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Efficient Sparse Polynomial Chaos Expansion Methodology for Computationally-Expensive Deterministic Models

The sparse polynomial chaos expansion (SPCE) methodology is an efficient approach that deals with uncertainties propagation in case of high-dimensional problems (i.e. when a large number of random variables is involved). This methodology significantly reduces the computational cost with respect to the classical full polynomial chaos expansion (PCE) methodology. Notice however that when dealing with computationally-expensive deterministic models, the time cost remains important even with the use of the SPCE. In this paper, an efficient combined use of the SPCE methodology and the global sensitivity analysis (GSA) is proposed to solve such a problem. The proposed methodology is validated using a relatively non-expensive deterministic model.

INTRODUCTION

An efficient approach to deal with uncertainties propagation in case of high-dimensional problems (i.e. when a large number of random variables is involved) was recently presented by [START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF]. This approach is based on a Sparse Polynomial Chaos Expansion (SPCE) for the system response and leads to a reduced computational cost as compared to the classical Polynomial Chaos Expansion (PCE) methodology. Notice that both, the PCE and the SPCE methodologies, aim at replacing the original expensive deterministic model which may be an analytical model or a finite element/finite difference model by a meta-model. This allows one to calculate the system response (when performing a probabilistic analysis based on Monte Carlo Simulation MCS) using a simple analytical equation (e.g. [START_REF] Isukapalli | Stochastic response surface methods (SRSMs) for uncertainty propagation: Application to environmental and biological systems[END_REF][START_REF] Huang | Geotechnical probabilistic analysis by collocation-based stochastic response surface method: An Excel Add-in implementation[END_REF][START_REF] Mollon | Probabilistic analysis of pressurized tunnels against face stability using collocation-based stochastic response surface method[END_REF][START_REF] Mao | Probabilistic analysis and design of strip foundations resting on rocks obeying Hoek-Brown failure criterion[END_REF]. Notice however that when dealing with computationally-expensive deterministic models with a large number of random variables, the time cost remains important even with the use of the SPCE. Consequently, a method that can reduce once again the cost of the probabilistic analysis is needed. In this paper, an efficient combination between the SPCE methodology and the Global Sensitivity Analysis (GSA) is proposed to solve such a problem. In this method, a small SPCE order is firstly selected to approximate the system response by a meta-model. A GSA based on Sobol indices is then performed on this small SPCE order to determine the weight of each random variable in the variability of the system response. As a result, the variables with very small values of their Sobol indices (i.e. those that have a small weight in the variability of the system response) can be discarded. Consequently, a response which only depends on a smaller number of random variables is obtained. In other words, one obtains a response with an 'effective dimension'. This dimension is smaller than the initial dimension where the total number of random variables was considered. As it will be shown later, the use of a small SPCE order to perform the GSA is not a concern since higher SPCE orders lead to the same influential random variables. Once the 'effective dimension' was determined, a higher SPCE order that makes use of only the most influential random variables can be used. This significantly reduces the computation time. The use of a higher SPCE order is necessary in order to lead to an improved fit of the SPCE.

The proposed methodology is validated using a relatively non-expensive model which was extensively investigated by Al-Bittar andSoubra (2011, 2012). This model involves the computation of the ultimate bearing capacity of a strip footing resting on a weightless spatially varying (c, φ) soil where c is the soil cohesion and φ is the soil angle of internal friction. It should be noticed here that the random fields of c and φ are discretized into a finite number of random variables. This number is small for very large autocorrelation distances and significantly increases for small values of the autocorrelation distances.

The paper is organized as follows: The next two sections aim at briefly presenting both the sparse polynomial chaos expansion (SPCE) and the global sensitivity analysis (GSA). Then, the proposed efficient combination between the SPCE methodology and the GSA is presented. It is followed by the numerical results. The paper ends with a conclusion.

SPARSE POLYNOMIAL CHAOS EXPANSION (SPCE) METHODOLOGY

In this section, one first presents the polynomial chaos expansion (PCE) and then its extension, the sparse polynomial chaos expansion (SPCE). The Polynomial Chaos Expansion (PCE) methodology allows one to replace an expensive deterministic model which may be an analytical model or a finite element/finite difference numerical model by a meta-model. Thus, the system response may be calculated (when performing a probabilistic analysis based on Monte Carlo Simulation MCS) using a simple analytical equation. This equation is obtained by expanding the system response on a suitable basis which is a series of multivariate polynomials that are orthogonal with respect to the joint probability density function of the random variables. The PCE theory was originally formulated with standard Gaussian random variables and Hermite polynomials [START_REF] Spanos | Stochastic finite element expansion for random media[END_REF]. It was later extended to other types of random variables that use other types of polynomials [START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF]. In this paper, standard normal random variables in conjunction with Hermite polynomials are used. The coefficients of the PCE may be efficiently computed using a non-intrusive technique where the deterministic calculations are done using for example an analytical model or a finite element/finite difference software treated as a black box. The most used non-intrusive method is the regression approach (e.g. [START_REF] Isukapalli | Stochastic response surface methods (SRSMs) for uncertainty propagation: Application to environmental and biological systems[END_REF][START_REF] Huang | Geotechnical probabilistic analysis by collocation-based stochastic response surface method: An Excel Add-in implementation[END_REF][START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF][START_REF] Mollon | Probabilistic analysis of pressurized tunnels against face stability using collocation-based stochastic response surface method[END_REF][START_REF] Mao | Probabilistic analysis and design of strip foundations resting on rocks obeying Hoek-Brown failure criterion[END_REF]. This method is used in the present work. The PCE methodology can be briefly described as follows:

For a deterministic model Γ with M random variables, the system response can be expressed by a PCE of order p fixed by the user as follows:
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where P is the number of terms retained in the truncation scheme,

{ } 1,...., i i M ξ ξ = =
is a vector of M independent standard random variables that represent the M random variables, a β are unknown coefficients to be computed and β Ψ are multivariate Hermite polynomials which are orthogonal with respect to the joint probability density function (PDF) of the standard normal random vector ξ. These multivariate Hermite polynomials can be obtained from the product of one-dimensional Hermite polynomials as follows:
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where α i (i=1, …, M) are a sequence of M non-negative integers and (.)

i H α is the th i α one-
dimensional Hermite polynomial. The expressions of the one-dimensional Hermite polynomials are given in [START_REF] Spanos | Stochastic finite element expansion for random media[END_REF] among others.

In practice, the PCE with an infinite number of terms should be truncated by retaining only the multivariate polynomials β Ψ of degree less than or equal to p. For this purpose, the classical truncation scheme based on the determination of the first order norm 1 1 2011,2012). The SPCE methodology presented by [START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF] is an efficient alternative that can significantly reduce the number of calls of the deterministic model. In this methodology, [START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF] have shown that the number of significant terms in a PCE is relatively small since the multivariate polynomials β Ψ corresponding to high-order interaction (i.e. those resulting from the multiplication of the i H α with increasing α i values) are associated with very small values for the coefficients a β . Thus, a truncation strategy (called the hyperbolic truncation scheme) based on this observation was suggested by these authors. Within this strategy, the multivariate polynomials β Ψ corresponding to high-order interaction were penalized. This was performed by considering the hyperbolic truncation scheme which suggests that the q-norm should be less than or equal to the order p of the PCE. The q-norm is given by:
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where q is a coefficient (0<q<1). In this formula, q can be chosen arbitrarily. [START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF] have shown that sufficient accuracy is obtained for 0.5 q ≥ . The proposed SPCE methodology leads to a sparse polynomial chaos expansion that contains a smaller number of unknown coefficients which can be calculated from a reduced number of calls of the deterministic model. This strategy was used in Al-Bittar andSoubra (2011, 2012) and will also be used in this paper to build up a SPCE of the system response. The iterative procedure suggested by [START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF] for building up a SPCE is detailed in [START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF] and Al-Bittar andSoubra (2011, 2012) and is not repeated herein. Once the coefficients a β have been computed, the statistical moments (mean, standard deviation, skewness, and kurtosis) can be calculated with no additional cost by generating a large number of realizations of the vector
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and by computing the corresponding system responses using the obtained SPCE. The next subsection is devoted to the method used for the computation of the coefficients a β of the SPCE using the regression approach.

Computation of the SPCE coefficients by the regression approach

Consider a set of K realizations The computation of the SPCE coefficients using the regression approach is performed using the following equation:
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(4) where the data matrix η is defined by:
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In order to ensure the numerical stability of the treated problem in Eq.( 4), the size K of the ED must be selected in such a way that the matrix 1 ( ) T η η -is well-conditioned. This implies that the rank of this matrix should be larger than or equal to the number of unknown coefficients. This test was systematically performed while solving the system of equations of the regression approach.

The quality of the output approximation via a SPCE closely depends on the SPCE order p. To ensure a good fit between the meta-model and the true deterministic model (i.e. to obtain the optimal SPCE order), the well-known coefficient of determination R 2 is generally used:
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The value 2 R 1 = indicates a perfect fit of the true model response Γ, whereas 2 R 0 =

indicates a nonlinear relationship between the true model Γ and the SPCE model SPCE

Γ

. The coefficient R 2 may be a biased estimate since it does not take into account the robustness of the meta-model (i.e. its capability of correctly predicting the model response at any point which does not belong to the experimental design). As a consequence, one makes use of a more reliable and rigorous coefficient of determination, namely the leave-one-out coefficient of determination [START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF]. This coefficient of determination consists in sequentially removing a point from the experiment design composed of K points. Let \i ξ Γ be the meta-model that has been built from the experiment design after removing the i th observation and let
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be the predicted residual between the model evaluation at point

( i )
ξ and its prediction based on \i ξ Γ . The corresponding coefficient of determination is often
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This coefficient will be used in the present paper to check the accuracy of the fit.

GLOBAL SENSITIVITY ANALYSIS (GSA)

Once the SPCE coefficients are determined, a global sensitivity analysis (GSA) based on Sobol indices can be easily performed. Notice that the first order Sobol index of a given random variable i ξ (i=1,…, M) gives the contribution of this variable in the variability of the system response. The first order Sobol index is given by [START_REF] Saltelli | Sensitivity Analysis[END_REF] and [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF] as follows:
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where Y is the system response, ( )
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is the expectation of Y conditional on a fixed value of i ξ , and Var denotes the variance.

In the present paper, the system response Y is represented by a SPCE. Thus, by replacing Y in Eq.( 9) with the SPCE expression, one obtains the Sobol index formula as a function of the different terms of the SPCE [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansion[END_REF]. This formula is given by:
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where a β are the obtained SPCE coefficients, β Ψ are the multivariate Hermite polynomials,

[ ]

. E is the expectation operator, and PC D is the variance of the response approximated by the SPCE. The response variance D PC is given by [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansion[END_REF] as follows:
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Notice that the term ( )
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that appears in both Eq. ( 10) and Eq. ( 11) is given by Sudret (2008) as follows:
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where the α i are the same sequence of M non-negative integers { } 1 , ....., M α α used in Eq. ( 2).

Notice finally that I i in Eq. ( 10) denotes the set of indices β for which the corresponding β Ψ is only a function of the random variable i ξ (i.e. it only contains the variable i ξ ), and I i (i=1, …, M) regroup all the indices β for which the corresponding β Ψ is only a function of the random variable i ξ (i=1, …, M).

In order to illustrate the PCE theory and the global sensitivity analysis based on Sobol indices in a simple manner, an illustrative example of a PCE of order p=3 using only M=2 random variables ( 1 ξ and 2 ξ ) may be found in Al-Bittar and Soubra (2014).

EFFICIENT COMBINATION BETWEEN THE SPCE METHODOLOGY AND THE GLOBAL SENSITIVITY ANALYSIS

As mentioned previously, the time cost of the probabilistic analysis remains important even with the use of the SPCE when dealing with computationally-expensive deterministic models. Consequently, a procedure that can reduce once again this time cost is needed. An efficient combination between the SPCE methodology and the GSA is proposed in this section. The basic idea of this combination is that, for a given discretized random field, the obtained random variables do not have the same weight in the variability of the system response. The variables with a very small contribution in the variability of the system response can be discarded which significantly reduces the dimensionality of the treated problem. This allows one to perform a probabilistic analysis using a reduced Experiment Design (ED) and thus a smaller number of calls of the computationally-expensive deterministic model. The main challenge remains in detecting the most influential random variables in order to reduce the dimensionality of the problem. For this purpose, a procedure that makes use of both the SPCE and the GSA (denoted hereafter by SPCE/GSA) is proposed in this regard. The SPCE/GSA procedure can be summarized by the following steps:

Step 1: discretize the random field(s): This step was made in this paper using EOLE method and its extensions by Vořechovsky (2008). Let us consider N RF anisotropic non-Gaussian crosscorrelated random fields ( , )

NG i Z x y ( 1,..., RF i N =
) described by: (i) constant means and standard deviations (μ i , σ i ; 1,..., RF i N =

), (ii) non-Gaussian marginal cumulative distribution functions CDFs named G i ( 1,..., RF i N =

), (iii) a target cross-correlation matrix C NG and (iv) a common square exponential autocorrelation function NG Z ρ [(x, y), (x', y')] which gives the values of the correlation function between two arbitrary points (x, y) and (x', y'). This autocorrelation function is given as follows:
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where a x and a y are the autocorrelation distances along x and y respectively. The Expansion Optimal Linear Estimation method (EOLE) and its extension by Vořechovsky ( 2008) to cover the case of correlated non-Gaussian random fields are used herein to generate the N RF random fields.

Notice that EOLE was first proposed by [START_REF] Li | Optimal discretization of random fields[END_REF] for the case of uncorrelated Gaussian fields, and then extended by Vořechovsky ( 2008) to cover the case of correlated non-Gaussian fields. In this method, one should first define a stochastic grid composed of q grid points (or nodes) { } 1 1 ( , ), ..., ( , ) q q

x y x y for which the values of the field are assembled in a vector { }
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Σ is calculated as follows:
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The common non-Gaussian autocorrelation matrix ; NG χ χ Σ and the target non-Gaussian crosscorrelation matrix C NG should be transformed into the Gaussian space using Nataf model [START_REF] Nataf | Détermination des distributions de probabilités dont les marges sont données[END_REF] since the discretization of the random fields using EOLE is done in the Gaussian space. As a result, one obtains N RF Gaussian autocorrelation matrices

; i χ χ Σ ( 1,..., RF i N =
), and a Gaussian cross-correlation matrix C that can be used to discretize the two random fields. The value i Z  of a random field obtained using this method is given by the following equation (cf. Al-Bittar andSoubra, 2011, 2012):
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where N RF is the number of random fields, N is the number of terms retained in the series expansion, ,

D i j

κ are N RF cross-correlated blocks of independent standard normal random variables obtained using the Gaussian cross-correlation matrix C between the N RF fields, ( , ; 1,..., Once the N RF Gaussian random fields are obtained, they should be transformed into the non-Gaussian space (in case of non-Gaussian random fields) by applying the following formula:
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where (.) Φ is the standard normal cumulative density function (CDF). For more details about the EOLE method and its extensions to cover the case of cross-correlated non-Gaussian random fields, the reader may refer to Vořechovsky (2008) and Al-Bittar andSoubra (2011, 2012). After the discretization procedure, a random field is represented by N independent standard normal random variables. For the N RF random fields that have the same autocorrelation function, the total number of random variables is N T = N RF xN which can be relatively large especially for small values of the autocorrelation distances.

Step 2: use a preliminary small order of the sparse polynomial chaos expansion (e.g. p=2) to approximate the system response by a meta-model. The main reason for selecting a small SPCE order is the exploration of the most influential random variables (i.e. those that have a significant weight in the variability of the system response) using a small Experiment Design (ED). It should be emphasized here that the reduced number of the unknown SPCE coefficients related to the small value of the SPCE order leads to a significant decrease in the size of the experiment design, i.e. in the number of calls of the deterministic model.

Step 3: perform a GSA based on Sobol indices (using the obtained second order SPCE) to determine the weight of each random variable in the variability of the system response. The variables with very small values of their Sobol indices have no significant impact in the variability of the system response and can thus be discarded. Consequently, a response that only depends on a smaller number of random variables is obtained. In other words, one obtains a response with an 'effective dimension' N e that is smaller than the initial dimension where the total number N T of random variables was considered. It should be mentioned here that the small SPCE order (i.e. p=2) used firstly in step 2 to perform the GSA is sufficient to provide the weight of each random variable in the variability of the system response. This is because higher SPCE orders lead to the same influential random variables as will be seen later in the numerical results.

Step 4: use the same Experiment Design (ED) which was employed in step 2 but this time by only keeping the most influential random variables. By reducing the number of random variables from N T to N e (N e < N T ), one has the possibility to use a higher SPCE order (i.e. p>2). The use of a higher SPCE order is necessary to lead to an improved fit of the SPCE since the leave-one-out coefficient of determination Q 2 given in Eq. ( 8) increases when the SPCE order increases as it will be shown in the numerical results.

As a conclusion, the use of the SPCE/GSA procedure has the advantage of performing a good fit of the deterministic model with a reduced number of model evaluations as compared to the classical SPCE approach.

NUMERICAL RESULTS

The aim of this section is to validate the present SPCE/GSA procedure. For this purpose, a comparison between the results obtained by using the classical SPCE methodology and those given by the proposed SPCE/GSA procedure is presented. A computationally non expensive deterministic model was used for the validation. The problem used for the validation was presented in Al-Bittar andSoubra (2011, 2012). It aims at computing the ultimate bearing capacity of a strip footing resting on a c-φ spatially varying soil. The input parameters are similar to those considered in Al-Bittar andSoubra (2011, 2012). They are briefly presented in Table 1. For a more detailed description on these data, the reader may refer to Al-Bittar andSoubra (2011, 2012). It should be mentioned here that the friction angle φ and the dilation angle ψ were assumed to be perfectly correlated random fields since ψ =2φ/3. Thus, only the friction angle was modelled by a random field and the values of the dilation angle within the different elements of the deterministic mesh were deduced from the corresponding values of the soil angle of internal friction using the relationship ψ =2φ/3. The deterministic model is based on numerical simulations using FLAC 3D and it involves the case of a weightless soil. Thus, one obtains the soil bearing pressure due to only the soil cohesion; the contribution of the soil weight being neglected in the present paper. It should be mentioned here that when neglecting the soil weight γ, the computation time decreases from 10 to 5 min per simulation. This significantly reduces the computation time for the validation of the present SPCE/GSA procedure. As shown in Figure 1, the adopted soil domain considered in the analysis is 15m wide by 6m deep. For the boundary conditions, the horizontal movement on the vertical boundaries of the grid is restrained, while the base of the grid is not allowed to move in both the horizontal and the vertical directions. 

Table 1. Deterministic and probabilistic input parameters

Lognormal

Reference case: The validation of the SPCE/GSA procedure is done for the illustrative case [a x =10m, a y =1m, r(c, φ) =-0.5] referred to hereafter as the reference case. For this configuration, the discretization of the two random fields c and φ has led to a total number of random variables N T equal to 24 (12 random variables for each random field as was shown in Al-Bittar and Soubra (2011, 2012)). By using the total number of random variables N T , Al-Bittar andSoubra (2011, 2012) have shown that a third order SPCE was sufficient to reach a target accuracy of 0.999. An ED involving 800 points was needed to solve the regression problem given in Eq. (4) (i.e. to obtain a wellconditioned regression problem for which the rank of the matrix 1 ( ) T η η -is larger than or equal to the number of unknown coefficients). By using the present SPCE/GSA procedure, a GSA was performed to detect the most influential random variables. Different SPCE orders (i.e. orders 2, 3, and 4) were considered in order to check if the SPCE order has an impact on the most influential random variables. Figure 2 depicts the values of Sobol indices for the 24 random variables, as given by SPCEs of orders 2, 3 and 4. The first 12 random variables [i.e. ξ i for i=1, …, 12] correspond to the cohesion random field and the last 12 random variables [i.e. ξ i for i=13, …, 24] are those corresponding to the friction angle random field. Figure 2 shows that whatever the SPCE order is, the two first random variables of both fields, (i.e. ξ 1 , ξ 2 , ξ 13 , ξ 14 ) are the most influential. For the two random fields, a very fast decay in the weight of the random variables is noticed with quasi negligible values beyond the first two random variables. In fact, the first two random variables of the two random fields, which correspond to the first two eigenmodes of both fields involve 95% of the response variability as may be seen from Table 2. This is logical since the system response (i.e. the ultimate bearing capacity) depends on the average distributions of the soil shear strength parameters c and φ over the soil domain. It is thus quite insensitive to the small-scale fluctuations of theses parameters around their average distributions.
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Figure 2 clearly shows that the Sobol indices of the different random variables do not significantly change with the SPCE order. Thus, a second order SPCE is sufficient to identify the influential random variables (i.e. those that have a significant weight in the variability of the ultimate bearing capacity). The main advantage of a small SPCE order is that a small ED is sufficient to solve the regression problem. As shown in Table 3, 150 calls of the deterministic model are needed to solve the regression problem for a second order SPCE. This number attains 800 for a fourth order SPCE. This significant increase is because the number of unknown coefficients significantly increases from 29 to 144 when one chooses a fourth SPCE order instead of a second SPCE order. To choose the number of random variables which will be retained hereafter, the different random variables of the two random fields are firstly sorted in a descending order according to the values of their Sobol indices (cf. first and second columns in Table 4). A threshold of acceptance t a is then fixed as a percentage of the most influential (weighted) random variable. In the present paper, the most influential random variable is ξ 1 and it has a Sobol index equal to 0.5. Different values of the threshold were tested (cf. first line in Table 4). The random variables having a Sobol index smaller than the prescribed threshold t a are discarded. In this paper, a threshold of 2% of the Sobol index of the most weighed random variable is considered as sufficient; the corresponding retained random variables provide 98% of the total variance of the system response as may be seen from column 6 of Table 4. For this threshold, an 'effective dimension' N e =5 is obtained (i.e. 5 random variables are considered to be the most weighed). The 5 retained random variables will now be used with the already existing 150 model evaluations which were firstly employed to approximate the second order SPCE with the total number of random variables N T =24.

The reduction in the number of random variables from N T =24 to N e =5 provides the possibility to use higher SPCE orders (i.e. p>2) with the same ED (i.e. the 150 model evaluations). The use of a higher SPCE order is necessary to lead to an improved fit of the SPCE since the coefficient of determination Q 2 given in Eq. ( 8) increases when the SPCE order increases as shown in Table 5 for both the classical SPCE approach (using the total number of random variables N T =24) and the present SPCE/GSA procedure (where the effective dimension is equal to 5 (i.e. N e =5)). Using the SPCE/GSA procedure, an SPCE up to p=8 was reached using only 150 model evaluations. From Table 5, one can notice that with the use of the SPCE/GSA procedure, the Q 2 increases with the increase of the SPCE order and stabilizes beyond the order 5. This means that no improvement in the fit is obtained beyond this order. On the other hand, the value of Q 2 given by the present approach is smaller than the classical SPCE approach with a fourth order. This is because 19 random variables were discarded which slightly affect the goodness of the fit.

Figure 3 shows the PDF of the ultimate bearing capacity as obtained by both the classical SPCE approach (with the total number of random variables N T =24) and the proposed SPCE/GSA procedure (using only five random variables). Table 6 provides the corresponding statistical moments. This table also provides the coefficients of determination of the SPCEs. Notice that the results of the present SPCE/GSA approach are given in Table 6 for different values of the model evaluations (from 150 to 800). From this table, one can see that the coefficients of determination corresponding to the SPCE/GSA procedure are quasi constant with the increase in the number of model evaluations. This means that 150 model evaluations are sufficient and there is no need for more model evaluations to improve the accuracy of the fit. 3 and Table 6) that the first two statistical moments are well estimated with the present SPCE/GSA approach using the 150 model evaluations. However, the third and fourth statistical moments need more model evaluations (800 model evaluations) in order to converge to their reference values given by the SPCE approach (cf. Table 6). This demonstrates the efficiency of the present SPCE/GSA procedure to compute the first two statistical moments with a much reduced number of the model evaluations with respect to the classical SPCE approach.

As for the Sobol indices of the two random fields c and φ, Table 7 shows that the SPCE/GSA procedure with only 150 model evaluations gives the same results obtained by the classical SPCE approach using 800 model evaluations which demonstrates once again the efficiency of the present SPCE/GSA procedure. 

CONCLUSIONS

An efficient combined use of the SPCE methodology and the global sensitivity analysis (GSA) has been proposed. The aim is to reduce the cost of the probabilistic analysis of computationally-expensive deterministic models. This methodology was validated in this paper using a relatively non-expensive deterministic model. The validation consists in comparing the results of both the classical SPCE methodology with the total number of random variables and the proposed combination between the SPCE and the GSA. Satisfactory results were obtained. A much smaller number of model evaluations was needed with the proposed methodology. The first two statistical moments and the Sobol indices have been well estimated with a small number of model evaluations. On the other hand, the third and fourth statistical moments need more model evaluations in order to converge to their reference values obtained using the classical SPCE. Since the present SPCE/GSA procedure was shown to be efficient for the probabilistic computation with a reduced calculation cost with respect to the classical SPCE approach, this approach may now be applied with confidence to costly deterministic models.
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 2 Figure 2. Sobol indices for SPCEs of orders 2, 3 and 4 using the total number of eigenmodes ξ i (i=1, …, 24)
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 3 Figure 3. PDF of the ultimate bearing capacity for both the classical SPCE with the total number of random variables N T =24 and the proposed SPCE/GSA procedure with only five random variables N e =5.

Table 2 .

 2 Sobol indices for the reference case where a x =10m, a y =1m, and r(c,φ)=-0.5

	Sobol index	ξ 1 0.50	ξ 2 0.17 0.002 ξ 3	ξ i (i=1, ..., 12) for the cohesion random field ξ 4 ξ 5 ξ 6 ξ 7 ξ 8 ξ 9 0.002 0.03 0.002 0.009 0.0002 0.0002 9 x10 -05 0.0002 7 x10 -05 ξ 10 ξ 11 ξ 12
	Sobol index	ξ 13 0.2	ξ i (i=13, ..., 24) for the friction angle random field ξ 16 ξ 17 ξ 18 ξ 19 ξ 20 ξ 21 0.08 0.001 0.0008 0.002 0.0005 0.0006 0.0003 0.0001 4 x10 -05 4 x10 -05 5 x10 -05 ξ 14 ξ 15 ξ 22 ξ 23 ξ 24

Table 3 .

 3 Number of unknown coefficients and model evaluations for different SPCE order

	SPCE order	2	3	4
	Number of unknown coefficients P	29	35	144
	Number of model evaluations	150	350	800

Table 4 .

 4 Sobol indices of the different random variables and the retained random variables for the different values of the threshold of acceptance

	Random variable	Sobol index	t a =0.5%×ξ 1 =0.0025	t a =1%×ξ 1 =0.005	t a =1.5%×ξ 1 =0.0075	t a =2%×ξ 1 =0.01	t a =2.5%×ξ 1 =0.0125	t a =3%×ξ 1 =0.015	t a =4%×ξ 1 =0.02	t a =5%×ξ 1 =0.025
	ξ 1 ξ 13 ξ 2 ξ 14 ξ 5 ξ 7 ξ 6 ξ 17 ξ 3 ξ 4 ξ 15 ξ 16 ξ 19 ξ 18 ξ 20 ξ 8 ξ 9 ξ 11 ξ 21 ξ 10 ξ 12 ξ 24 ξ 22 ξ 23	0.5 0.2 0.17 0.08 0.03 0.009 0.002 0.002 0.002 0.002 0.001 0.0008 0.0006 0.0005 0.0003 0.0002 0.0002 0.0002 0.0001 9.0 ×10 -5 7.0 ×10 -5 5.0 ×10 -5 4.0 ×10 -5 4.0 ×10 -5	0.5 0.2 0.17 0.08 0.03 0.009 0.002 0.002 0.002 0.002	0.5 0.2 0.17 0.08 0.03 0.009	0.5 0.2 0.17 0.08 0.03 0.009	0.5 0.2 0.17 0.08 0.03	0.5 0.2 0.17 0.08 0.03	0.5 0.2 0.17 0.08 0.03	0.5 0.2 0.17 0.08 0.03	0.5 0.2 0.17 0.08 0.03
	Sum of									
	Sobol	1.001	0.997	0.989	0.989	0.98	0.98	0.98	0.98	0.98
	indices									

Table 5 .

 5 SPCE using the total and the reduced number of random variables

		SPCE order	2	3	4	5	6	7	8
	Total number of	Coefficient of determination R 2	0.998 0.999 0.999	-	-	-	-
	random variables	Leave-one-out						
	N T	coefficient of determination Q 2	0.824 0.932 0.994	-	-	-	-
	Reduced number	Coefficient of determination R 2	0.961 0.963 0.968 0.970 0.972 0.972 0.972
	of random	Leave-one-out						
	variables N e	coefficient of determination Q 2	0.791 0.883 0.957 0.961 0.963 0.963 0.963
	It can be observed (see Figure						

Table 6 .

 6 Coefficients of determination of the SPCEs and statistical moments of the ultimate bearing capacity as given by the classical SPCE approach and by the present SPCE/GSA procedure

								Number of model evaluations	Mean μ qult (kPa)	Standard deviation σ qult (kPa)	Skewness δ u (-)	Kurtosis κ u (-)	R 2	Q 2
	With the total	number of	random	variables	N T =24	800	658.2	93.57	0.287	0.163	0.999	0.995
								150	657.84	90.80	0.105	0.0129	0.972	0.957
	With the reduced	number of random	variables N e =5		200 250 300 400 500 600 700	658.98 659.90 659.73 660.05 659.50 659.75 659.50	91.53 92.10 92.15 90.95 90.81 90.99 90.85	0.168 0.188 0.202 0.291 0.296 0.272 0.280	0.0563 0.0630 0.0600 0.0500 0.0430 0.116 0.1637	0.972 0.964 0.962 0.969 0.970 0.968 0.968	0.951 0.956 0.963 0.960 0.963 0.963 0.963
								800	659.85	91.20	0.30	0.160	0.970	0.967

Table 7 .

 7 Sobol indices as computed from the classical SPCE approach and the present SPCE/GSA procedure.

			Number of model evaluations	i	S i (i=1, ..., 12)	i	S i (i=13, ..., 24)	( ) S c	12 1 i = = 	i S	S	( ) ϕ	24 13 = =  i	i S
	With the total number of random	T =24 variables N	800	1 2 3 4 5 6 7 8 9 10 11 12	0.5 0.17 0.002 0.002 0.03 0.002 0.009 0.0002 0.0002 9.0 ×10 -5 0.0002 7.0 ×10 -5	13 14 15 16 17 18 19 20 21 22 23 24	0.2 0.08 0.001 0.0008 0.002 0.0005 0.0006 0.0003 0.0001 4.0 ×10 -5 4.0 ×10 -5 5.0 ×10 -5	0.715			0.285
			Number of									
			model evaluations	i S i (i=1, 2, 3) i	S i (i=4, 5)