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ABSTRACT: The purpose of thiswork is to investigate solutions for an enhanced multifibre beam element
accounting for non-linear shear and torsion. Higher order interpolations functions are used to avoid any
shear locking phenomena and the cross section warping kinematics are extended to non-linear behavior
using advanced constitutive laws. The efficiency of the proposed modeling strategies is tested with
experimental results of reinforced concrete structural elements subjected to severe loading.
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1 INTRODUCTION

Instead of the traditional tools used to analyze the
seismic behavior of reinforced concrete (R/C)
structures (such as capacity design or nonlinear
push-over analysis) an alternative choice is to
perform non-linear time history calculations
assuming an accurate description of materials and
applying transient loadings on the structure (natural
or artificial ground motions). Modeling the
evolution of eigen modes concomitant to stiffness
degradation that is governed by a loca yield
criterion is currently the most refined method of
analysis for predicting the ultimate behavior of
concrete structures. However, due to excessive
computational costs this approach is not commonly
used in Earthquake Engineering. Nonlinear
dynamic analysis of complex civil engineering
structures based on a detailed finite element model
requires large-scae computations and handles
delicate solution techniques. The necessity to
perform parametric studies due to the stochastic
characteristic of the input accelerations imposes
simplified numerical modeling that reduces the
computational cost. In this work, the latter is
achieved by adopting a multifiber beam model for
representing the global behavior of the structural
components of a complex civil engineering
structure. The constitutive laws remain however
sufficiently general to take into account all the
different indastic phenomena (cracking by

damage, permanent deformation by platicity and
crack-closing by unilateral contact condition).

The classical approach when using a multifiber
beam element description is to consider shear and
torsion uncoupled and linear. The purpose of this
article is to study solutions for a multifiber beam
element capable of reproducing non-linear shear -
according to the Timoshenko theory - or shear due
to torsion. For the first case the possibility of using
higher order interpolation functions to avoid any
shear locking phenomena is investigated. In order
to account for non-linear torsion the cross section
warping kinematics is studied in the framework of
elagticity and extended to non-linear behavior
using advanced constitutive laws. The effects of
warping on the damage kinematics and crack
pattern of the cross section are studied and their
influences on the global behavior of structural
members are analyzed.

The efficiency of the proposed modeling
strategies is validated with experimental results of
two R/C structural elements submitted to severe
loading. A cantilever-type column specimen tested
at JRC Ispra and a plain concrete beam subject to
pure torsion. Comparisons between experiments
and computations at the global as well as the local
level give an insight into the approach.



2 ENHANCED MULTIFIBRE BEAM
ACCOUNTING FOR SHEAR

2.1 Interpolation functions

In order to simulate in a simplified manner the non-
linear behavior of a R/C structure under dynamic
loading a 3D multifibre Timoshenko beam element
is developed (Kotronis 2000, Kotronis et a. 2001).
The element is displacement-based (see also
Spacone et al. 1996 for a forced based formulation)
and can be implemented into any general purpose
finite element code without major modifications.
The user can define at each fiber a material and the
appropriate 3D constitutive law. The element uses
higher order interpolation functions to avoid any
shear locking phenomena (Friedman & Kosmatka
1993) that take the following form (presented
hereafter for ssimplicity for a2D element):
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Figure 1. Timoshenko beam element.
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where L length of the beam, A section of the beam,
v Poisson’s coefficient, k shear correction factor, G
shear modulus, E Young’s modulus, | area moment
of inertia of the cross section. The variable ¢ (3) is
the ratio of the beam bending stiffness to the shear
stiffness. For slender structures ¢ equals zero and
the resulting stiffness and mass matrices are
reduced to matrices for the Bernoulli-Euler beam
theory.

The section constitutive matrix for the 3D
formulation of the element and for a non
homogeneous section takes the form (Guedes et al.
1994):
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(Eand G arefunctions of y et 2).

2.2 Modeling a cantilever-type column specimen

The 3D multifiber Timoshenko element is used in
this example to ssimulate the inelastic behavior of a
column under a general three dimensiona load
history, tested in the Joint Research Center in Italy
(Bousias et al. 1995). The specimen has a 0.25m-
square cross section, a free length of 1.5m and is
considered fixed a the base. Longitudina
reinforcement consisted of eight 16mm diameter
bars, uniformly distributed around the perimeter of
the section. The concrete cover of the stirrupsis 15
mm thick (Fig. 2). Reinforcement bars showed
yield stress and ultimate strength of 460 MPa and
710 MPa respectively, the latter at a uniform
elongation of 11%. A constant axial force of 0.21
MN is applied at the top of the column that is bi-
axiadly displaced according to the displacement



history presented in Figure 3 (four levels 0.4m,
0.6m, 0.8m and 1.0m).
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Figure 2. Description of the column specimen.
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Figure 3. Displacement load history.

10 multifiber Timoshenko beam elements having 2
Gauss points are used to model the column. Each
section has 36 fibers for concrete and 8 fibers for
steel. Base dab is not simulated and the specimen
is considered fixed at the base. 1D constitutive laws
are used for concrete and steel based on damage
mechanics and plasticity respectively (La Borderie
1991). Confinement effects are not considered.
Specific values used for the materials follow:

Table 1. Specific values used for the materials.

Young’s modulus (concrete) 20000 MPa

Poisson coefficient (concrete) 0.2

Compression strength (concrete) 29 MPa
Traction strength (concrete) 2.6 MPa
Young’s modulus (steel) 200000 MPa

Poisson coefficient (steel) 0.3

Yield strength (steel) 460 MPa

Ultimate strength (steel) 710 MPa

Ultimate deformation (steel) 11%

Comparison of the numerical and experimental
results for the eight levels of loading is represented
hereafter. The model simulates correctly the global
behavior of the mock-up in terms of displacements
and forces in both directions. Calculation is not
time consuming and alows for parametrica
studies. Results can be improved by introducing
non linear shear behavior via 2D and 3D robust
constitutive models for concrete.
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3 ENHANCED MULTIFIBRE BEAM
ACCOUNTING FOR TORSION

Using the multifiber approach, the global behavior
of a structure is well apprehended. However, when
the effects of torsion in the section are not taken
into account the crack pattern is not always in good
agreement with experimental data corresponding to
high seismic loading levels and complex loading
paths.

There are various ways of modeling torsion in
multifiber beam elements :

— linear: generaly used (that is the case in
paragraph 2.2).

— globaly nonlinear: with a nonlinear relation
connecting torque moment and rotation.

— locally non linear: by using a 3D local behavior
on each fiber. This approach is difficult because
very few concrete congtitutive relations are
efficient and robust enough under cyclic or
dynamic loading. Moreover, two possibilities
appear: with or without section warping.

Is it judicial however in the framework of a
simplified approach to consider complex
kinematics of the section and 3D local constitutive
relationships ?

3.1 Torsion for a multifiber section

The aim of the study is to obtain the strain field due
to pure tension for each fiber by solving the
warping problem for a section composed of severa
materials (the case of reinforced concrete). Initialy
the problem is solved within a linear elastic
framework as in Schulz & Filippou 1998. The
framework of this elastic formulation study is the
free torsion of Saint-Venant. Let us consider a
beam section made up of a homogeneous and
elastic material. (O,X,Y,Z) is the Cartesian frame
reference:
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Figure 5. Beam model in torsion

Using the assumption of small displacements, the
solution of the problemis:

u(xy,z) =a . ¢(y.2)
V(Xy,2) =-0.Xx.z 5)
wx\y,z2)=a.x.y

with ¢(y,z) caled warping function of the
section and a=(6,—6)L.

Using linear-elasticity relationships for the
material and respecting local equilibrium the
classical solution follows as,

Ap=0 (6)

In order to solve this plane problem for a section
composed of severa materials, a warping-
conduction analogy method is used. The problem
of the calculation of the warping function for a
section made up of several elastic materials (shear
modulus Gi) is transformed into a problem of 2D
conduction in a plate made up of severa materials
(thermal conductivity A;). Indeed, the solution of
Laplacian equationsis trivial in heat transfer. Thus,
if the boundary conditions are known, the problem
can be solved with a finite element code (for
example using the thermal calculation module of
CASTEM 2000).

For the mechanical problem of torsion warping,
@(y,2) (the warping function - homogeneous with a
displacement squared)) and G; (shear modulus of
elastic material i) notations are used.

For the thermal conduction problem, T(y,2) (the
temperature function), A; (the thermal conductivity
of isotropic material i) and @&(y,2=A grad T(y,2
(the thermal density flux) notations are used.

For torsion, one obtains : A¢(y,2=0 in each
material surface, which corresponds to the equation
of heat, for conduction in steady state: AT(y,2)=0

The characteristics of materias are : G;, shear
modulus of elastic material, equivalent with A;,
thermal conductivity of isotropic material.

In order to find the boundary conditions on
external contour, for torsion, one writes that there
are no external forces applied to the contour of the
section (external surface of the beam) (with n, the
unit vector leaving norma to contour dS of
component ny, and ny):

For torsion, continuity between two materials is
expressed by insuring- continuity of the function
®(y,2) and continuity of the forces on the border
between two materials.

The conduction problem equivalent to the torsion
warping function problem is as follows:

AT(y,2)=0
For the flow imposed on the free face:
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and "jump" of flow imposed between two
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Thus, by applying these boundary conditions, the
problem can be solved with any finite element code
able to solve thermal conduction problems (the
following computations are made using the finite
element code CASTEM 2000).

This warping function calculation method was
used to determine the torsion shear strains al over
a beam section. A non linear extension was made
by using a 3D local behavior model (Mazars 1986),
keeping the elastic warping function, in order to
caculate the fibers stresses. Then the torque
moment is obtained by integrating the stresses at
the elastic torsion center :

Mt = IS (yaxZ =20y )18 7

The multifiber framework is a natural integration
domain allowing an easy numerical implementation
of this approach into any general purpose finite
element code.

3.2 3D constitutive equations

This part focuses on the expression of constitutive
relations for concrete within the framework of
continuous damage mechanics. A robust model for
3D loading path is used, allowing to account for the
asymmetric 3D behavior of concrete in tension and
compression.

Concerning the concrete 3D experimental
behavior, one can notice that, a network of
microscopic cracks nucleate paralld to the axis of
loading which coalesce until the complete rupture.
Due to the presence of heterogeneities in materials
(aggregate surrounded by a cement matrix), tensile
transverse strains generate a self-equilibrated stress
field orthogona to the loading direction, a pure
mode | (extension) is thus considered to describe
the behavior in compression. The influence of
microcracking due to the externa loads is
introduced via a single scalar damage variable d
ranging from O for the undamaged material to 1 for
a completely damaged material. In order to
introduce the non-symmetric behavior of concrete,
the failure criterion is expressed in terms of
principa extensions. An equivalent strain is
defined as (Mazars 1986):

Eoq = |y <& >° ®)
1=1
where \+/, isthe Macauley bracket and ¢; are

the principal strains. The yield criterion of damage
follows accounting for isotropic hardening K(d) :

fe,d)=£q — K(d) (9)

Two evolution laws for damage are considered
for tension and compression (index i refers either
to compression or traction):

di =1- EdO(l_ A) _

A exp(-=B; (£eq —€d0)) (10)
£eq
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Figure 6. Tension/compression response. Non-symmetric
behavior.

A and B; are material parameters. The resulting
damage which has to be introduced in the
constitutive equation is a combination of these two
scalar damages depending on the stress state of the
representative elementary volume:

d:atdt +acdc (11)
Response under compression and tension are
presented in Figure 6.

3.3 Example

The experimental studies used here are from
(Karayannis & Chalioris 2000). A series of plain
concrete beams was tested in pure torsion. The
beams were composed of three parts : two
reinforced end parts (properly reinforced, so as to
remain elastic) and one plain concrete middle part.
The middle plain concrete part is the part where the



cracking and the failure have localized during the
tests. The pure torsion loading was applied at the
ends of the beam (Fig. 7).

For this study, four tests among twelve realized
were used: two rectangular section specimens
(cadlled R(@ and Rh(c)) and two T-section
specimens (Tsand T) (Fig. 8).

Plain concrete
1010 S 111114
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Figure 7. Plain concrete beam under pure torsion.
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Figure 8. Rectangular and T-cross sections.

Regarding the assumptions of fixed rotating
crack models, the crack pattern initiated by torsion
is assumed to remain constant during crack
propagation after initiation. The strain field along
the cross section due to torsion and warping may
initiate the nonlinear behavior but the global shape
will not be affected by the occurrence of local
damage. That’s why the warping function is
computed on the basis of a linear elastic material
and is kept constant during the nonlinear range.

Warping functions calculations were carried out
for the four specimens. Moreover, nonlinear
calculations in pure torsion on concrete sections are
here presented. The stresses are then computed
with the local scalar damage constitutive relation.
The parameters have been fixed from the
experimental compression and tension tests results
of the R(a) specimen but the Young modulus was
unknown. Then, the Young modulus has been
taken equal to 25000 MPa and v, the Poisson ratio,
equal to 0.2. One can thus have the evolution of the
torque moment by integrating the stresses upon the
section.

The warping functions are drawn (R(a) et Ts) in
Figure 9.

Figure 9. Warping function obtained for the rectangular and T-
Cross sections.

In order to highlight the importance of the
warping function for the initial stiffness but also in
the nonlinear range, two types of analysis have
been carried out : either by taking into account the
warping function, or by neglecting it (i.e. by giving
it a zero value all over the sections).

For R(a) test and for Ts test, the curves giving
the evolution of the torque moments according to
the rotation angle can be plotted (Figs.10 and 11).

Those results show the importance of modeling
the warping function in order to fit with
experimental results. The “no warping model” has
an initial elastic stiffness really higher than the
“warping model” one. Also the maximum torque
moment is quite badly evaluated. This can be
explained by the fact that the warping function
modify a lot the strain distribution in the section
before crack initiation, and thus the damage in the
section, as shown in Figure 12. However, even if
the estimation of the cross section shear strain field
using warping is very important to describe
correctly the maximum bearing capacity of a
reinforced concrete member under torsional
loading, the basic assumption made in computing
this warping function (fixed crack model) seems to
be adequate.
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Figure 10. R(a) test: Torque moment (kN.cm) vs rotation (10
rad/cm) comparisons.
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Figure 11. Ts test: Torque moment (kN.cm) vs rotation (10
rad/cm) comparisons.

By analyzing the damage pattern (Fig. 12),
damage for the no warping model is like the one of
circular sections (in which there is effectively no
warping) and is very different from the one for the
warping model. This can have a big influence on
the bending behavior of a beam submitted to both
torsion and bending.
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Figure 12. Ts test: Damage field on the rectangular cross
section, without and with warping .

3.4 Conclusions

When using 3D local models within the framework
of beam theory, modeling warping is crucia in
order to be able to reproduce the torque/rotation
evolution of a concrete beam. For sections which
are very different from circular ones warping
cannot be neglected. Moreover, damage profiles
are completely different taking into account or not
warping and consequently the behavior is
modified: torsion and bending stiffness, maximum

torque... In this analysis, the warping function was
kept constant, determined on elastic assumptions
even during crack propagation. However, the
warping model gives good results, for rectangular
sections as well as for T- sections in accordance
with the experimental results.

4 CONCLUSIONS

Simplified models are very useful for analyzing the
behavior of concrete structures submitted to severe
loading. They allow to perform parametric studies
and give good information of the global and local
behavior. Predictive analysis is made possible
thanks to the use of local constitutive relationships
based on thermodynamics.

In order to couple the use of multifibre beam
elements with advanced 3D constitutive laws a
Timoshenko kinematics has to be provided. The
use of higher order interpolation functions is a way
to tackle with shear locking phenomena and so to
calculate accurately the influence of shear.

However, the generalized stresses (torque and
bending moment) result from the integration of
local Cauchy stresses. Calculation of those stresses
needs not only a 3D constitutive relationship but
also a precise kinematics over the section. Indeed,
severe loading may generate complex coupling
between torsional and flexural behavior. Taking
into account cross section warping leads to
particular crack patterns, inducing several
interactions with the flexural behavior, different
from the ones without warping. That’s why
improving multifiber beam elements by adding a
better behavior under torsion loading can be very
important for predicting the behavior of concrete
structures submitted to seismic loading.
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