
: N (3 P PR T (23a)
i | \HHH‘ | \HHH‘ | \HHH‘ | \HHH‘ | \HHH‘ | \HHH‘ | \HHH‘ | \HH[ nl +1C 1+ nl C b lim
0.1
0001 001 01 1 10 100 1000 10* 10° K
Parameter a_ Kk, = (nl - nx)x (C_s - ge(b)j (23b)

Figure 3. Evolution of the extent;Rof the softening zone.

For the C-softening model, the ratio (b/a) can be

, ) . explicitly determined from the following equation:
3.4.2 Softening plastic domain

If p is greater than p but less than g then a R Ky VY Rk (o)™
. . — —N. x| = + |/
softening plastic zone develops. Foka < c, the 1-k 1 n+k b
deformation at the cavity wall is given by: P roe

_ 1+n, — BRt E A &
@:“1_1&+L§(Ej (17) _(p-l-l—k ](aj "1k

a n+1c® 1+n.c’la P P

lim lim

(24)




IF IF IF

Pressure | P <Py || Poi < P <P || P 2y |
U U U

Model | Elastic behaviour | |  Softening plastic behaviour | Perfectly plastic behaviour

U U

Ratio of radii U | Equations (18), (20) | | Equations (24), (25) |
U U

u@/a | Equation (16) || Equation (17) || Equation (22) |

Figure4. Procedure for the calculations of the pressuremeter curves.

since tke ratio (c/b) is definitively set to;R.

For the ¢softening model, the ratio (b/a) is
likewise given as

1+n, N>

1+ Kk, sing + |ﬁ15in¢(;j {c}m

1+sin¢

ppl

strain softening on the shape of the pressuremeter
curve. It depends on the volumetric behaviour (Fig.
7), not only in the softening plastic zone, but also in
the perfectly plastic state through the parameter x
The effects of the parametemg and 3 are also
clearly established (Figs. 5, 6). Nevertheless, we
have to put forward the difficulty to experimentally
identify their values. In order to ensure the reliability

b lim
follows: (25) of the constitutive model, further experimental work

. has to be carried out in order to justify the intrinsic

a ff;ss':‘n"; (or not) nature of the softening behaviour. If its

:p(_ intrinsic feature is regularly questioned by strain

b localization or fracturation phenomena observed in

axisymmetrical triaxial tests, the problem is more
complex for pressuremeter-like stress paths.

3.4.4 Synthesis
Schematically, the pressuremeter curve is obtained

as indicated in F_lgure 4. The PrObIem IS thUSTabIe 1. Set of parameters for the sensitivity study.
completely determined. The previous expressiong

. . Y C
have been confronted with well-known expressiong ;p; KPz qd)egree ﬁegree EEE
of the pressuremeter curve presented in thgoc 0.2F 15C 39 15 20C

literature, using an elastic perfectly plastic model
(Hughes et al. 1977; Monnet & Khlif 1994; Monnet a.
& Chemaa 1995). For suitable values of theP
parameterste, B and, our expressions fit exactly X
these more classical expressions.

Distribution of stresses around the cavity an
corresponding strains can also be analyticall
calculated. Clear effect of the softening behaviour o
stresses and strains was highlighted (Dano 2001).

FromO0.1 To 1001
From0 To 0.9
FromO To .

CONCLUSIONS

'\1Ne developed analytical expressions of the
pressuremeter curve assuming a linear elastic plastic
model with a post-failure strain softening. The
softening part whose effect is rather prevailing for
high strains at the cavity wall was modeled using
The constitutive model described in this paloelIhree ad_ditional parameters : the rate of degradation
involves eight parameters. The effect of the five firsf the yield shear strength parameters (cohesion or
ones &, i, C, o, U) is relatively well known (Kasdi riction angle), the_value of the final de_gradatlon and
1994 Shahrour et al. 1995). Therefore we jusfhe dilatation rate in the perfectly plastic state. These

present the influence of the three parameter§duations extend previous expressions of the

describing the softening padd B, X) for the set of pressuremeter curves found in the literature.
parametegrs indicated irg1 'FI)'ableé Bl XI)?esuIts are showRractical interests of these developments are to show
' ﬂe significant effect of the softening behaviour on

only in the case of the C-softening model. t :
Figures 5, 6, 7 successively illustrate the effect of '€ _Pressuremeter curve and to propose analytical
ormulations that can be easily implemented in a

Oe B, X On the pressuremeter curve. As previousl . : o
mentioned by (Carter & Yeung 1985), these ﬁguregommermal software for parameter identification
purposes.

prove the relative importance of the post-failure

4 SENSITIVITY STUDY
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Figure 5. Effect of the paramet®g on the pressuremeter curve.
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Figure 6. Effect of the paramet@ron he pressuremeter curve.
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Figure 7. Effect of the parameteon the pressuremeter curve.
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