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DYNAMIC ANALYSIS OF A COUPLED FLUID STRUCTURE PROBLEM WITH FLUID SLOSHING

 focussed on added mass effects; the present study is devoted to the coupling effects between fluid sloshing modes and structure with fluid added mass modes.

The discretization of the coupled linear equations is performed with an axi symmetric fluid pressure formulated element, expanded in terms of a FouRIER series [14]. Various linear fluid model are taken into account (compressible, uncompressible, with or without sloshing) with the corresponding coupling matrix operator. The modal analysis is performed with a MATLAB program, using the non-symmetric LANCZOS algorithm [16). The temporal analysis is performed with classical numerical techniques [10), in order to describe the dynamic response of the coupled problem subjected to a simple sine wave shock. The coupling effects are studied in various conditions represented by several non-dimensionnal numbers [12) such as the dynamic FROUDE number and the mass number, based on the geometrical and physical characteristics of the coupled problem.

 15]. The temporal analysis gives another point of view on the importance of the coupling effects and their importance at low dynamic FROUDE numbers.

.

INTRODUCTION

The numerical simulation of coupled fluid structure problems is a subject of great interest, and many studies were carried out on this topic over the past years [START_REF] Makerle | Fluid-Structure Interaction Problems, Finite Element Ap proach and Boundary Elements Approaches. A Bibliography[END_REF], among which the influence of a fluid free surface on the dynamic of the coupled problem (see e.g. in some recent studies [1 ,6, 17]). In the present paper, we study the following generic coupled problem, represented by Fig. (1), and focus on the coupling effect occurring between the fluid sloshing modes and the bending structure modes. The problem is characterized by various non-dimensionnal numbers such as the confinement ratio a = .!!:_ , the filling ratio R 2 = .!._ and the length ratio 17 = .!_ ; the dynamic FROUDE number is h R e g;;

defined as: F0 = -x --. R Psgl 1.

GOVERNING EQUATIONS AND VARIATIONNAL FORMULATION FOR THE DYNAMIC PROBLEM

The structure problem is described in terms of displacement; the governing equations are the following ones (the description includes the dynamic equation, the structure boundary conditions and the coupling condition with the fluid problem):
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2 " E/ -4 = f-J p(R,B,t)Rcos8d8 The fluid problem is described in terms of pressure [START_REF] Morand | Fluid Structure Interaction[END_REF]; the governing equations are (the description includes the local equation, the fluid boundary conditions and the coupling condition with the structure):
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The free surface condition can be described with or without gravity waves, that is:

P(z=h) = 0 (3)
in the former case and: 

in the latter case.

The variationnal formulation of the dynamic problem is the following one; find u( t ) and p ( t ) such as for all admissible virtual fields of displacement and pressure ( &, t5 p) d2m8(u( t ),&) k ( () £..) _ 2 + s u t ,uu - d t

< f( t ),Ou > -r • (p( t ),Ou) d2mp(p( t ) ,t5p ) k ( ( ) .c ) _ -----' __;;;'-= 2 --'---"--'-+ F p t ' vp - d t d2r(u( t ), t5p ) P F d t 2 (5 )
with the initial conditions for the pressure and displacement field :

u(O) = u0 o u (0) = zi o a t p(O) = Po o p (O) = P o a t (6)
The various linear and bilinear forms used in the above formulation are the following ones. 

FINITE ELEMENT DISCRETIZATION

The discretization of the variationnal formulation is performed with a finite element approach. Since the coupled problem is geometrically axi-symmetric but the dynamic loading is non axi symmetric, the pressure is expanded into a FOURIER serie as 1 : p(r,B,z)= p0(r,z) + �:>.(r,z)cos(n B) + LPm(r,z)sin(mB) (7) n:2: 1 m:2: 1

The ( n = l ) is to be taken into account.

The fluid shape functions are linear with respect to both local variables ;,77 :

The discretization of the fluid bilinear forms gives the mass and stiffness matrices M' F , K F = K F + n 2 K F for the fluid problem.

The corresponding elementary matrices are defined by the following analytical expressions.

o F_!!_[ r O;I ;J a ( ;,+;)] f ( J ) ( J )] (1J) The coupled dynamic fluid/structure problem is then written in the non-symmetric form:

m ij - ro + + x � + 17, + 17 
where R is the coupling matrix, which discretizes r ( . , . ) .

When compressibility effects are taken into account in the fluid problem, he coupled problem is:

(14)
A MA TLAB program is developed in order to perform the numerical analysis. This program is validated with the comparison between calculated eigenvalues of a fluid problem with free surface and analytical eigenvalues. 

MODAL ANALYSIS OF THE COUPLED PROBLEM

The modal analysis of the coupled problem cannot be performed with the mass and stiffuess matrix given in Eq. ( 13) because the matrix M'F is singular. One has to split the degrees of freedom of the fluid problem according to {P} = { j} where P0 are the degrees of freedom for the fluid free surface and P are the degrees of freedom of the rest of the fluid. Equation() becomes:

(15)

After static condensation, the system is reformulated in terms of U and P0 • The corresponding modal problem is then:

(16)
The coupled problem has the same structure as the initial problem given by Eq. ( 13): the non-symmetry is typical of a displacement/pressure formulation [START_REF] Morand | Fluid Structure Interaction[END_REF][START_REF] Iakumar | The Lanczos Algorithm Ap plied to Unsymmetric Generalized Eigenvalue Problem[END_REF]. Equation ( 16) also exhibits the coupling matrix between the fl uid and structure problem Ro -RK F -I K r , which takes into account the free surface terms. On the other hand, the structure part of the coupled problems exhibits the hydrodynamic added mass term pFRK F -I Rr, which correspond to the structure problem coupled with the uncompressible fluid with boundary condition p = 0 for the free surface. Thus, restricting Eq. ( 16) to the structure or fl uid separate terms leads to the determi�ation of the eigenmodes of:

-/ the fluid sloshing without structure coupling effects the problem to solve is:

(17)
2

The validation case is that of a cylindrical tank for which the analytical eingenvalues are given by [START_REF] Gibert | Vibration des structures. Interaction avec les jluides. Sources d'excitation aleatoires[END_REF], p. 288. 

R = 0.1 m, 17 = 1 , a = 2 and g = 1 0 mls2• The mode order is n = 1 .
the structure problem coupled with the fluid without fluid sloshing effects; the problem to solve is:

(18)
The non-symmetric problem given by Eq. ( 16) is solved using the LANczos algorithm adapted to non-symmetric problems [START_REF] Iakumar | The Lanczos Algorithm Ap plied to Unsymmetric Generalized Eigenvalue Problem[END_REF]. Table (2) compares the computed eignevalues with the lanczos function developed in the MATLAB code and the theorical eigenvalues for the non-symmetric example proposed in [START_REF] Iakumar | The Lanczos Algorithm Ap plied to Unsymmetric Generalized Eigenvalue Problem[END_REF]; this comparison validates the numerical calculation of eigenvalues for generalized non-symmetric problem with our numerical code. For a high dynamic FROUDE number, the fluid and structure coupled modes are practically uncoupled. The fluid eigenfrequencies are slightly increased as well as the structure eigenfrequencies with sloshing compared to the eigenfrequencies without sloshing. These observations are made for all fluid filling ratios. In this case, a separate modal analysis for fluid and structure problem can be performed.

Tables [START_REF] Gibert | Vibration des structures. Interaction avec les jluides. Sources d'excitation aleatoires[END_REF] to [START_REF] Lalanne | Vibrations et choc mecaniques[END_REF] show the eigenfrequencies of the fluid problem with and without structure coupling, the structure problem coupled with fluid with or without fluid sloshing, with F0 = 10 and Table 11. Uncoupled and coupled fluid s t ructure mode with or without fluid sloshing for FD-1, MA=8 and 1= 100% For a low dynamic FROUDE number, some fluid and structure modes are likely to be coupled. When an eigenfrequency of the structure coupled with a fluid without sloshing is near an eigenfrequency of fluid sloshing, a coupling effect can be observed. 3 This coupling effect is characterized by the following facts:

M A = 8 ,
-/ the sloshing mode eigenfrequency is decreased when coupled with the structure; -/ the structure mode eingenfrequency is raised because of the fluid added mass is lower due to sloshing effect; -/ the sloshing modes above the coupled one are increased whereas the sloshing modes under the coupled one are decreased.

In this case, an uncoupled analysis is not valid. The previous observations are more significant for a low mass number, as shown by Tab. [START_REF] Langre | Fluides et So/ides[END_REF]. The influence of confinement on the coupling effect is given by Tab. [START_REF] Makerle | Fluid-Structure Interaction Problems, Finite Element Ap proach and Boundary Elements Approaches. A Bibliography[END_REF], which compares the ratio e for the fluid and structure eigenfrequencies with or without sloshing (for the structure) and 3 These effects of the coupling between f l uid mode and structure mode in the case of a free surface have been observed by many authors for other fluid-structure coupled problems (see e.g. [START_REF] Cho | Assessment of Classical Numerical Models for the Separate Fluid-Structure Modal Analysis[END_REF], and [15)). Fluid modes-Eq. ( 17)

Frequency
1.2905 2.8761 4.0789 5.1344

Fluid coupled mode-Eq. ( 14)

1.2126 2.6420 3.1352 4.1006

Fluid cou p led mode-Eq. ( 16)

1.2126 2.6420 3.1352 4.1006

Structure coupled mode-Eq. ( 14) 2. 7297 13.671 40.442 86.911 Structure cou p led mode -Eq. ( 16) 2. 7297 13.670 40.441 86.905 Table 14. Modal analysis with Eq. ( 14) or with Eq. ( 16)

The effects of coupling between fluid modes and structure modes can be represented in the following simple model with a 2D 

F(m) = G(m) (19) 
When the fluid is supposed uncompressible, F(m) =I. Equation 

DYNAMIC ANALYSIS

A temporal analysis is performed on the structure problem, the fluid problem (i.e. with inner and outer cylinder considered as rigid walls) and the coupled fluid/structure problem, subjected to a sine wave shock. The imposed acceleration is given by:

1 _ { r M sin(2 7!fJ), 'it :SI I f y ( ) - O,'it>II f ( 20 
)
where -r = ...!_ is the shock duration. The discretized equation of 

Fluid problem

The dynamic equations of the fluid problem are discretized with finite element technique, as described in §.3, to obtain the dynamic system:

(2 1)

The fluid mass terms takes into account the sloshing and acoustic modes of the fluid.

The analytical solution of the uncompressible fluid problem with DIRICHLET conditions for the free surface is given by: p(r,fJ,z,t) = 2p Fy (t) • � [

/( ) p K ( ) ]• ( -l)"cos(q . z). (fJ) (22) X £... an q . r + n q.r 2 COS h - �
and the fluid forces on the inner rigid cylinder is given by: z=h B=2tr (1. A temporal analysis is also performed on the system, when subjected to a simple sine wave shock of given amplitude and duration.

rft(t) =-f f p(R, fJ, z, t) R dfJdz = z=O 0=0 -(27i pF R ." f [aJ (q .R ) +f. K (q .R ) ] J xr (t)=-M n x y (t)
Coupling effects are also illustrated by a comparison of the structure displacement under shock in various conditions.

Future study will focus on the non-linear sloshing effects by using a finite element and finite volume numerical coupling procedure.

  Figure 1. Generic coupled fluid structure problem with fluid free surface
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Figure 2 .

 2 Figure 2. Linear 2D fluid finite element

1 g 3 3

 3 If compressibility effects are taken into account in the fluid model, the dynamic equation of the fluid problem is �. a z ; -!!,.p = 0 . c at The variationnal formulation for the fluid problem has to take into account the mass bilinear form m F ( p , op) = rn p ( r ,e, z)bf ( r ,e, z) r d r COS(}dedz, Which iS R 0 o C discretized into the mass matrix M F • The corresponding elementary matrix is : (12) The discretization of the structure problem is performed with two node finite element with two degrees of freedom u, au I fJz and cubic shape functions [5].

A

  modal analysis of decoupled and coupled fluid/structure problem is performed on the generic case represented by Fig. (1). The geometrical and physical data of the problem are characterized by the non-dimensionnal numbers a = 2 , 77 = 5 , A. , F0 and M A • Table (3) gives the eigenfrequencies of the structure without fluid coupling. Frequency (Hz) Structure mode ( F0 -I ) Structure mode ( F0 -I 0)

Frequency

  for different values of A. .

  .... ;;;; ;; ;;;;;; ;: :===::!!!!::._ ----�-----l 0

Figure 3 .Figure ( 3 )Figures ( 4 )

 334 Figure 3. Evolution of the frequency ratio e of structure with or without fluid sloshing for different dynamic FROUDE numbers

  with. or without structure coupling (for the fluid), for two different values of a . The coupling effect is amplified by confinement (i.e.for small values of a ). ____ , .. •

Figure 4 .Figure 5 .

 45 Figure 4. Structure mode without fluid (3.4705 Hz) and fluid sloshing mode without structure (2.8761 Hz)

  acoustic fluid and a single degree of freedom structure problem, as represented by Fig.[START_REF] Frandsen | Non Linear Sloshing in Fixed and Vertically Excited Containers[END_REF].

Figure 6 .

 6 Figure 6. 2D fluid problem coupled with a single degree of freedom structure problem

( 19 )

 19 can be solved with Fig.[START_REF] Fritz | The Effect of Liquids on the Dynamic Motion of Immersed Solids[END_REF], which plots F and G in the following cases. ./ Case #I: the eigenfrequency of the structure is near an the fluid is greater in the case of a compressible fluid than in the case of an uncompressible fluid. The acoustic coupled modes are increased for modes above the coupled fluid/structure mode and decreased for other modes . ./ Case #2: the eigenfrequency of the structure is lower than all eigenfrequencies of the fluid. Then, the coupled eigenfrequency of the structure with the fluid is identical in the compressible and uncompressible cases. All the acoustic coupled eigenfrequencies are slightly increased, but the raise in frequency is significant for the first coupled acoustic modes. ./ Case #3: the coupling effects are increase in the case of a low mass number. The simple analytical model with acoustic and structure mode coupling can account for the observed coupling phenomena in the case of an elastic structure coupled with an uncompressible fluid with sloshing effects.

Figure 7 .

 7 Figure 7. Graphical resolution of the elasto-acoustic problem of Fig. (6)

fFigure 8 .Figure ( 8 )f

 88 Figure 8. Reduced displacement and acceleration for the structure problem Figure (8) gives a graphical representation of the reduced relative displacement and acceleration of the beam free end for various reduced shock frequencies, by plotting the mappings: f I fo H 8= ma{ Y ( ��,f ) , Vt�O)

  The added mass M H appearing on Eq. (23) characterizes the uncompressible behavior of the fluid, and is used to normalize the calculated fluid force.

Figure ( 9 ) 10 I

 910 Figure (9) gives the representation of the mapping I I lo f-Hp = max( ctJ (t ,f ) 'lift<:!: o) where l o is the first fluid YMMH sloshing frequency.

Figure 9 . 4 . 3 .

 943 Figure 9. Reduced fluid force on the inner cylinder for the fluid problemThe curves exhibit resonance effects in the low (sloshing effects) and high (acoustics effects) reduced frequency range; in the

Figure ( 10 )

 10 Figure[START_REF] Hughes | A Precis of Developments in Computational Methods for Transient Analysis[END_REF] shows the evolution of the reduced displacement of the structure coupled to the fluid without sloshing effects, i.e. only added mass effects are described.

Figure 10 .

 10 Figure 10. Reduced displacement for the coupled problem without fluid sloshing and various filling ratiosThe reduced displacements are the same for the two FROUDE numbers. Applying a shock on both the structure and the fluid leads to an ARCHIMEDE fluid force that reduces the displacement of the structure when coupled with the fluid; this added mass effect is reduced for low filling ratios ( A. :s; 50% ).

Figure ( 11 )

 11 Figure[START_REF] Lalanne | Vibrations et choc mecaniques[END_REF] shows the evolution of the reduced displacement of the structure coupled to the fluid with sloshing effects for two dynamic FROUDE numbers. The shock frequency 1 is reduced with the first frequency lo of the structure coupled with the fluid.In the low reduced frequency range, the calculated displacement is higher with Fv = 10 than Fv = 100 , due to coupling fluid sloshing and structure modes. In the medium and high frequency range, the computed displacement for the two dynamic FROUDE numbers are equivalent: pure added mass effects and acoustic effects have the same influence on the two systems.

Figure ( 12 )

 12 Figure (12 ) compares the reduced displacement for the coupled problem with Fv = 10 , with and without fluid sloshing.

Figure 11 .

 11 Figure 11. Reduced displacement for coupled problem with fluid sloshing in the case FD-10 and FD-1

Figure 12 .

 12 Figure 12. Reduced displacement for the coupled problem with and without fluid sloshing It shows the importance of the coupling effect with sloshing mode for a low dynamic FROUDE number, since the calculated displacement of the coupled problem is greater when taking fluid sloshing into account. In both cases, the added mass (w ith or without compressibility) effects have the same influence.

Table 1 .

 1 Elementary validation of the fluid finite element for sloshing modes in axi-symmetric problems

	Analytical	0.9963	2.8519	3.9734	4.8513
	Numerical	0.9965	2.8641	4.0398	5.0367

Table ( 1

 ( ) gives the analytical and numerical frequencies (in

	Hz) for the elementary problem	2 •
	3.	

Table 2 .

 2 2.39974 :t 7.31897 i 6.99999 + 0.00000 i 7. 00088 + 0. 00000 i 7.99997 :t 127.00001 i 11.00005 + 0.00000 i 129.99998 + 0.00000 i -1999.99995 + 0.00000 i Elementary validation of the lanczos function implemented in the Matlab code

	Theorical eigenvalues	MATLAB lanczos function

0.10000 + 0. 00000 i 4. 00000 :t 1. 00000 i 2.40000 :t 7.32000 i 7. 00000 + 0. 00000 i 7. 00000 + 0. 00000 i 8.00000 :t 127.00000 i 11.00000 + 0.00000 i 130.000000 + 0.00000 i -2000.00000 + 0.00000 i 0.1000 + 0.0000 i 4.0000 :t 1.0000 i

Table 3 .

 3 Structure

	Frequency (Hz)				
	Fluid w/o structure	1.0996	2.8757	4.0789	5.1344
	Structure w/o sloshing	34.6724	212.768	555.541	1046.20
	Fluid with structure	1.0996	2.8757	4.0789	5.1344
	Structure with sloshing	34.6729	212.770	555.543	1046.20

mode for FD-100 and FD=10

Tables

[START_REF] Conca | Existence and location of Eigenvalues for Fluid-Solid Structures[END_REF] 

to

[START_REF] Fritz | The Effect of Liquids on the Dynamic Motion of Immersed Solids[END_REF] 

show the eigenfrequencies of the fluid problem with and without structure coupling, the structure problem coupled with fluid with or without fluid sloshing, with F0 = 100 and M A = 8 , for different values of A. .

Table 4 .

 4 Uncoupled and coupled fluid structure mode with or without fluid sloshing for FD-10, MA=8 and 1=25%

	Frequency (Hz)	f 1	f2	f3	f4
	Fluid w/o structure	1.2546	2.8761	4.0789	5.1344
	Structure w/o sloshing	33.6284 164.728 461.918 944.62
	Fluid with structure	1.2545	2.8760	4.0788	5.1344
	Structure with sloshing	33.6349 164.7326 461.918 944.620

Table 5

 5 

	Frequency (Hz)				
	Fluid w/o structure	1.2905	2.8761	4.0789	5.1344
	Structure w/o sloshing	27.2966	136.706	404.423	869.101
	Fluid with structure	1.2899	2.8756	4.0787	5.1343
	Structure with sloshing	27.3250	136.707	404.423	869.110

. Uncoupled and coupled fluid structure mode with or without fluid sloshing for FD-10, MA=8 and 1= 50%

Table 6 .

 6 Uncoupled and coupled fluid structure mode with or without fluid sloshing for FD-10, M A = 8 and 1= 75%

	Fre g uenc � �Hz� Fluid. w/o structure	f ' 1.2962	f� 2.8761	fJ 4.0789	f � 5.1344
	Structure w/o sloshing	19.3432 122.546 377.832 804.374
	Fluid with structure	1.2943	2.8750	4.0783	5.1341
	Structure with sloshin �	19.4094 122.552 377.834 804.374

Table 7 .

 7 Uncoupled and coupled fluid structure mode with or without fluid sloshing for FD-10, MA=8 and 1=100%

Table 8 .

 8 Uncoupled and coupled fluid structure mode with or without fluid sloshing for FD-1, MA=8 and 1= 25%

	Fluid w/o structure	1.2546	2.8761	4.0789	5.1344
	Structure w/o sloshing	3.3628	16.4728 46.1918 94.4619
	Fluid with structure	1.2413	2.8402	4.0904	5.1369
	Structure with sloshing	3.4199	16.5525 46.1949 94.4664

Table 9 .

 9 Uncoupled and coupled fluid structure mode with or without fluid sloshing for FD-1, MA=8 and 1=50%

	Fre g uenc � �Hz� Fluid w/o structure	f l 1.2905	f � 2.8761	f � 4.0789	f � 5.1344
	Structure w/o sloshing	2.7297	13.6706 40.4423 86.9110
	Fluid with structure	1.2126	2.6420	4.1006	5.1410
	Structure with sloshin �	3.1352	13.6925 40.4485 86.9158

Table 10 .

 10 Uncoupled and coupled fluid structure mode with or without fluid sloshing for FD-1, MA=8 and 1= 75%

	Fre g uenc � {Hzl	f l	f •	f �	f�
	Fluid w/o structure	1.2962	2.8761	4.0789	5.1344
	Structure w/o sloshing	1.9343	12.2546 37.7832 80.4374
	Fluid with structure	1.0813	2.9832	4.0931	5.1385
	Structure with sloshin �	2.2147	12.3579 37.8024 80.4451

Table 12 .

 12 Uncoupled and coupled fluid structure mode with or without fluid sloshing for FD-1, MA=1 and 1= 75%

	(Hz)	f1	f2	f3	f4
	Fluid w/o structure	1.2905	2.8761	4.0789	5.1344
	Structure w/o sloshing	1.4055	8.0652	22.1989 45.7151
	Fluid with structure	0.8375	3.0122	4.0972	5.1359
	Structure with sloshing	2.0310	8.4110	22.2076 45.7264

Table 13 .

 13 Influence of confinement on the coupling effect