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1 INTRODUCTION 

The development of numerical methods has enabled 
to interpret the pressuremeter tests otherwise than 
through the conventional pressuremeter 
characteristics (limit pressure, pressuremeter 
modulus) (French Standard NF P 94-110, 1991; 
American Standard ASTM D 4719-87, 1994). 
Indeed, for a design purpose, the identification 
procedure of constitutive model parameters by 
inverse analysis of these in situ tests has known a 
great progress (Shao et al. 1991; Kasdi 1994; Zentar 
et al. 2001). 

This mathematical approach consists in 
optimising the values of the model by comparison 
between experimental and computed results. 
Depending on the degree of refinement of the 
constitutive model, computations can be performed 
either numerically using a finite element code or 
analytically. In the last case, the linear elastic 
perfectly plastic model with a non standard Mohr-
Coulomb failure criterion (Fig. 1) has been usually 
considered in the literature (Hughes et al. 1977; 
Monnet & Khlif 1994; Monnet & Chemaa 1995; 
Bornarel 1999). 

However, by means of finite element 
computations, Prevost & Hoëg (1975), Carter & 
Yeung (1985) have shown the effect of a strain 
hardening or a strain softening behaviour on the 
stress distribution around the pressure probe and, as 
a consequence, on the pressuremeter curve itself. We 
therefore develop analytical expressions of the 
pressuremeter curve considering a gradual loss of 
resistance from the peak strength to the residual 
strength (Fig. 1). 

2 THE CONSTITUTIVE MODEL 

2.1 Elasticity and yield functions 

The model adopted is a linear and isotropic elastic 
plastic model with a post-failure strain softening. 
The elastic part typically obeys the Hooke’s law: 

( ) ε×µ+•ε×λ=σ 2ITr (1) 

where σ = stress tensor, ε = strain tensor, λ and µ = 
Lamé’s constants, I = identity matrix. In this paper, 
we also use the Young’s modulus E and the 
Poisson’s ratio ν instead of the Lamé’s constants. 
Stresses and strains are negative in compression and 
positive in extension. 

We also assume Mohr-Coulomb yield functions: 

( ) ( ) ( )
( ) ϕ×ε×−

σ+σ×ϕ+σ−σ=σ

coskC2

sink,F

p
d1

131311
(2a) 

( ) ( ) ( ) ( )13
p
d21322 sinkk,F σ+σ×ϕ×ε+σ−σ=σ (2b) 

where C = cohesion, ϕ = friction angle. σ1 and σ3 are 
respectively the major and the minor principal 
stresses. k1 and k2 are equal to unity at the peak 
strength. 

The yield function (Eq. 2a) is considered in the 
case of cohesive and frictional materials for which 
the cohesion is gradually reduced (C-softening mod-
el). The friction angle is kept constant in the plastic 
domain. 
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Figure 1. The constitutive model. 

The yield function (Eq. 2b) applies to purely 
frictional materials for which the friction angle 
gradually decreases (ϕ-softening model). 

At the residual strength, in the perfect plasticity 
domain, the functions k1 and k2 are equal to the 
additional parameter of the model β. 

Before clarifying the functions k1 and k2, let us 
precise that the plastic strains follow a non-standard 
flow rule: 

( )
σ∂

σ∂
×ξ=ε

G
dd p (3a) 

where G = plastic potential is written in the 
following way: 

( ) ( ) ( )1313 sinG σ+σ×ψ×χ+σ−σ=σ (3b) 

where dξ = plastic multiplier, ψ = dilatancy angle 
identified at the maximal rate of dilating volumetric 
strains and χ = reduction ratio (χ < 1) of the 
dilatancy in the perfect plasticity domain. 

We also consider the following notations: 

ϕ+
ϕ×=

sin1

cosC2
R t (4a) 

ϕ+
ϕ−=

sin1

sin1
kp (4b) 

ψχ+
ψχ−=χ sin1

sin1
n (4c) 

2.2 The strain softening behaviour 

As previously done by Yuritzinn (1981), we assume 
that the functions k1 and k2 linearly decrease with the 
deviatoric plastic strain εdp such as: 

( ) ( )p
3

p
1e

p
de

p
di 11k ε−εα+=εα+=ε  i = 1,2 (5) 

where αe represents the softening rate. For low 
values of the parameter αe, the decrease of resistance 
is quite slow and the softening domain is quite wide 
whereas high values of αe account for brittle 
behaviour. 

The constitutive model is characterised by eight 
parameters since three dimensionless parameters (αe, 
β, χ) are added to the five parameters (λ, µ, ϕ, C, ψ) 
of the linear elastic perfectly plastic Mohr-Coulomb 
model. 

3 EQUATIONS OF THE PRESSUREMETER 
CURVES 

The determination of the pressuremeter curve, that is 
to say the relation that links the pressure p into the 
probe to the deformation at the cavity wall u(a)/a 
(u(a) is the displacement of the wall, a the initial 
radius of the borehole), is a typical mechanical 
problem of cavity expansion into an infinite medium 
(Hughes et al. 1977; Yu & Houlsby 1991).  

3.1 Additional assumptions 

In order to obtain an analytical expression, the 
following assumptions have to be made: 
− hypothesis of small strains: elastic strain εe and 

plastic strain εp are related to the total strain ε by 
the partition rule: 

pe ε+ε=ε (6) 

− isotropic initial stress state: in other words, the 
coefficient of earth pressure at rest K0 is equal to 
1; 

− homogeneous and isotropic medium, isotropic 
strain softening; 

− axisymmetrical problem with a cylindrical co-
ordinates system (r, θ, z) where the subscript r 
means the radial direction, θ the circumferential 
one and z the vertical one; 
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− the assumption of plane strain conditions is 
practically justified by the use of guard cells on 
both sides of the probe; 

− the vertical stress remains the intermediate 
principal stress; 

− in the plastic domain following the peak strength, 
the elastic strain remains constant and equal to its 
value at peak. 

3.2 General equations 

For sake of simplicity, we just precise the general 
equations required to solve the mechanical problem. 
More details concerning the mathematical 
developments can be found in (Dano 2001). The 
problem is governed by: 
− the equilibrium equations in the horizontal plane: 

( ) ( ) ( )
0

r

rr

dr

rd rr =σ−σ−σ θ  (7) 

− the compatibility rules that link the displacements 
u to the strains: 

( ) ( )

( ) ( )
r

ru
r

dr

rdu
rr

=ε

=ε

θ

(8) 

− the initial and boundary conditions: at the cavity 
wall, the radial stress σr is equal to the pressure p 
into the probe, apart from the minus sign: 

( ) parr −==σ  p > 0 (9a) 

whereas, to infinity, we assume that the soil is 
undisturbed: 

( ) 0r pr −=∞→σ  p0 > 0 (9b) 

where p0 = initial earth pressure at rest; 
− the constitutive model; 
− the continuity of the radial stress at the interfaces 

respectively between the elastic domain and the 
softening plastic domain (for r = c) and between 
the softening plastic domain and the perfect 
plasticity domain (for r = b) (Fig. 2). 

3.3 Mathematical developments 

Distinct expressions of the pressuremeter curve have 
to be considered depending on the value of the 
pressure p into the probe. Indeed, for small values of 
the pressure, clearly for p < ppl, the soil behaves 
elastically until the yield shear strength is reached. 
Then, for a value of the pressure p greater than ppl, a 
softening plastic zone develops concentrically to the 
borehole. Finally, for pressures greater than ppa, the 
perfectly plastic zone develops also concentrically.  

p

p0
Elastic domain Strain-softening

plastic domain

r = a

r = b

r = c

Perfect
plasticity
domain

Figure 2. Successive behaviours around the cavity. 

In all cases, the combination of equations (1), (2), 
(3), (6), (7), (8) and (9) leads to a first order 
differential equation with a second member such as: 

( ) ( ) ( ) ( )rhrgr
dr

rd
r

r =×σ+σ
(10) 

where the functions g(r) and h(r) depend on the 
function ki. The solution can be formally written: 

( ) ( ) ( ) ( )







 ×+×=σ ∫
−

r

rGrG
r drerh'Ter (11) 

where G = primitive of the function g and T’ = 
constant determined by the use of the continuity 
conditions. 

We have also to express the variation of the 
functions k1 and k2 with the radius r from the center 
of the cavity. It is quite straightforward to find that: 

( )
1

1

n1

1110

n1

2
3

e2
3

ei

r

c
kk

r

c

c

k
2

c

k
21rk

+

+








+

=






α−






 α+=
(12a) 

with 

µ
ϕ×+ϕ×=

2

sinpcosC

c

k 0
2
3 (12b) 

In order to determine the plastic radii b and c and 
the pressures ppl and ppa, we finally assume that the 
ratio between the radii c and b is set to a constant 
value Rlim when the perfectly plastic state is reached. 
This implies that: 
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1n1

1

2
3

e
lim

lim

c

k
2

1
1

b

c
R

+



















α

β−+=






=  (13) 

The evolution of Rlim as a function of αe and β is 
presented in Figure 3. Then, we show that: 

( )ϕ+×+ϕ×= sin1pcosCp 0pl  (14) 

and 

( )( ) ϕ+
ϕ

ϕ++ ××= sink1

sink2

lim
sink1n1

2

plpa
10

10

101 RMpp  (15a) 

with 










ϕ+
ϕ+ϕ+=

+

sin1

Rsinksink1
M

1n1
lim1110  (15b) 

3.4 Equations of the pressuremeter curve 

3.4.1 Elastic domain 
If the pressure p into the probe is less than ppl, then 
the soil behaves completely elastically. The equation 
of the pressuremeter curve is typically: 

( )
µ

−=
2

pp

a

au 0  (16) 

This equation becomes suitable for r ≥ c. 
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Figure 3. Evolution of the extent Rlim of the softening zone. 
 

3.4.2 Softening plastic domain 
If p is greater than ppl but less than ppa, then a 
softening plastic zone develops. For a ≤ r ≤ c, the 
deformation at the cavity wall is given by: 

( ) 1n1

2
3

1
2
3

1

1

a

c

c

k

n1

2

c

k

1n

1n

a

au
+










+
+

+
−=  (17) 

The ratio of the radii c and a in (Eq. 17) is 
identified by optimization of the subsequent 
polynomial functions deduced from the equilibrium 
equations (Eq. 7).  

For the C-softening model, the polynomial 
function is: 

p
a

c

kn

kR

a

c
N

k1

kR 1p n1

p1

11t

k1

1
p

10t =








+
+







×−
−

−
+−

 (18) 

with 

p1

11t

p

10t
2
3

01 kn

kR

k1

kR

c

k
2pN

+
+

−
−×µ−−=  (19) 

For the ϕ-softening model, the polynomial 
function is: 

p
a

c

sin1
a

c
sinksink1

p
3

2
1

N

Nn1

1110

pl =


























ϕ+








ϕ+ϕ+
+

 (20) 

with 

( )( )ϕ++
=

sink1n1

2
N

101
2  (21a) 

( )ϕ+
ϕ=

sink1

sink2
N

10

10
3  (21b) 

3.4.3 Perfect plasticity domain  
Finally, if p is greater than ppa, then a perfectly 
plastic zone develops. For a ≤ r ≤ b, the deformation 
at the cavity wall is given by: 

( ) ( )
( )



















−
+

−+
+







ε=
χχ +

χ

χ+

θ

n1
2
3

1n1

a

b
1

n1
c

k
1nk

a

b
b

a

au
(22) 

with 

( )
1n1

lim
2
3

1
2
3

1

1

b

c

c

k

n1

2

c

k

1n

1n
b

+

θ 








+
+

+
−=ε  (23a) 

( ) ( )






 ε−×−= θχ b
c

k
nnk

2
3

11  (23b) 

For the C-softening model, the ratio (b/a) can be 
explicitly determined from the following equation: 

p

t

1k

p

t

n1

limp1

11t

k1

lim
1

p

10t

k1

R

a

b

k1

R
p

b

c

kn

kR

b

c
N

k1

kR

p

1p

−
β+






















−
β+=










+
+







×−
−

−

−

+−

 (24) 
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Figure 4. Procedure for the calculations of the pressuremeter curves. 

since the ratio (c/b) is definitively set to Rlim. 

For the ϕ-softening model, the ratio (b/a) is 
likewise given as 

follows:

ϕβ+
ϕβ

+








=






























ϕ+








ϕ+ϕ+

sin1

sin2

N

lim

Nn1

lim
1110

pl

b

a
p

b

c

sin1

b

c
sinksink1

p
3

2
1

(25) 

3.4.4 Synthesis 
Schematically, the pressuremeter curve is obtained 
as indicated in Figure 4. The problem is thus 
completely determined. The previous expressions 
have been confronted with well-known expressions 
of the pressuremeter curve presented in the 
literature, using an elastic perfectly plastic model 
(Hughes et al. 1977; Monnet & Khlif 1994; Monnet 
& Chemaa 1995). For suitable values of the 
parameters αe, β and χ, our expressions fit exactly 
these more classical expressions. 

Distribution of stresses around the cavity and 
corresponding strains can also be analytically 
calculated. Clear effect of the softening behaviour on 
stresses and strains was highlighted (Dano 2001). 

4 SENSITIVITY STUDY 

The constitutive model described in this paper 
involves eight parameters. The effect of the five first 
ones (λ, µ, C, ϕ, ψ) is relatively well known (Kasdi 
1994; Shahrour et al. 1995). Therefore we just 
present the influence of the three parameters 
describing the softening part (αe, β, χ) for the set of 
parameters indicated in Table 1. Results are shown 
only in the case of the C-softening model. 

Figures 5, 6, 7 successively illustrate the effect of 
αe, β, χ on the pressuremeter curve. As previously 
mentioned by (Carter & Yeung 1985), these figures 
prove the relative importance of the post-failure 

strain softening on the shape of the pressuremeter 
curve. It depends on the volumetric behaviour (Fig. 
7), not only in the softening plastic zone, but also in 
the perfectly plastic state through the parameter χ. 

The effects of the parameters αe and β are also 
clearly established (Figs. 5, 6). Nevertheless, we 
have to put forward the difficulty to experimentally 
identify their values. In order to ensure the reliability 
of the constitutive model, further experimental work 
has to be carried out in order to justify the intrinsic 
(or not) nature of the softening behaviour. If its 
intrinsic feature is regularly questioned by strain 
localization or fracturation phenomena observed in 
axisymmetrical triaxial tests, the problem is more 
complex for pressuremeter-like stress paths. 

Table 1. Set of parameters for the sensitivity study. 
E ν C ϕ ψ p0 
MPa  kPa degrees degrees kPa 
500 0.25 150 39 15 200 

αe From 0.1 To 1000 
β From 0 To 0.95 
χ From 0 To 1 

5 CONCLUSIONS 

We developed analytical expressions of the 
pressuremeter curve assuming a linear elastic plastic 
model with a post-failure strain softening. The 
softening part whose effect is rather prevailing for 
high strains at the cavity wall was modeled using 
three additional parameters : the rate of degradation 
of the yield shear strength parameters (cohesion or 
friction angle), the value of the final degradation and 
the dilatation rate in the perfectly plastic state. These 
equations extend previous expressions of the 
pressuremeter curves found in the literature. 
Practical interests of these developments are to show 
the significant effect of the softening behaviour on 
the pressuremeter curve and to propose analytical 
formulations that can be easily implemented in a 
commercial software for parameter identification 
purposes. 
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