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ABSTRACT

In nuclear power plant turbosets, the design-basis accident
consists of a blade-off on the low pressure turbine last stage. Dur-
ing the accidental shutdown, a severe rotor-casing interaction
may occur at critical speeds due to large shaft line displacements
originated by a high unbalance excitation. The contact between
the shaft and the stator, also called the diaphragm in this study,
induces an important angular deceleration rate and greatly mod-
ifies the turbogenerator dynamics including the amplitude of the
loads in the bearings. Therefore the main objective is to ver-
ify that the designed turbine is capable of going through critical
speeds without catastrophic consequences for the shaft line. To
this end, a model of a turbogenerator has been developed to com-
pute rotor speed transients by considering the rotating speed of
the rotor as an unknown, which allows for the angular deceler-
ation due to rubbing to be calculated in a more realistic fash-
ion. Lagrange multipliers method is applied to compute contact
forces. The diaphragm, which is a non-rotating bladed disks as-
sembly, is modeled by curved and straight beams, and different
assumptions for the contact detection are studied to find a com-
promise between CPU time and accuracy. Results of the numeri-
cal tool show that the contact forces are sensitive to the retained
assumptions only when heavy rub occurs. Nevertheless, the ro-
tating speed and bearing loads are computed with a satisfactory
accuracy, even with an approximation on contact detection that
saves CPU time.

INTRODUCTION
In turbomachinery, contact between rotating and stationary

parts of the turbine, usually referred to as rub [1, 2], is known to
be a serious malfunction. Rub is usually caused by unbalanced
rotor, blade-off, misalignment of the rotor centerline, thermal un-
balance, casing excitations, to name a few. In this study, the
shaft-diaphragm interaction only is considered: indeed, in real
turbosets, the blades-to-diaphragm contact [3] is negligible in
comparison to the shaft-stator interaction to compute the angu-
lar deceleration due to friction and the torsional stresses in the
coupling components. For a detailed overview of rubbing phe-
nomena and its associated literature, the reader is referred to the
very thorough survey given by Muszynska [4].

During the past decades, numerous authors have developed
and enhanced mathematical models characterizing the rotor-
stator interaction. First mathematical models are the Jeffcott
rotors [5] with the following assumptions: linear stiffness and
damping, rigid disk on a massless shaft, Coulomb law as friction
modeling, stator modeled by springs acting in the radial direction
and sometimes with dampers. Moreover, due to its simplicity in
programming, the penalty method is often used to compute con-
tact forces. Then, with modern computers, the behavior of flex-
ible rotors has been studied by finite element approach and/or
modal synthesis techniques [6] allowing more realistic models.
However these studies were limited to steady state analysis so
that the angular velocity remains constant, which implies an in-
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crease of the driven motor torque in the case of rub. The equa-
tions of motion have been rewritten considering that the speed
law is given in order to compute rotor speed transient [6]. Any-
way, the main limitation of these simulations lies in the fact that
the angular deceleration which is originated by contact between
the shaft line and the stator is not taken into account. To the
authors’ knowledge, only Dai [7] has investigated a rigid rotor
model where an additional equation computes the instantaneous
rotating speed depending on the contact forces. This model can
reproduce the rotor response with partial as well as full annular
rubbing. Finally, other works included the coupling between lat-
eral and torsional vibrations for a steady state. Edwards et al [8]
concluded that the torsional phenomenon should be included in
rubbing modeling.

Therefore, the primary goal of the present paper is to give a
better representation of the rotor-stator interaction during speed
transients. To this end, a numerical tool [9] has been developed to
compute the transient dynamical response of the shaft line with
shaft-to-stator contact. In this model, the rotating speed of the
rotor is considered as an unknown, which allows for the angular
deceleration due to rubbing to be calculated in a more realistic
fashion. In conjunction with the Lagrange multipliers approach
where friction is considered, the governing equations of the cou-
pled rotor-stator system are solved using a time-stepping proce-
dure based on the explicit central differences scheme [10].

The paper is organized as follows. The first section presents
the modeling of the two structures used in the numerical tool.
The contact dynamics is investigated in the second section where
assumptions are used during the contact detection. Finally, the
different time integration results corresponding are compared.

1 STRUCTURAL MODELS
In this section, the FE modeling of the two structures and

the general algorithm to solve speed transients are presented.

SHAFT LINE
A 1-D turbine system is built by modeling the shaft with

straight spinning Timoshenko beams, bladed disks with circular
rigid disk and imbalances with concentrated masses. An aca-
demic example is depicted in figure 1. The originality of the
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Figure 1. SCHEMATIC OF THE ROTOR MODEL

modeling lies in the fact that the angular position is considered
as an unknown of the problem. Gyroscopic effects are taken into
account which couple the torsional vibrations and the lateral ones.
More details concerning the model are given in [9].
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Figure 2. NOTATIONS FOR A DISK

Rigid disk The kinetic energy ED
c of an axi-symmetric rigid

circular disk rotating at an angular speed P' takes the form:

2ED
c D MD

� Pu2 C Pv2 C Pw2
�CIDX

h P�2
u cos2 �v C P�2

v

i
CIDZ

�
P�2
u sin2 �v C

�
P' C P̌�2 C2

�
P' C P̌� P�u sin�v

�
(1)

where MD , IDX and IDZ respectively stand for the mass, the
second moment of inertia and the polar moment of inertia of the
disk. Referring to figure 2, .u;�v/ denotes the bending displace-
ments in the .X;Z/ plane, .v;�u/ the bending displacements in
the .Y;Z/ plane, w the traction along Z axis and ˇ, the torsion in
Z direction. The derivative of x with respect to time is denoted
Px. Within the small perturbation framework, the kinetic energy
is rewritten as follows:

2ED
c D MD

� Pu2 C Pv2 C Pw2
� CIDX

h P�2
u C P�2

v

i
CIDZ

��
P' C P̌�2 C2

�
P' C P̌� P�u�v

�
(2)

Equation (2) must be exact up to the third order so that all second
order terms are retained in equations of motion. It is worth noting
that the axial vibrations only are independent.

2



Shaft The kinetic energy Ec of the shaft corresponds to the
integration of the disk energy along its longitudinal direction:

2Ec D �

Z l

0

"
S

� Pu2 C Pv2 C Pw2
	CIx

� P�2
u C P�2

v

�

CIp


�
P' C P̌�2 C2

�
P' C P̌� P�u�v

�#
dz (3)

where �, S , Ix and Ip respectively refer to the mass density, the
cross-section area, the moment of inertia and the polar moment
of inertia of the beam. The potential energy Ed of a spinning
Timoshenko beam is given by the following integral:

2Ed D
Z l

0

"
ESw2

;z CEIx

�
�2

u;z C�2
v;z

	CGIpˇ2
;z C

CkGS
h
.u;z � �v/2 C .v;z C�u/2

i#
dz (4)

where E , G and k respectively stand for Young’s, shear moduli
and the transverse shear form factor.

Bearings In real turbines, oil film bearings are used to support
the shaft. The dynamical study of a shaft line requires to describe
the nonlinear behavior of the oil film. As a first approach, stiff-
ness and damping coefficients of the oil film are approximated
by linearizing Reynolds’ equations with respect to the equilib-
rium position. Moreover a comparison of results between linear
and nonlinear modelings [11] has shown that the behavior of the
crushed oil film, when passing through critical speeds, can be
accurately approximated by a very stiff bearing.

The equations of motion derived from Hamilton’s principle
are nonlinear even without considering any contact.

DIAPHRAGM
A flexible diaphragm (see figure 3) has been developed to

enrich the modeling of the interaction: the inner ring is modeled
according to the theory of curved beams and the blades are con-
sidered as straight beams.

Inner ring: curved beams The inner ring, which initially be-
longs to the .x;y/ plane, is depicted in figure 4. It is very thin so
that the Euler-Bernoulli theory can be used. Consequently, the
deformations of the curved beams [12,13] are written as follows:

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:

"ss D 1

Rc C r
.vc C .Rc C r/uc;s � Rcrvc;ss C z�s � zRcwc;ss/

�rs D z

Rc C r
.Rc�s;s Cw;s/

�zs D �r

Rc C r
.Rc�s;s Cw;s/

(5)
where uc and vc correspond respectively to radial and tangential
displacements of the point that belongs to the centroidal line as

shaft

s

uc vc

Figure 3. SCHEMATIC OF THE DIAPHRAGM MODEL

shown in figures 3 and 4. wc refers to the axial displacements.
The rotations in the 3-D space are introduced in figure 4. The
path variable is denoted by s and Rc is the average radius of the
inner ring. Considering that the radial distance r of a point that
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Figure 4. NOTATIONS FOR CURVED BEAMS

belongs to the cross-section of the curved beam is negligible in
comparison with the radius Rc , "ss in equation (5) becomes:

"ss D



vc

Rc

Cuc;s

�
�



vc

Rc
2

Cvc;ss

�
r Cz�s �zRcwc;ss CO.r2/

(6)
Then considering the linear elastic behaviour of the casing, i.e.
�ss D Ec"ss, �rs D Gc�rs and �zs D Gc�zs (Hooke’s law) where
Ec and Gc are the Young’s and shear moduli of the casing’s ma-
terial, the strain energy Ec

d
for a curved beam element, ie an an-

gular sector, is obtained by integrating on the elementary volume
Vc:

2Ec
d D

Z
Vc

f�gt f"g dV

D Ec

Z s2
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"
Sc



vc
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�2
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2
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�2

C GcJc

Ec
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#

ds

(7)
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Figure 5. NOTATIONS FOR BLADES

where Icr , Icz, Jc and Sc respectively stand for the two moments
of inertia, the polar moment of inertia and the cross-section area
of the curved beam. The kinetic energy is equal to:

2Ec
c D �c

Z s2

s1

"
Sc

� Pu 2
c C Pv 2

c C Pw 2
c

	CIcr Pw 2
c;sC

Icz


 Puc

Rc

� Pvc;s

�2

CIcp
P�s

2

#
ds (8)

with Icp denoting the moment of inertia.

Blades: straight beams The Euler-Bernoulli theory is also
used for the blades which are slender structures. Their energies
correspond to a particular case of equations 3 and 4: the angular
speed is equal to zero and since Euler-Bernoulli theory is consid-
ered, the shear energy vanishes and the two usual kinematic rela-
tionships are used. Then, according to the notations introduced
in figure 5, it comes:

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:

2Eb
c D �

Z l

0

h
Sb

� Pu 2
b C Pv 2

b C Pw 2
b

	CI b
z

P� 2
wb

CI b
y

P� 2
vb

CI b
x

P� 2
ub

i
dx

2Eb
d D

Z l

0

h
ESbu 2

b;x CEI b
z

P� 2
wb ;x CEI b

y
P� 2
vb ;x CGJ b P� 2

ub ;x

i
dx

�wb
D vb;x et �vb

D �wb;x

where I b
z , I b

y , I b
x , J b and Sc respectively stand for the two sec-

ond moments of inertia, the polar moment of inertia, the cross-
sectional polar moment of inertia and the cross-section area of
the rectangular straight beam.

A proper modeling of the connection between the curved
beam elements and the straight beam elements is required. It is
achieved through the following relationships coming from Euler-

Bernoulli assumptions of curved beams:

�wb
D �z D uc

Rc

� vc;s et �ub
D �r D wc;s (9)

Equations of motions are derived in a very general fashion for
a 3-D space but, in what follows, the diaphragm is represented
by a planar model for the sake of simplicity. Equivalently, the
conditions wc D 0 and �s D 0 are considered.

2 CONTACT DETECTION
The forces of particular interest in this study are the contact

forces acting between the shaft and the diaphragm where friction
is considered. The following assumption for the contact detec-
tion is used: only one point of the rotor cross-section, which is
supposed rigid, comes into contact with the diaphragm.

General theory
To describe the contact dynamics, the master-slave approach

is used. Then, for any point of coordinates x belonging to the
master interface, the gap function g.x/ between the two bodies
can be stated as follows:

g.x/ D g0.x/ C
�
u.m/.x/ � u.s/.Nx/

�
� n.m/

where g0 denotes the initial gap, n.m/ the unit vector tangent
to the surface of the master body (ie outward pointing normal),
u.m/.x/ and u.s/.Nx/ respectively the displacement of the point
that belongs to the master interface and the one of the point of
the slave surface whose coordinates Nx minimizes the interpene-
tration.

When the Lagrange multipliers method is used, the contact
conditions [14] can be seen as the Kuhn-Tucker optimality condi-
tions [15]: all material point x that belongs to the master interface
must satisfy the following equation:

�N � 0, g.x/ � 0 and �N g.x/ D 0

where �N stands for the positive contact force acting on the slave
surface in the normal direction. The gap function must be posi-
tive because two bodies cannot interpenetrate: this is also known
as the impenetrability condition. To these unilateral contact con-
ditions, the Coulomb friction law is added when only sliding oc-
curs:

j�T j D �j�N j ) 9a so that vT D a
�T

j�T j

for which � is the coefficient of friction, vT the tangential slip
velocity and �T , the contact force acting on the tangential direc-
tion.
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Application to rotor-stator system
In this study, the master body is the rotor and the slave the

stator. Then the coordinates Nx of the casing must be determined.
However, as the nonlinear detection of contact greatly increases
the CPU time, different assumptions are made:

1. contact approximation (Hyp 1): the contact location on the
casing (point C1 in figure 6) has the same angular position
as the rotor geometric center;

2. exact contact (Hyp 2): Nx, referred as point C2 in figure 6, is
computed by minimizing the gap function g.x/ which is an-
alytically calculated for any material point of the diaphragm
by considering the exact deformed shape of the stator.

Once the contact location is obtained, the gap function is lin-
earized to construct the contact constraint matrix in the normal
direction. The contact constraint matrix in the tangential direc-
tion is calculated by considering that only sliding occurs [3]. The

Initial configuration

Deformed configuration
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R
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C2

gap

�!
X

�!
Y
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�N

�!
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Cf ric

Figure 6. CONTACT DETECTION

radial contact force component �N is computed by using the La-
grange multipliers method, which guarantees the impenetrability
condition. The tangential contact force �T , which is acting oppo-
site to the direction of the relative sliding velocity, stems from the
Coulomb friction law with an amplitude equal to j�T j D �j�N j.
Finally, the friction torque takes the form Cf ric D �RFN .

3 GENERAL ALGORITHM
To the author’s knowledge, the forward increment Lagrange

method [10] gives satisfactory results for such contact-impact
problems [3]. Consequently this method is used in our study:
a finite central differences scheme combined with Lagrange
multipliers (prediction-correction algorithm) properly satisfies
the contact detection and ensures the compatibility of the speed
and the acceleration.

Therefore, equations of motion are discretized in time ac-
cording to central finite differences:

Pa ' anC1 � an�1

2
t
and Ra D anC1 � 2an Can�1


t2

with a D X or '. Xn refers to the generalized displacements X

in which bending, traction and torsion are stored at time tn and

t to the time step.

Since the system of equations is non-linear, a specific time
procedure is developed in algorithm 1. As the aim of this study
is to compute the response of a low pressure turbine in abnormal
conditions, the initial and boundary conditions are given as fol-
lows: operating at normal conditions, the turbine is suddenly dis-
connected after the blade-off. Simultaneously, only aerodynami-
cal and Newtonian fluid friction slow down the shaft line [16].

Initialization of X and ' for t0 and t1
For n from 2 to nend do

Prediction of (XnC1, 'nC1)
Iteration to solve the nonlinear governing equations
While (k Residual vector of equations k2 � ") do

If (No penetration) then
�N D 0

else
Computation of Lagrange multipliers
Correction with contact forces (in the nor-
mal direction �N and in the tangential
one �T D ��N ) and the resisting torque
due to friction Cf ric D �R�N

end If
New guess .XnC1;'nC1/

done
If ('nC1 < 'n) then

break
end If
Results are recorded
Next time step increment

end For

ALGORITHM 1: TIME INTEGRATION PROCEDURE

Since the exact contact detection requires to update the con-
tact location at each iteration of the nonlinear solver, the CPU
time prohibitively increases. Therefore, in order to find a com-
promise between CPU time and accuracy, the contact location
can be chosen to remain the one obtained during the prediction
step (no update in the iterative process).

4 RESULTS
The shaft line mode used for simulations is depicted in fig-

ure 1. The initial gap between the shaft and the diaphragm is
equal to 8mm. Convergence of results with respect to the time
step and satisfaction of the impenetrability condition have been
shown in [9].

The sensitivity to the proposed assumptions for the contact
detection is now studied: the computed rotating speed and the dis-
placements at the bearing location are depicted in figure 7 and 8.
Table 1 summarizes the main results.
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Hypothesis 1 2

Update of contact location yes no

CPU time (s) 7742 24743 6845

Max load on bearing (105N) 5:46 4:95 5:36

Max contact force (MN) 3:49 4:29 7:53

Residual penetration (10�2mm) 5:88 6:75 12:36

Table 1. COMPARISON OF THE RESULTS WITH THE DIFFERENT
ASSUMPTIONS FOR CONTACT DETECTION
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Figure 10. CONTACT FORCES WITH THE DIFFERENT ASSUMP-
TIONS FOR CONTACT DETECTION

From the beginning of the shutdown up to 3s, no contact oc-
curs. The first contacts arise around 3:05s and correspond to a
partial rubbing, as may be seen in figures 10 and 11 from the am-
plitude of the contact forces. During this phase of light rubbing,
the results appear to be independent of the assumptions used for
the contact detection, as shown in figure 13 for the available gap
at the bearing node. However, when heavy rub occurs, the
sensitivity to the assumption on the contact detection becomes
obvious. The simulation using the exact contact detection is con-
sidered as the reference calculation. Consequently, the contact
approximation, referred to as “Hyp 1”, gives approximated re-
sults on the evaluation of the bearing loads - see figures 10, 11
- and underestimates the contact forces, see table 1. If the exact
contact location is not updated during the iteration process (“Hyp
2 no update”), the residual penetration increases, which leads to
an over-estimation of the contact forces, see table 1 and figure 9.

CONCLUSIONS AND PROSPECTS
A mechanical system for rotor-stator interaction has been

studied in this paper. The stator is a diaphragm and a flexible
model has been proposed with curved beams representing the in-
ner ring and straight beams representing the blades. A numerical
tool has been developed to analyze speed transients for shaft-to-
diaphragm contact after a blade-off. Based on the Lagrangian
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multiplier method, different algorithms have been studied for
the contact implementation in order to optimize the computation
time.

In the case of partial rub, simulations have shown that results
do not depend on the assumption made on the quality of the con-
tact detection. However, since this study focuses on accidental
shutdowns, full annular rubbing may occur. Results have shown
that, when heavy rub occurs, the contact forces are then sensitive
to simplifying assumptions for the contact detection. Nonethe-
less all these assumptions may be used to obtain other quantities
of interest such as rotating speed or bearing loads with a good
accuracy and saving CPU time.

Experiments on a test rig devoted to rubbing will be per-
formed in the next future in order to validate this rotor-stator in-
teraction modeling. The time integration results will be analyzed
by means of the time-frequency tools. Finally, the diaphragm
model will be extended by adding axial deformations and work
is in progress to take into account the beam-to-beam contact in
3-D space.
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[3] Legrand, M., 2005. “Modèles de prédiction de l’interaction

rotor/stator dans un moteur d’avion”. PhD thesis, École
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