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Wind Farm Portfolio Optimization under Network

Capacity Constraints
Hélène Le Cadre, Anthony Papavasiliou and Yves Smeers

Abstract—In this article, we provide a new methodology for
optimizing a portfolio of wind farms in a Market Coupling
organization, for two Market Designs (exogenous prices and
endogenous prices). Our model is built on an agent based
representation of a certain number of interacting geographic
demand markets, each facing a bilevel program to optimize its
production level and bilateral trades with the others while antic-
ipating the grid congestion. The Nash Equilibria resulting from
this Signaling Game are characterized using Algorithmic Game
Theory. The Markowitz Frontier, containing the set of efficient
wind farm portfolios, is derived theoretically as a function of
the number of wind farms and of their concentration. Finally,
using France-Germany-Belgium real life data, we simulate the
Markowitz Frontier contour in the expected cost-conditional
variance plane.

Index Terms—Algorithmic Game Theory, Market Design,
Wind Farm Concentration, Markowitz Frontier.

I. INTRODUCTION

THE most advanced market design in the restructuring of

the European electricity market is Market Coupling. As

several other electricity markets, Market Coupling is organized

as a two tiered system with a day ahead market and a real

time system. European power exchanges operate as zonal

markets that ignore Kirchoff’s laws and assume no congestion

within zones. Zonal models can lead to dispatch that violates

transmission constraints. Counter-trading is required in order

to redispatch the system such that transmission constraints are

not violated. In their models, Smeers et al. aggregated nodes

into zones and ignored Kirchoff’s laws [26]. They determined

the flows over interconnections and the total amount of power

production (and consumption). The clearing of their zonal

market followed by counter-trading might be sub-optimal

because there is no congestion anticipation in the day ahead

market and no representation of the uncertainty associated to

the integration of renewable supply.

In comparison with other systems, Market Coupling relies

on a separation of the energy market (the power exchanges)

and the transmission system organized by the Transmission

System Operator (TSO) [26]. Moreover Market Coupling is

progressively moving from a decentralized to a more cen-

tralized organization. This trend may become more and more

relevant with increasing wind power penetration, which is a

result of both European and national policies that complicates

this comparison [23]. The comparison between centralized
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and decentralized organization in the presence of wind is

the subject of the approach developped in [16]. The impact

of information asymmetry is also quantified and the price

of information (regarding the certification of the renewable

supplies) is derived as a function of the required confidence

level.

Oggioni et al. compared the effect of two wind policies

(”priority dispatch” under which the TSO must accomodate

all wind energy produced and the ”no priority dispatch” under

which the TSO can decide not to inject all potential wind

power in the grid in order to limit congestion problems) in

a context of Market Coupling organization [23]. The authors

showed, using stochastic programming models depending on

the different wind penetration levels, that ”no priority dis-

patch” removes most of the problems resulting from Market

Coupling organization. However the relevance of this conclu-

sion relies on the strong assumption that the power exchanges

and the TSOs are perfectly coordinated among the zones.

While Oggioni et al. focused on the day ahead modeling,

Nair et al. explicitly characterized the impact of growing wind

power penetration, assuming that conventional energy may

be procured in three stages (i.e., day ahead, intra day and

real time) to balance supply and demand [21]. Our model

extends the approach of Nair et al. [21] by taking into account

the European market coupling and congestion anticipation.

Furthermore, we model power exchange interactions thereby

capturing the competition among national energy markets

which has not been considered so far.

Accurate short-term forecasts of wind farms power output

over the next few hours to days are important factors for secure

and low cost operations of power systems with high wind

power penetration [20], [24]. According to Girard et al. [8],

it is difficult to quantify the economic benefit of increasing

predictability. The recent literature dealing with the placement

of wind turbines concludes that the aggregation of wind farms

can produce significant effects in terms of variability and cost

reduction [8] since forecast errors might compensate each

other. Furthermore a portfolio of wind farms is likely to

give better results in terms of the trade-off between cost and

profit and its variability than relying on a single wind farm

[9]. Considering both problems of wind farm expansion and

optimal wind farm portfolio generation, Girard et al. checked,

using West Denmark real life data, that the power producer’s

revenue is linear in the wind farm capacity factor and that the

predictability of the site i.e., the level of accuracy of short-

term wind power productions, has only a very small impact

on it. However, as raised by the authors, their results do not

quantify the benefit of predictability from the global system
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point of view. Adopting a more systemic approach, Green

showed, using 18 years of hourly wind speed data coming from

120 sites around Great Britain, that careful market analysis

is needed if investors are to build optimal portfolios of wind

stations [9]. Baringo and Conejo already made the link, dealing

with the optimization of a strategic wind power unit owner’s

investment while selling his wind power in a two sided market

(including a day ahead and a balancing market) [1].

In this article, we propose to tackle the difficult problem

of providing a methodology for optimizing a portfolio of

wind farms in a Market Coupling organization. As in [8], the

revenue of a wind farm portfolio corresponds to the real time

value of its produced energy and not to a subsidy (such as

those provided through feed-in tariff systems). A large share

of current installed capacity in Europe is supported by feed-

in tariffs. As wind power penetration increases, States are

switching to direct market participation mechanisms for wind

farms [8].

According to the literature mentioned above, a careful

(simplified) modeling of Market Coupling is the most crucial

modeling aspect. We consider a certain number of geographic

demand markets, described in Section II. Since we want to

characterize the agents’ general behaviors, we do not consider

explicitly Kirchoff’s laws (though they might be used to

provide us with our virtual representation of the grid equivalent

capacities) and aggregate the supply and the demand at the

market level. The originality of our approach relies on its

capability to cope with competition among the energy markets

which was ignored in the previously cited models. After

having defined the agents’ roles in Subsection II-A, we assume

that over each geographic market, a bilevel optimization prob-

lem occurs in the day ahead market. Its timing is described

in Subsection II-B. It is based on the anticipation of what

will happen in the real time market. The game is solved by

backward induction. The link between day ahead and real

time markets is guaranteed by the existence of a reserve,

defined here as a quantity of energy purchased in the day

ahead, to compensate for the uncertainty of supply in real time.

The bilevel optimization problem is solved for two Market

Designs: two tiered with exogenous prices in Section III and

two tiered with endogenous prices in Section IV. The way this

bilevel optimization problem is solved depends on the received

signals i.e., which information is shared among the agents.

These signals can come from price (real time prices, in Sub-

section IV-C) or from quantity (reserves, in Subsection IV-D)1.

Efficient wind farm portfolios are then characterized on the

basis of the Markowitz Frontier definition. Its exploration is

detailed in Section V. Contrary to traditional approaches, it

is computed in a context of rare events, guaranteeing the

robustness of the wind farm distribution. Illustrations based on

real life wind speed and energy consumption data for France,

Germany and Belgium are provided in Section VI.

II. THE MARKET MODEL

We consider suppliers (distributors or utility companies)

with long term contracts for renewable energy. Given such

1It is classical to separate non-cooperative games in quantity based ones
(Cournot) and in price based ones (Bertrand).

a long term contract, the suppliers participate in a two tiered

market for conventional energy production. It consists of a day

ahead market occuring at tf > 0 and of a real time market,

occuring at t0 > tf ; meaning that t0 occurs after tf.

In the European Union (EU), the real time markets intro-

duced in this article can be assimilated to intra day markets

[12] , though the design and timing of the latter is still debated,

or to the EU balancing mechanism where the imbalance price

settlement mechanism [8], [15] would be designed so that

no compensation would be provided in case of reserve over-

provisioning. This choice of modeling can be justified by the

fact that our model aims at determining how the suppliers

share the risk of under-provisioning between the day ahead

and the real time markets.

Market design cannot be separated from the physical trans-

mission constraints resulting from the country interconnection

[9]. The super grid is the network backbone enabling the power

flow exchanges between the N ∈ N
∗ interconnected markets.

The interconnection among the markets is performed through

L ∈ N
∗ links. Each link l = 1, ..., L is defined by its Available

Transmission Capacity (ATC) which can be reduced due to

losses occuring through the transmission lines. Losses are all

the more important as renewable sources of production are

located at the extremities of the power network [14] resulting

in significant losses.

Inside the economic system formed by the power markets,

bilateral trades occur among the markets. We let tfi→j (resp.

t0i→j) be the bilaterally traded flow of energy between market i

and market j in the day ahead market (resp. real time market).

Depending on the sign of the traded flow, it can be an import

from j to i in case where it is negative and, an export from

i to j, in case where it is positive. Throughout the article, we

will use the following conventions: (t0i→j)+ , max{0; t0i→j}

and (tfi→j)+ , max{0; tfi→j} and the simplifying notations:

Si ,
∑

j 6=i t
0
i→j and S+i ,

∑
j 6=i(t

0
i→j)+. The power transfer

distribution factor (PTDF) matrix, which depends non linearly

on the impedances of the transmission lines, enables the linear

scaling of the bilateral trades among the markets to physical

flows runing along the super grid lines [10], [22].

Market Coupling clears energy and transmission in the day

ahead and attempts to align prices in real time under the so

called ”implicit auction” [10], [22]. In practice, the markets

having the smaller prices export toward the markets having

higher prices until a common price is reached or congestion

occurs due to limited ATCs at the interconnection points [6],

[14], [26]. If congestion occurs betweeen market i and market

j, they are split ; otherwise they become coupled through a

unique integrated market. Congestion management remains

a controversial issue in the restructured European electricity

sector. Congestion occurs when the infrastrucure constrains

transactions and long term modification of generation and

consumption [6].

Our network model is based on a simplified representation

of the European area: we assume that each market is repre-

sented as a virtual geographic area and fully interconnected

with the other markets, as depicted in Figure 1 for three

markets. This assumption is consistent with the French Energy
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Fig. 1. Equivalent interconnection capacity between the split markets.

Transport Operator (RTE)’s ambition to simplify the European

grid modeling by cutting it in zones and by defining an

equivalent network between these zones [4]. As in the classical

ATCs/PTDFs model, the interconnections among the virtual

geographic areas are limited by the super grid line capacity.

We introduce the equivalent interconnection capacity between

market i and market j: κi,j ∈ R such that κi,j < +∞, i 6= j.

The equivalent interconnection capacities are currently being

evaluated by RTE using tests performed throughout the super

grid [4]. According to Hutcheon and Bialek’s representation of

the copper plate [11], for any i, j = 1, ...,N, i 6= j, κi,j can be

either positive or negative ; furthermore, we have the relation:

κi,j = −κj,i. Suppose we consider three split markets. In

case of congestion, tfi→j + t0i→j = κi,j,∀i, j = 1, 2, 3, i 6= j

because, otherwise, the markets which can still export would

export until being coupled, leading to two or less split markets.

A. The agents

There is a certain number of geographic2 demand markets,

each characterized by a price insensitive3 and random demand.

This demand is unknown in day ahead but revealed in real

time. Similarly, wind generation in each geographic market is

price insensitive and random: it is unknown in day ahead and

revealed in real time. We now describe the different categories

of agents interacting over each market.

• Suppliers (distributors or utility companies) deliver en-

ergy to consumers characterized by their aggregated

demand. They are price takers in the first Market Design

(MD 1) detailed in Section III. In contrast with standard

assumptions, they are not in the second Market Design

(MD 2), described in Section IV. In this latter Market

Design, they are aware that their decisions modify prices

and take that knowledge into account to minimize their

procurement cost. Because the consumers’ demand is

price insensitive they do not exercise market power with

respect to the final demand.

2The term ”geographic” will be understood in the rest of the article.
3We do not consider demand side management in the present article. Models

dealing with decentralized demand response integration through distributed
learning approaches can be found in [15]. In [17], the end user’s demand
is price responsive and storage is possible either at the end users’ level, for
instance through the battery of their electric vehicles, or at the microgrid
aggregator’s level.

• Conventional energy producers are characterized by their

aggregated profit function. There is conventional genera-

tion in each market. Marginal costs are higher in real time

than in day ahead. We will assume that the conventional

energy market in each geographic demand market is

perfect, meaning that generators cannot exercise market

power and charge a margin on top of marginal cost. As

a result, we will assume that suppliers buy electricty at

marginal cost.

Finally, an investor (independent power producers, wind

farm developers, aggregators, virtual power plant operator) is

introduced into the markets. The investor has to decide how

to compose an optimal wind farm portfolio for participating

in the electricity market.

B. Timing

We make the assumption that a clearing price is reached

at tf. Because the transfers are limited by the equivalent

interconnection capacity, it will be harder to align the market

prices at t0. But to optimize the bilateral trades in the real

time, the agents need to forecast what will happen in the real

time market. For that purpose, they can consider two scenarios:

Congestion anticipation: The markets anticipate the

potential congestion of the lines. They are then split

in N ∈ N
∗ geographic areas. Note that two or more

countries can be grouped in the same geographic area

Coupling anticipation: The markets are myopic and do

not anticipate potential congestion, meaning that they are

coupled. The mathematical analysis of this scenario will

not be detailed in this article ; all analytical and numerical

details can be found in [16]

We now describe the bilevel program faced by each market.

Over each market i, at time instant tf:

(i) Anticipating what will happen on the real time mar-

ket i.e., at time instant t0, the conventional producers

optimize independently and simultaneously the bilateral

trades with the other markets so as to maximize their

expected profit under equivalent capacity constraints

(ii) The suppliers optimize independently and simulta-

neously their purchase of conventional energy so as to

minimize their expected cost while ensuring that the total

purchased quantity satisfies the residual demand

Under congestion anticipation, which is the scenario that we

will follow throughout the article, the trades at tf are linked

to the optimal trades at t0 according to the relation: tfi→j =

κi,j − t0i→j,∀i, j, i 6= j. The usual way to solve the bilevel

problem described above is to proceed by backward induction.

Proceeding backward, the optimization of conventional energy

purchases depends on the expectations of the market prices

which themselves depend on the bilateral trades concluded

by the producers on the power markets. Such games are

called Signaling Games (SGs) [27]. Here the signal (the shared

information) is based on price but it might also be possible to

consider that the game signal is based on quantity. Under this

latter assumption, it will be more appropriate to invert Steps (i)

and (ii) in the bilevel problem described above. The SG based
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on quantity will also be solved by backward induction. Note

that the SG based on quantity backward solving coincides with

the SG based on price forward solving.

Justifying which form of SG occurs in practice depends

on which information is shared among the agents i.e., is the

information shared based on market prices or on quantities?

In the extreme case where no information is shared, the

bilevel game becomes a simultaneous game i.e., Steps (i)

and (ii) occur simultaneously. In this case, the conventional

energy purchase is optimized through the method described in

Subsection IV-C1 and the bilateral trades are optimized using

the results established in Subsection IV-D1.

C. Description of the markets

Market i is defined by:

• di the end users’ total demand of energy at time t0. It

satisfies the relation: di = d̂i−νi where d̂i is the forecast

made at tf of the end users’ total demand of energy at

t0. νi is a random variable, representing the forecast

error made on the demand prediction, and distributed

according to a Gaussian density function centered in 0

and of standard deviation σν
i : νi ∼ N

(

0; (σν
i )

2
)

.

• wi the energy produced at time t0 by the market renew-

able energy producers. It satisfies the relation: wi = ŵi−

ǫi where ŵi is the forecast made at tf of the quantity of

renewable energy that market i producer will produce at

t0. ǫi is a random variable, representing the forecast error

made on the prediction of the renewable production, dis-

tributed according to a Gaussian density function centered

in 0 and of standard deviation σǫ
i : ǫi ∼ N

(

0; (σǫ
i )

2
)

. The

forecast error on the production of a single wind farm

will be denoted ǫ̃i. Being consistent with the assumption

made on ǫi generation, it is distributed according to a

Gaussian density function4 centered in 0 and of standard

deviation σ̃ǫ
i : ǫ̃i ∼ N

(

0; (σ̃ǫ
i )

2
)

. The relation between

ǫi and ǫ̃i will be discussed explicitly in Subsection II-E.

• The forecast error vector for wind production and de-

mand:
(

ǫ̃i νi

)T
5 is also supposed to be a Gaussian

random vector. According to Sinden [25], wind power

output in the United Kingdom (UK) has a weak pos-

itive correlation to current electricity demand patterns

i.e.,
E[ǫ̃iνi]

σν
i
σ̃i

ǫ > 06. This implies that ∆i , ǫi − νi,

which is the difference between renewable production

and demand forecast errors, is distributed according to

a Gaussian distribution function centered in 0 and of

variance σ2
∆i

= (σǫ
i )

2 − 2E[ǫiνi] + (σν
i )

2. In the rest

of the article, we will let: ∆i ∼ f∆i
≡ N (0;σ2

∆i
) ; F̄∆i

will represent the associated complementary cumulative

distribution function. ∆i is supposed to be independent

4Other density functions might be considered without adding any changes
in the derived theoretical results except in the numerial illustrations where the
Gaussian assumption greatly simplified the computations.

5.T stands for the transpose of the vector.
6Data analysis ran on 66 onshore weather recording sites for the period

1970 − 2003 in the UK showed a correlation of 0.28 [25]. This is the value
that we will use in the simulations.

of any ∆j,∀j = 1, ...,N, j 6= i i.e., the prediction errors

made on one geographic market are independent of the

ones made on the other geographic markets.

• sfi (resp. s0i ) market i supply of conventional energy in

day ahead (resp. real time) markets.

• cfi(s
f
i) = af

i + bf
is

f
i (resp. c0i (s

0
i ) = a0

i + b0
i s

0
i ) the

marginal cost function of conventional energy produced

by market i and purchased at tf (resp. t0), with a0
i >

af
i > 0 and b0

i > bf
i > 0 guaranteeing that the marginal

cost on the real time market remains larger than in the

day ahead market.

• qf
i (resp. q0

i ) market i demand of conventional energy in

day ahead (resp. real time) markets.

The amounts of energy purchased by market i at tf and at

t0 are defined as follows: qf
i =

(

d̂i − ŵi + ri

)

+
and q0

i =
(

di −wi − qf
i

)

+
where ri is a reserve of energy purchased

in day ahead (lower cost) market because of uncertainty of

supply at t0. Reserve ri is determined by the energy supplier

in market i for the consumers’ demand di to be satisfied at t0
at the lowest possible cost. Market i knows d̂i and ŵi. Hence

it is equivalent for the supplier to determine qf
i or ri. The

hypothesis that qf
i > 0 holds as long as the demand exceeds

the average wind capacity. In the rest of the article, we will

assume that: qf
i , d̂i − ŵi + ri.

D. Suppliers’ expected cost and producers’ expected profits

We define Ui, as the expected cost at tf, that the supplier

has to pay for his end user energy consumption:

Ui = qf
ip

f + E

[

q0
ip

0
i

]

(1)

We let Πi be the expected profit at tf of market i con-

ventional energy producer. It is defined as the difference

between the price paid by all the markets for the purchase of

conventional energy and the cost of the energy7. We assume

that all the supply is sold at each time. Then:

Πi =
∑

j 6=i

(tfi→j)+p
f + [sfi −

∑

j 6=i

(tfi→j)+]p
f

−

∫sf
i

0

cfi(s)ds+ E

[∑

j 6=i

(t0i→j)+p
0
j

]

+ E

[

(s0i −
∑

j 6=i

(t0i→j)+)p
0
i

]

− E

[

∫s0
i

0

c0i (s)ds
]

= sfip
f −

∫sf
i

0

cfi(s)ds+ E

[∑

j 6=i

(t0i→j)+p
0
j

]

+ E

[

(s0i −
∑

j 6=i

(t0i→j)+)p
0
i

]

− E

[

∫s0
i

0

c0i (s)ds
]

(2)

E. Renewable energy modeling

The renewable wind energy production of market i is a

function of the number of wind farms and of their concentra-

tion which is characterized by their spatial distribution over

7The cost of transport of power in the bilateral trades will not be considered
since we focus on a market scale.
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market i geographic area. To determine the renewable energy

procurement for market i, we use the model of Nair et al. [21].

For market i, we introduce:

• αi the average wind production of a single wind farm

over the geographic area of market i

• γi the number of wind farms over market i geographic

area

• θi ∈ [1
2
; 1] (resp. 1−θi ∈ [0; 1

2
]) a constant capturing the

concentration (resp. the scattering) of the wind farm loca-

tions over market i geographic area. The more (resp. the

less) concentration, the more (resp. the less) correlation

there is between the wind farm productions

We suppose that, at tf, αi is the best forecast of wind energy

procurement of a wind farm [21]. Then: ŵi(γi) = αiγi. The

forecast error will depend on the wind penetration too, and

we choose the coefficient θi so that ǫi(γi) = γθi

i ǫ̃i where

ǫ̃i, as already introduced, represents the forecast error for the

production of a single wind farm. We propose the following

interpretation for the scaling of θi: If the wind farms are co-

located they will all produce the same quantity of energy at the

same time i.e., their productions are strongly correlated. This

is the case when θi = 1. This implies in turn that: ǫi = γiǫ̃i
and that: ŵi = wi + γiǫ̃i. On the contrary, if they are

spatially distributed so that their productions are independent

from one another i.e., uncorrelated, and under the assumption

that the forecast errors are distributed according to Gaussian

distribution functions, the Central Limit Theorem tells us that:

σǫ
i =

√
γiσ̃

ǫ
i [21]. Therefore, the wind farm productions

are independent from one another if, and only if, θi = 1
2
.

Note that in case of more general forecast error distribution

functions, it can be interpreted as an approximation for γi

large enough. Finally, in case where θi ∈]1
2
; 1[, the wind

farms are randomly located over the market geographic area

and their spatial distribution is intermediate between perfect

independence and co-location. With these notations, we obtain:

wi(γi) = ŵi(γi) − ǫi(γi) = αiγi − γθi

i ǫ̃i

σǫ
i (γi) = γθi

i σ̃ǫ
i

ǫi(γi) = γθi

i ǫ̃i

In the rest of the article, for the sake of simplicity, the

dependence of wi, σ
ǫ
i and ǫi on γi will be omitted.

In the following sections, we derive the suppliers’ optimal

reserves and real time prices, for two Market Designs.

III. MD 1: TWO TIERED WITH EXOGENOUS PRICES

In this first Market Design, the prices are supposed exoge-

nous and such that:

0 < pf < p0
i ,∀i = 1, ...,N

Market i supplier’s expected cost takes the form:

Ui = qf
ip

f + E[q0
ip

0
i ]

= (d̂i − ŵi + ri)p
f + p0

iE

[

(∆i − ri)+

]

We solve the bilevel Program described in Subsection II-B

by backward induction. In Step (ii), each market i supplier

determines independently and simultaneously the quantity of

energy to purchase, qf
i , or, equivalently, his reserve, ri, so as

to minimize his expected procurement cost8:

min
ri≥0

Ui (3)

We made the assumption that ri ≥ 0 since otherwise this

means that a supplier could be short in the day ahead,

something that one may find unrealistic given that conventional

plants are more expensive in real time.

Derivating market i expected cost with respect to ri, we ob-

tain: ∂Ui

∂ri
= pf+p0

i
∂

∂ri
E[∆i− ri|∆i ≥ ri] = pf−p0

i F̄∆i
(ri).

Then:

∂Ui

∂ri
|ri=r∗

i
= 0 ⇔ r∗i = F̄−1

∆i
(
pf

p0
i

) (4)

Since ∂2Ui

∂r2
i

= p0
i f∆i

(ri) > 0, it coincides with a minimum for

Ui. Furthermore market i’s optimal reserve being independent

of the other markets’ optimal reserves, Equation (4) leads to

a unique Nash equilibrium for the market reserves.

Note that inverting the bilateral game steps leads exactly

to the same optimal reserve since it depends exclusively on

exogenous market prices (p0
i , p

f) and on the forecast error

difference standard deviation σ∆i
. The investor’s total cost,

which will be detailed in Section V and used to optimize his

wind farm portfolio, depends only on the market prices and

on the reserves. Market prices and the optimal reserves being

independent of the bilateral trades, we do not give here the

detail of their computation.

IV. MD 2: TWO TIERED WITH ENDOGENOUS PRICES

In the following subsections, we derive analytically the

endogenous prices in the day ahead and in the real time

markets.

The global day ahead market is characterized by the equi-

librium between the supply and the demand: qf
tot(N) =∑

i=1,...,N

qf
i =

∑

i=1,...,N

sfi which is the global quantity of

conventional energy exchanged on day ahead markets. Further-

more, for any market i, we suppose, at t0, that the difference

between the supply and the demand for conventional energy

over market i coincides with the sum of bilateral trades with

the other markets:
∑

j=1,...,N,j6=i

t0i→j = s0i − q0
i ⇔ Si = s0i − q0

i (5)

We make the assumption that the prices pf
i and p0

i paid

by market i suppliers for the energy purchased at tf and t0
respectively equal the marginal costs. This assumption has

been justified in Subsection II-A. It implies that: pf
i = cfi(s

f
i)

and p0
i = c0i (s

0
i ). Furthermore we assume that a clearing price

is reached at tf i.e., pf
i = pf

j , pf,∀i, j = 1, ...,N, i 6= j

meaning that all the markets are integrated in a single one at

that time. Because the transfers are limited by the available

transmission capacities, it will be harder to align the market

prices at t0: if the markets clear then p0
i = p0

j , p0,∀i, j =
8The reserve is used by the suppliers to compensate for their forecast errors

in the real time. So, it is quite natural to assume that they are responsible for
their procurements.
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1, ...,N, i 6= j ; otherwise there exists at least one market

i ∈ {1, ...,N} in which the supplier pays p0
i 6= p0

j for

j ∈ {1, ...,N} and j 6= i9.

A. Derivation of the coupling price

We set: Af ,
∑

i=1,...,N

af
i

bf
i

and Bf ,
∑

i=1,...,N

1

bf
i

> 0.

Lemma 1. The coupling price for the day ahead market is:

pf =

∑

i=1,...,N

qf
i +Af

Bf .

Proof of Lemma 1. Using the assumption of the supply and

demand equilibrium guaranteed by the day ahead market rules,

we have:

qf
tot(N) =

∑

i=1,...,N

qf
i =

∑

i=1,...,N

sfi

=
∑

i=1,...,N

pf
i − af

i

bf
i

under the assumption that pf
i = cfi

=
∑

i=1,...,N

pf − af
i

bf
i

since the N markets are coupled at tf

= pf
( ∑

i=1,...,N

1

bf
i

)

−
∑

i=1,...,N

af
i

bf
i

We infer from the following equations the day ahead price on

the coupling zone: pf =

∑

i=1,...,N

qf
i +Af

Bf .

We set: A0 ,
∑

i=1,...,N

a0
i

b0
i

and B0 ,
∑

i=1,...,N

1

b0
i

> 0.

We proved in [16] that the N markets being coupled at

time t0, the coupling price for the real time market is:

p0 =

∑

i=1,...,N

q0
i +A0

B0 .

B. Derivation of the split market prices

We set: A0
i ,

a0
i

b0
i

and B0
i ,

1

b0
i

> 0. As in the proof of

Lemma 1, we infer the real time price on the i-th split market:

Lemma 2. The N markets being split in N geographic areas,

at time t0, market i price for the real time market is: p0
i =

q0
i+A0

i+

[ ∑

j=1,...,N,j6=i

t0i→j

]

B0
i

.

Proof of Lemma 2. Using the real time market rules

defined through Equation (5), we have: q0
i = s0i −∑

j=1,...,N,j6=i

t0i→j. This implies that: q0
i +

∑

j=1,...,N,j6=i

t0i→j =

9In case where p0i 6= p0j , a congestion rent CRi,j = (p0i −p0j )t
0
j→i is paid

to the transmission operator. CRi,j is: positive if the lower price market is
exporting energy to the higher price market ; null if the interconnection lines,
binding market i to market j, are not congested and p0i = p0j = p0 ; negative

if the lower price market is importing energy from the higher price market.

Day ahead price Real time price

Coupling

anticipation

1
Bf

[ ∑

i=1,...,N

qf
i+Af

]

1
B0

[ ∑

i=1,...,N

q0
i +

A0
]

Congestion anticipa-

tion

1
Bf

[ ∑

i=1,...,N

qf
i+Af

]

1

B0
i

[

q0
i + A0

i +
∑

j=1,...,N,j6=i

t0i→j

]

TABLE I
ENDOGENOUS DAY AHEAD PRICE (pf) AND REAL TIME PRICE

(p0
i ).

p0
i

1

b0
i

−
a0
i

b0
i

using the fact that c0i = p0
i . Then: p0

i =

q0
i+

a0
i

b0
i

+

[ ∑

j=1,...,N,j6=i

t0i→j

]

1

b0
i

=

q0
i+A0

i+

[ ∑

j=1,...,N,j6=i

t0i→j

]

B0
i

using the simplifying notations.

In Table I, we summarize the analytical expressions of

market i endogenous prices in day ahead and in real time,

depending on whether we are in coupling or in congestion.

C. Signaling Game based on price

In this subsection, the signal received by the suppliers is

based on price. We assume that congestion occurs at t0. We

solve the bilevel game described in Subsection II-B proceeding

by backward induction. Reserves and bilateral trades cannot

be derived analytically. However we provide conditions guar-

anteeing the existence and uniqueness of a Nash equilibrium

for the reserves and detail algorithmically how reserves and

bilateral trades at the optimum should be computed.

1) Minimization of the suppliers’ expected cost: We deter-

mined the analytical expressions of the endogenous coupling

price for the integrated day ahead market in Subsection IV-A

and of the endogenous prices for the split markets in real

time in Subsection IV-B. Substituting these values in the

suppliers’ expected costs, each market i supplier determines

independently and simultaneously the quantity of energy to

purchase, qf
i , or, equivalently, his reserve, ri, so as to minimize

his expected procurement cost, as described in optimization

Program 3.

Market i supplier determines the best answer, rBA
i (r−i),

where r−i is a N − 1 dimensional vector containing the

reserves of all the suppliers except market i supplier, which

minimizes his expected procurement cost. The decentralized

program output is a Nash Equilibrium, (r∗i )i=1,...,N, defined

by: r∗i = rBA
i (r∗−i),∀i = 1, ...,N.

Lemma 3. The sum of the bilateral trades of market i in the

real time market, Si, can be expressed as a linear function in

ri and r−i.

Proof of Lemma 3. By definition: qf
i =

∑
j 6=i t

f
i→j + sfi

and pf = af
i + bf

is
f
i . This implies, in turn, that:

∑
j 6=i t

f
i→j =

qf
i − sfi and sfi =

pf−af
i

bf
i

. This implies that:
∑

j 6=i t
f
i→j =

qf
i −

pf−af
i

bf
i

= qf
i −

∑
j q

f
j+Af

Bfbf
i

+
af

i

bf
i

using the definition

of pf under congestion anticipation. Then:
∑

j 6=i t
0
i→j =
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∑
j 6=i κi,j−

∑
j 6=i t

f
i→j =

∑
j 6=i κi,j−(qf

i−
∑

j q
f
j+Af

Bfbf
i

+
af

i

bf
i

) =

( 1
Bfbf

i

− 1)(d̂i − ŵi + ri) +
1

Bfbf
i

∑
j 6=i(d̂j − ŵj + rj) +

∑
j 6=i κi,j −

1
bf

i

(af
i −

Af

Bf ).

This means that there exists a linear function ϕi : R
N
+ → R

such that Si = ϕi(ri, r−i).

As a corollary of Lemma 3, we obtain: ∂Si

∂ri
=

∂
∂ri

(
∑

j 6=i t
0
i→j) =

1
Bfbf

i

− 1.

Proposition 4. If
∑

j 6=i t
0
i→j > −A0

i (i.e., low quantity of

imports), there exists a positive Nash Equilibrium solution of

Program 3. Otherwise, the result still holds provided the stan-

dard deviation of ∆i is smaller than − 1√
2π

[
A0

i+
∑

j6=i t
0
i→j

2B0
i

Bf + 1
2
(3− 1

Bfbf
i

)

]

(i.e., small variance for the difference between the error

associated to renewable production forecast and the error

related to demand forecast).

Proof of Proposition 4. It is provided in Appendix A.

Using the methodology described in Proposition 4 proof,

market i determines the best answer: r∗i = rBA
i (r∗−i) which

minimizes its expected cost. Going a step further in the

computations detailed in the proof of Proposition 4, we prove

that this best answer is obtained as the solution of a fixed

point equation: F̄∆i
(r∗i ) = B0

i {A
0
i + ( 1

Bfbf
i

− 1)(d̂i − ŵi +

r∗i )+
1

Bfbf
i

∑
j 6=i(d̂j − ŵj + r∗j )+

∑
j 6=i κij −

1
bf

i

(af
i −

Af

Bf )−

2r∗i }
−1

[∑
j(d̂j−ŵj)+

∑
j6=i r

∗
j+r∗i+Af

Bf +
d̂i−ŵi+r∗i

Bf + ( 1
Bfbf

i

+

1)
σ∆i

B0
i

√
2π

exp(−
(r∗i )

2

2σ2
∆i

)
]

. This fixed point equation is solved si-

multaneously by all the markets. Nash Equilibria are obtained

at the intersections of the best answers.

To show uniqueness of the resulting Nash Equilibrium, we

apply the contraction mapping approach. Due to Bertsekas

[2], it is sufficient to show that the Hessian of the expected

cost functions fulfills the diagonal dominance condition i.e.,∑
j 6=i |

∂2Ui

∂ri∂rj
| < |∂

2Ui

∂r2
i

|,∀i = 1, ...,N. We show, below, that

the uniqueness of the Nash Equilibrium heavily relies on the

number of interacting markets:

Proposition 5. Providing there is a low quantity of imports

(i.e., Si > −A0
i ,∀i = 1, ...,N according to Proposition 4), if

1
Bf (3 − N) + b0

i (3 − N)F̄∆i
(ri) +

A0
i+Si

B0
i

f∆i
(ri) > 0, ∀i =

1, ...,N then there exists a unique Nash Equilibrium solution

of Program 3.

Proof of Proposition 5. Derivating first Ui with respect

to ri and then, a second time, with respect to rj, j 6= i,

we obtain: ∂2Ui

∂ri∂rj
= 1

Bf +
b0

i

bf
i
Bf F̄∆i

(ri) > 0. The as-

sumption that Si > −A0
i implies, according to Propo-

sition 4: ∂2Ui

∂r2
i

−
∑

j 6=i
∂Ui

∂ri∂rj
= 1

Bf (3 − N) + b0
i (3 −

N
bf

i
Bf )F̄∆i

(ri) +
A0

i+Si

B0
i

f∆i
(ri) > 1

Bf (3 − N) + b0
i (3 −

N)F̄∆i
(ri) +

A0
i + Si

B0
i

f∆i
(ri)

︸ ︷︷ ︸
>0

,∀i = 1, ...,N.

If N ≤ 3, then Proposition 5 holds ; otherwise checking the

diagonal dominance condition is not straightforward.

2) Optimization of the bilateral trades: First, we note that

the supplies of conventional energy on day ahead and real time

markets can be expressed as functions of the bilateral trades

in real time:

sfi =
∑

j 6=i

tfi→j + qf
i =

∑

j 6=i

κi,j − Si + d̂i − ŵi + ri

s0i =
∑

j 6=i

t0i→j + (∆i − ri)+ = Si + (∆i − ri)+

Proposition 6. The optimal bilateral trade between market i

and market k can be expressed as a linear function in rk, r−k,
(

E[(∆l − rl)+]
)

l|p0
i
<p0

l

and E[(∆k − rk)+].

Proof of Proposition 6. The conventional energy producers’

expected profit function can be rewritten as:

Πi = (d̂i − ŵi + ri +
∑

j 6=i

κi,j − Si)
1

Bf

(∑

j

(d̂j

−ŵj + rj) +Af
)

− af
i(d̂i − ŵi + ri +

∑

j 6=i

κi,j − Si)

−
bf
i

2
(d̂i − ŵi + ri +

∑

j 6=i

κi,j − Si)
2

+
∑

j 6=i

(t0i→j)+E[
(∆j − rj)+ +A0

j + Sj

B0
j

]

−
b0
i

2
E[((∆i − ri)+ + Si)

2] + E[(∆i − ri)+
1

B0
i

(

(∆i − ri)+

+A0
i + Si

)

] − a0
iE[(∆i − ri)+ + Si)]

+E[(Si −
∑

j 6=i

(t0i→j)+)
(∆i − ri)+ +A0

i + Si

B0
i

]

We suppose that there exists a k in {1, ...,N} such that

t0i→k > 0. We compute:

∂Πi

∂t0i→k

= −

∑
j(d̂j − ŵj + rj) +Af

Bf
︸ ︷︷ ︸

pf

+ af
i + bf

i(
∑

j 6=i

κij − Si + d̂i − ŵi + ri)

︸ ︷︷ ︸
cf
i
(sf

i
)

−
1

B0
k

t0i→j + E[p0
k] +

1

B0
i

(Si −
∑

j 6=i

(ti→j)+

+ E[(∆i − ri)+]) − a0
i − b0

iE[(∆i − ri)+ + Si]

We observe that the first line of the above equation van-

ishes since, by assumption, pf = cfi(s
f
i). Furthermore, since

E[p0
k] =

1
B0

k

E[(∆k − rk)+] + c0k(Sk) and after a few simplifi-

cations, we obtain: ∂Πi

∂t0
i→k

= − 1
B0

k

t0i→k + 1
B0

k

E[(∆k − rk)+] +

c0k(Sk) − c0i (S
+
i ) − a0

i . Then:

∂Πi

∂t0i→k

= 0 ⇔ t0i→k = B0
k[c

0
k(Sk) − c0i (S

+
i )] + E[(∆k − rk)+] (6)
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Summing t0i→k over all the k such that t0i→k > 0 i.e., p0
i <

p0
k, we obtain:

S+i =
∑

k|p0
i
<p0

k

(B0
k[c

0
k(Sk) − c0i (S

+
i )] + E[(∆k − rk)+])

Separating the equation in S+i we obtain:

S+i =
1

1+ b0
i

∑
k|p0

i
<p0

k
B0
k

{ ∑

k|p0
i
<p0

k

(Bkc
0
k(Sk)

+ E[(∆k − rk)+]) − a0
i

∑

k|p0
i
<p0

k

B0
k

}
(7)

By substitution of Equation (7) in Equation (6), we obtain:

t0i→k = B0
k[c

0
k(Sk)

− c0i (
1

1+ b0
i

∑
l|p0

i
<p0

l
B0
l

{ ∑

l|p0
i
<p0

l

(Blc
0
l (Sl)

+ E[(∆l − rl)+]) − a0
i

∑

l|p0
i
<p0

l

B0
l

}
)]

+ E[(∆k − rk)+]

This means that t0i→k can be expressed exclusively as a

function of Sk, rk, (E[(∆l−rl)+])l|p0
i
<p0

l
and E[(∆k−rk)+].

But, we proved in Lemma 3 that there exists a linear function

ϕk : RN
+ → R such that Sk = ϕk(rk, r−k). As a result, at the

optimum, t0i→k can be expressed as a linear function in rk,

r−k,
(

E[(∆l − rl)+]
)

l|p0
i
<p0

l

and E[(∆k − rk)+].

D. Signaling Game based on quantity

In Subsection IV-C, the game signal was based on price.

In this subsection, we assume that the game signal is based

on quantity and that congestion occurs at t0. As already

mentioned, this implies that the bilevel game timing needs to

be reversed i.e., Step (i) becomes (ii) and Step (ii) becomes

(i). Similarly to the previous section, the resulting SG is solved

by backward induction.

The final state of the system is defined by the difference

between the real time prices on each couple of markets: p0
i −

p0
k,∀i, k, i 6= k. Indeed, its sign determines whether this is an

export from market i to market k or, the reverse.

Under backward induction, market i production of conven-

tional energy and prices in real time and in day ahead can be

expressed as linear functions in the sum of its bilateral trades

and in its reserve:

s0i = Si + (∆i − ri)+

sfi =
∑

j 6=i

κi,j − Si + (d̂i − ŵi + ri)

and pf = 1
Bf [

∑
i(d̂i− ŵi+ ri)+Af], p0

i = 1
B0

i

[(∆i− ri)++

A0
i + Si].

1) Optimization of the bilateral trades: Without loss of

generality, we assume that: p0
1 > p0

2 > ... > p0
N.

Proposition 7. The optimal bilateral trades between market i

and the other markets can be expressed as linear functions in

ri, r−i.

Proof of Proposition 7. We start by assuming that there

exists a k in 1, ...,N such that t0i→k > 0. Derivating Πi with

respect to t0i→k we obtain:

∂Πi

∂t0i→k

= 0 ⇔ t0i→k = (∆k − rk)+ + B0
k[c

0
k(Sk) − c0i (S

+
i )] (8)

Summing this equation over all the k ∈ {1, ...,N} such that

p0
i < p0

k we obtain:

S+i =
∑

k|p0
i
<p0

k

(∆k − rk)+ +
∑

k|p0
i
<pik0

B0
kc

0
k(Sk)

− c0i (S
+
i )

∑

k|p0
i
<p0

k

B0
k

which is equivalent with:

S+i =
1

1+ b0
i

∑
k|p0

i
<p0

k
B0
k

{ ∑

k|p0
i
<p0

k

(∆k − rk)+

+
∑

k|p0
i
<p0

k

B0
kc

0
k(Sk) − a0

i

∑

k|p0
i
<p0

k

B0
k

}
(9)

Substituting Equation (9) in Equation (8), we obtain:

t0i→k = (∆k − rk)+ + B0
k

[

c0k(Sk)

− c0i (
1

1+ b0
i

∑
l<i B

0
l

{∑

l<i

(∆l − rl)+

+
∑

l<i

B0
l c

0
l (Sl) − a0

i

∑

l<i

B0
l

}
)
]

(10)

Note that according to the assumption made on the real time

price ranking, the set {l|p0
i < p0

l } is equivalent with the set

{l|l < i}. Summing Equation (10) over all the k 6= i, we

obtain:

Si = ωi(r−i) +
∑

k 6=i

Sk − βi

∑

l|p0
i
<p0

l

Sl

where:

βi =
b0
i

∑
k 6=i B

0
k

1+ b0
i

∑
l|p<

i
p0

l
B0
l

ωi(r−i) =
∑

k 6=i

(∆k − rk)+ +
∑

k 6=i

B0
ka

0
k − a0

i

∑

k 6=i

B0
k

−
b0
i

1+ b0
i

∑
l|p0

i
<p0

l
B0
l

[ ∑

l|p0
i
<p0

l

(∆l − rl)+

+
∑

l|p0
i
<p0

l

B0
la

0
l − a0

i

∑

l|p0
i
<p0

l

B0
l

]∑

k 6=i

B0
k

The above equation can be rewritten as:

S1 = ω1(r−1) +
∑

k 6=1

Sk

Si = ωi(r−i) +
∑

k 6=i

Sk − βi

∑

l|p0
i
<p0

l

Sl,∀i ≥ 2
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According to the first equation
∑

k 6=i Sk = 2S1 −ω1(r−1) −

Si. By substitution in the second equation, we obtain:

Si =
ωi(r−i) −ω1(r−1)

2
+ S1 −

βi

2

∑

l<i

Sl,∀i ≥ 2

Considering this equation for any i ≥ 2, it can be rewritten

as a system:



















1 0 0 . . . 0
...

. . .
. . .

. . .
...

βi

2
βi

2
1

. . . 0
...

...
...

. . . 0
βN

2
βN

2
βN

2
. . . 1



































S2
...

Si
...

SN

















=



















ω2(r−2)−ω1(r−1)

2
+ (1− β2

2
)S1)

...
ωi(r−i)−ω1(r−1)

2
+ (1− βi

2
)S1

...
ωN(r−N)−ω1(r−1)

2
+ (1− βN

2
)S1



















The system matrix is inferior triangular. Therefore, it is

invertible using an appropriate algorithm:

S2 =
ω2(r−2) −ω1(r−1)

2
+ (1−

β2

2
)S1

S3 =
ω3(r−3) −ω1(r−1)

2
+ (1−

β3

2
)S1 −

β2

2
S2

...

SN =
ωN(r−N) −ω1(r−1)

2
+ (1−

βN

2
)S1

−
βN

2

∑

1<i<N

Si

︸ ︷︷ ︸
S1−ω1(r−1)−SN

The last equation can be rewritten as:

SN =
ωN(r−N) −ω1(r−1)

2
+ (1−

βN

2
)S1 +ω1(r−1)

βN

2

Proceeding recursively for i = N − 1, ..., 2, it is possible to

express any Si, i ≥ 2 as a linear function of S1. As a result,

there exist vectors (ζi)2≤i≤N and (ξi)2≤i≤N such that:

















S2
...

Si
...

SN

















=

















ζ2
...

ζi
...

ζN

















+ S1

















ξ2
...

ξi
...

ξN

















(11)

To give an example: ζN =
ωN(r−N)−ω1(r−1)

2
+ ω1(r−1)

βN

2

and ξN = 1− βN

2
.

Summing the above system over all i ≥ 2, we obtain:

∑

i≥2

Si

︸ ︷︷ ︸
S1−ω1(r−1)

=
∑

i≥2

ζi + S1
∑

i≥2

ξi

which is equivalent with: S1 =

∑
i≥2 ζi+ω1(r−1)

1−
∑

i≥2 ξi
. By substi-

tution in Equation (11) it is possible to infer (Si)i≥2 as a

function of (ζi, ξi)i≥2 and ω1(r−1) i.e., of ri, r−i.

Since Sk is linear in (∆k − rk)+, k = 1, ...,N and

p0
i =

(∆i−ri)++A0
i+Si

B0
i

we obtain that for any market i,

there exist coefficients (ηi,l)l=1,...,N and η̃i such that: p0
i =∑

l=1,...,N

ηi,l(∆l − rl)+ + η̃i.

2) Minimization of the suppliers’ expected cost:

Proposition 8. The other markets’ optimal reserves being

fixed to r∗−i, we prove that there exists a positive r∗i minimizing

market i expected cost. Furthermore, when N ≤ 3, there exist

values for the marginal cost function parameters (a0
i , b

0
i )i

guaranteeing the uniqueness of the Nash equilibrium.

Proof of Proposition 8. It is provided in Appendix B.

We proved that for both SG based on price and SG based

on quantity there exists a positive Nash equilibrium. Although

the conditions guaranteeing its uniqueness differ, we observe

that in both cases for less than three geographic markets, there

exist parameter values guaranteeing its uniqueness.

Identifying conditions guaranteeing the uniqueness of the

Nash equilibrium is fundamental. Indeed the presence of

multiple Nash equilibria might introduce instability in the

system behavior. To illustrate this instability threat, it has been

reported that the Baltic-Nordic-Polish area crashed in August

13, 2012 because the Nord Pool spot was unable to include

Poland10.

V. EXPLORING THE MARKOWITZ FRONTIER: WHAT DOES

IT LOOK LIKE?

Power system and market operators may want to incite wind

farm investors to design portfolios that increase predictability

so that the suppliers’ costs is minimized while minimizing the

deployment cost.

There can be significant year-to-year variations in wind

conditions, which would have an impact on profitability, and

these may differ between regions [9]. Furthermore, the higher

the terrain complexity, the lower the wind predictability and

correlation among wind farms decreases with the distance [8].

Therefore we assume that each market i is clusterized in a

subset Ci of clusters where, over c ∈ Ci, the estimated demand

d̂i(c) and the wind mean production αi(c) are supposed

constant and such that:

di(c, t) = d̂i(c) − νi(c, t) (12)

wi(c, t) = ŵi(c) − ǫi(c, t) (13)

Making the parallel with the previous notations, we have:

di(t) =
∑

c∈Ci
di(c, t) and αi =

∑
c∈Ci

αi(c). Clustering

may be performed through one of the automatic partitioning

algorithms used in Machine Learning [13], as illustrated for

Germany in Section VI.

We assume that the geographic market i clusters are defined

so that there is no correlation among the cluster forecast

10Source of this crash reporting is http://houmollerconsulting.dk.
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errors but that, inside each cluster, there remains a positive

correlation between the wind production and the demand

forecast error. Transposing Subsection II-C assumptions to

a finer scale (i.e., clusters instead of geographic markets),

we assume that (∆i(c))c∈Ci
is distributed according to a

|Ci|-dimensional Gaussian density function centered in the

zero |Ci| dimensional vector and with a diagonal variance-

covariance matrix having on its principal diagonal all the

variances (σ∆i
(c))2,∀c ∈ Ci and zeros everywhere else since

the covariance between any ∆i(c), ∆i(c
′),∀c, c ′ ∈ Ci, c 6= c ′

vanishes. Furthermore, over each cluster c ∈ Ci, the wind

production and the demand forecast errors are correlated due

to the assumption that
(

ǫ̃i(c) νi(c)
)T

is a Gaussian random

vector centered in

(

0

0

)

and of variance-covariance matrix
(

(σ̃ǫ
i (c))

2
E[ǫ̃i(c)νi(c)]

E[ǫ̃i(c)νi(c)] (σν
i (c))

2

)

.

Modern Portfolio Theory is an alternative to the traditional

method of analyzing each investment’s individual merits.

When investors look at each investment’s individual merits,

they are analyzing one investment without worrying about the

way the different investments will perform relative to each

other. On the other hand, Modern Portfolio Theory places a

large emphasis on the correlation between the investments.

Markowitz defines as efficient the portfolios which are char-

acterized by a maximum expected revenue for a fixed risk

(or, equivalently, for a minimum risk for a fixed expected

revenue) [18]. Risk and volatility are treated as the same

thing: Markowitz uses risk as a measurement of the likelihood

that an investment still goes up and down in value, and how

often and by how much. The theory assumes that investors

prefer to minimize risk. The Efficient Frontier, also called

the Markowitz Frontier (MF), is then defined as the set

of all the portfolios which are efficient. In this article, the

investor applies Modern Portfolio Theory to determine the

wind farm portfolio that maximizes his return (expected cost)

while minimizing his risk conditionally to the occurence of

rare events. Indeed as raised by Marling and Emanuelson

[19], if an investor wants to use the MF model to choose a

suitable portfolio then it is suitable to do some complementary

computations of the risk conditionally to the occurence of rare

events. This is especially true in the context of this article since

the efficiency of our wind farm portfolio positioning depends

heavily on its capability to cope with rare events caused by

a far smaller/larger production of wind power than expected

and resulting in large forecast errors. In that case, the reserve

might not be sufficient to compensate the forecast error.

In the numerical illustrations we will test two assumptions

on the investment function: either it is linear in the number of

settled wind farms: I(γi(c)) = costinvγi(c) or it is quadratic:

I(γi(c)) = costinvγi(c)
2 with costinv > 0 representing the

cost of investment for a single wind farm.

A. In the (γi(c), θi(c))i,c plane

In this subsection, we characterize analytically the MF in

the (γi(c), θi(c))i,c plane.

Theorem 9. Whatever the Market Design (i.e., two tiered

with exogenous prices, two tiered with endogenous prices),

the Markowitz Frontier in the γi(c), θi(c) plane is always

completely described by the following set of equations:

θi(c) =
ln

E[ǫ̃i(c)νi(c)]

(σ̃i
ǫ(c))2

lnγi(c)

E[ǫ̃i(c)νi(c)]

(σ̃i
ǫ(c))2

≤ γi(c) ≤ (
E[ǫ̃i(c)νi(c)]

(σ̃i
ǫ(c))2

)2

γi(c) ∈ N
∗

This is a strong result as it means that the optimal concen-

tration for the wind farm positioning is independent of what

happens on the markets.

The theorem proof is detailed below for the two Market

Designs described in Sections III and IV.

The investment strategy for the optimal wind farm portfolio

deployment is defined over a finite horizon 0 < T < +∞. The

SG based on price as described in Section IV-C is repeated

over a finite horizon T . The investor’s problem is to determine

the optimal number of wind farms γi(c) ∈ N
∗ and their

concentration 1
2

≤ θi(c) ≤ 1, over each cluster c ∈ Ci of

the geographic demand market i, such that his expected cost

is minimal and the variance of his cost conditionally to the

occurence of rare events is minimal.

The wind power predictability level is measured by the cost

devoted to the generation of conventional energy: the smaller

this cost is, the higher the wind power predictability. It is

introduced in the investor’s total cost to give him incentives

to design portfolios increasing wind power predictability and

therefore, minimizing the suppliers’ expected costs.

MD 1: Market i’s contribution to the investor’s total cost is

defined as the sum of the cost resulting from its conventional

energy demand, repeated T times, and of the cost devoted to

the deployment of wind farm portfolios over its geographic

area:

I(i, T) =
∑

t

( ∑

c∈Ci

(d̂i(c) − αi(c)γi(c)) + ri(t)
)

pf(t)

+
∑

t

[
( ∑

c∈Ci

(ǫ̃i(c, t)γi(c)
θi(c) − νi(c, t))

− ri(t)
)

+
p0
i (t)] +

∑

c∈Ci

I(γi(c))

=
∑

t

∑

c∈Ci

(d̂i(c) − αi(c)γi(c) + ri(t))p
f(t)

+
∑

t

(∆i(t) − ri(t))+p
0
i (t) +

∑

c∈Ci

I(γi(c))

where, we recall: ∆i(t) =
∑

c∈Ci

(

ǫi(c, t) − νi(c, t)
)

=
∑

c∈Ci

(

γi(c)
θi(c)ǫ̃i(c, t) − νi(c, t)

)

.

We obtain quite easily the analytical expression of the
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variance of ∆i:

σ2
∆i

=
∑

c∈Ci

σ2
∆i

(c) =
∑

c∈Ci

Var(ǫi(c) − νi(c))

=
∑

c∈Ci

Var(γi(c)
θi(c)ǫ̃i(c) − νi(c))

=
∑

c∈Ci

{
(σ̃i

ǫ(c))2γi(c)
2θi(c)

− 2γi(c)
θi(c)E[ǫ̃i(c)νi(c)] + σν

i (c)
2
}

(14)

Then we compute the investor’s risk i.e., his variance

conditionally to the occurence of rare events:

Var
(

I(T)| ∩i {∆i(t) ≥ ri}t

)

=
∑

i

Var
(

I(i, T)|{∆i(t) ≥ ri}t

)

=
∑

i

σ2
∆i

∑

t

p0
i (t)

2

=
∑

i

∑

c∈Ci

σ2
∆i

(c)
∑

t

p0
i (t)

2

=
∑

i

∑

c∈Ci

[

(σ̃i
ǫ(c))2γi(c)

2θi(c)

− 2γi(c)
θi(c)E[ǫ̃i(c)νi(c)] + σν

i (c)
2
]∑

t

p0
i (t)

2

using Equation (14). In the rest of the article, we will let:

RVar(T) , Var
(

I(T)| ∩i {∆i(t) ≥ ri}t

)

and RVar(i, T) ,

Var
(

I(i, T)|{∆i(t) ≥ ri}t

)

.

The expectation of the investor’s total cost is:

E[I(T)] =
∑

i

∑

t

(
∑

c∈Ci

d̂i(c) + F̄−1
∆i

(
pf(t)

p0
i (t)

))pf(t)

−
∑

i

∑

t

(
∑

c∈Ci

αi(c)γi(c))p
f(t)

+
∑

i

∑

t

p0
i (t)E[(∆i(t) − F̄−1

∆i
(
pf(t)

p0
i (t)

))+]

+
∑

i

∑

c∈Ci

I(γi(c))

Derivating RVar(T) with respect to θi(c) and solving
∂RVar(T)

∂θi(c)
= 0, we obtain:

θi(c) =
ln

E[ǫ̃i(c)νi(c)]

(σ̃i
ǫ(c))2

lnγi(c)
(15)

But: 1
2

≤ θi(c) ≤ 1 which is equivalent with
E[ǫ̃i(c)νi(c)]

(σ̃i
ǫ(c))2

≤ γi(c) ≤ (
E[ǫ̃i(c)νi(c)]

(σ̃i
ǫ(c))2

)2.

Using the fact that
E[ǫ̃i(c)νi(c)]

(σ̃i
ǫ(c))2

≤ γi(c), we check

that θi(c) coincides with a minimum for RVar(T) indeed:
∂2RVar(T)

∂θi(c)2
= 2γi(c)

θi(c) ln(γi(c))
2
[

2(σ̃i
ǫ(c))2γi(c) −

E[ǫ̃i(c)νi(c)]
]

> 0.

Therefore, in case of a two tiered market with exogenous

prices, the MF is completely described by the set of equations

summarized in the statement of Theorem 9.

MD 2: According to Equations (12) and (13), d̂i(c) and

ŵi(c) are time independent. Then using the algorithms de-

scribed in Subsections IV-C1 and IV-D2 to compute the

optimal reserves, we infer that they are price independently

too, contrary to MD 1, where the reserve changes are indexed

on the exogenous price variations (and are therefore price

dependent). Using this observation, we infer that the day ahead

price is time independent ; indeed: pf =
∑

j(d̂j−ŵj+rj)+Af

Bf .
In case of endogenous prices, the contribution of market i

to the investor’s total cost is:

I(i, T) =
∑

t

(
∑

c∈Ci

(d̂i(c) − ŵi(c))

︸ ︷︷ ︸
d̂i−ŵi

+ri)p
f(t)

+
∑

t

[

(
∑

c∈Ci

(ǫ̃i(c, t)γi(c)
θi(c) − νi(c, t))

︸ ︷︷ ︸
∆i(t)

− ri)+p
0
i (t)

]

+
∑

c∈Ci

I(γi(c)) (16)

and his utility: I(T) =
∑

i I(i, T).
Compared to MD 1, we observe one additional difficulty:

at the optimum ri relies on r−i and the bilateral trades rely

on the decisions of the other markets.

The investor’s variance conditionally to the occurence of

rare events is similar to the one derived for MD 1:

RVar(T) =
∑

i

Var(I(i, T)|{∆i(t) ≥ ri}t)

=
∑

i

σ2
∆i

∑

t

p0
i (t)

2 (17)

and the same result about the optimal wind farm concentration,

(θi(c))i,c follows. Therefore, in the latter case of a two

tiered market with endogenous prices, the MF is completely

described by the set of equations summarized in the statement

of Theorem 9.

B. In the E[I(T)], RVar(T) plane

The representation of the MF in the E[I(T)], RVar(T) plane

is not straightforward. Indeed, in case of endogenous prices,

the optimal number of wind farms to settle on each cluster

cannot be computed analytically. Indeed, the optimal reserves

and the optimal bilateral trades can only be obtained algorith-

mically, as explained in Section IV-C (resp. Section IV-D).

Over each cluster c ∈ Ci, the investor can deploy a fixed

predefined number of wind farms γi(c). For each combination

of (γi(c))i,c, we derive the optimal wind farm portfolio con-

centration (θi(c))i,c using Theorem 9. We substitute the re-

sulting (γi(c), θi(c))i,c in (σ∆i
)i as derived in Equation (14)

and in the Nash equilibrium in the reserves and bilateral

trades (r∗i , S
∗
i )i obtained through the algorithm detailed in

Section (IV-C) (resp. Section IV-D).

For any t = 1, ..., T and i = 1, ...,N, we generate a

sequence of forecast error differences such that {∆i(t) ≥ ri},

according to the Gaussian density function N (0;σ2
∆i

). The

time elapsed between two consecutive repetitions of the SG

being of 24 hours, we assume that there is no time dependence



12

between two consecutive samples of forecast error differences.

Various simulation techniques can be envisaged to cope with

rare events. A straightforward way is to use Monte-Carlo

simulation. However, this poses serious problems when the

event {∆i(t) ≥ ri}t is a rare event. Indeed, in that case, a large

simulation effort is required in order to estimate the rare event

accurately i.e., with small relative error or narrow confidence

interval [7]. A well-known alternative is to use Importance

Sampling. However, it is proved that the optimal Importance

Sampling density relies on the rare event probability, which

is unknown. The Cross-Entropy (CE) method provides an

alternative multi-level approach [7]. Its principle is first to

generate randomly a sample according to a specific mechanism

and then to update the mechanism parameters by selecting the

elements of the sample which are the closest in the sense of

the Kullback-Leibler divergence, also known as CE, of the

optimal Importance Sampling density function. According to

the CE algorithm for rare event simulation, we need to update

at each time step the Gaussian density function variance: σ2
∆i

so that more weight is allocated to rare events. The Algorithm

is provided in Appendix C.

We substitute (r∗i , S
∗
i )i and (∆i(t))i in the real time price:

p0
i (t) =

A0
i+(∆i(t)−r∗i )++S∗

i

B0
i

,∀i = 1, ...,N derived in Subsec-

tion IV-B. From this, we can infer the investor’s variance con-

ditionally to the occurence of the rare events ∩i{∆i(t) ≥ ri}

using Equation (17).

At the same time, we note that the expectation of the con-

tribution of market i to the investor’s utility can be simplified

to give:

E[I(i, T)] =
T

Bf
(d̂i − ŵi + ri){

∑

j

(d̂j − ŵj + rj) +Af}

+
T

B0
i

{A0
i +ϕi(ri, r−i)}E[(∆i(t) − ri)+]

+
T

B0
i

E[(∆i(t) − ri)
2
+] +

∑

c∈Ci

I(γi(c))

where, as detailed in Appendix A: E[(∆i(t) − ri)+] =

E[(∆i(t) − ri)|∆i(t) ≥ ri] =
σ∆i√
2π

exp(−
r2i

2σ2
∆i

) − riF̄∆i
(ri)

and E[(∆i(t) − ri)
2
+] = E[(∆i(t) − ri)

2|∆i(t) ≥ ri] =
σ2

∆i√
π
Γ(3

2
)Γinc(

3
2
,

r2i
2σ2

∆i

) −
σ∆i√
2π

exp(−
r2i

2σ2
∆i

) + r2i with Γ(a)

the Gamma function evaluated in a ∈ R+ and Γinc(a, x) =
1

Γ(a)

∫+∞

x
ua−1exp(−u)du the Incomplete Gamma function

with lower bound, evaluated in a, x ∈ R+.

VI. NUMERICAL ILLUSTRATIONS FOR THREE GEOGRAPHIC

DEMAND MARKETS: FRANCE, GERMANY AND BELGIUM

In the numerical illustrations, we consider three geographic

demand markets: France, Germany and Belgium. Wind farm

portfolio optimization is restricted to the French area, since

our energy consumption data focus on this country.

The marginal cost parameters are based on Chao and

Peck’s six node toy network [5]: for France (Fr) we take

af
Fr = 42.5, a0

Fr = 4250, bf
Fr = b0

Fr = 0.025 ; for Germany

(Ge) we take af
Ge = 15, a0

Ge = 1500, bf
Ge = b0

Ge = 0.05 and

for Belgium (Be) af
Be = 10, a0

Be = 1000, bf
Be = b0

Be = 0.05.

The equivalent interconnection capacities are set so that:

κBe,Ge = 2(GW), κBe,Fr = 6(GW) and κGe,Fr = 5(GW).

A. Description of the data and clustering of the geographic

demand markets

For Germany, our database is made of time series of 75

sensors located all over Germany (cf. Figure 2 (c)) provid-

ing one year wind speed measures (from 03/19/2013 until

03/18/2014) with one measure per hour [29]. The exact

GPS coordinates of the sensors are depicted by circles in

Figure 2 (a). We use two Machine Learning techniques to

partition the sensors based on the mean and variance of their

wind speed time series: first, k-Means algorithm clusters data

by separating samples in an a priori determined number of

groups, minimizing a criterion known as the inertia of the

groups (cf. Figure 2 (a)). The optimal number of classes

for the sensors (four) has been estimated a priori using an

unsupervized clustering method known as affinity propagation.

Second, one-class Support Vector Machine (SVM) can be

used as a type of unsupervised learning algorithm, for novelty

detection, that is, given a set of samples, it will detect the soft

boundary of that set so as to classify new points as belonging

to that set or not (cf. Figure 2 (b)). Both techniques give

identical (or, at least, very close) classes. Then the convex hull

of the sensor classes gives an approximation to the clusters

geographic area for Germany.

(a) (b)

(c) (d)

Fig. 2. Partitioning Germany’s wind speed sensors, using k-Means
(a) and Support Vector Machine outlier detection (b). The sensors’
locations in GPS coordinates are represented in (a) by circles. In (c),
the sensors are represented in the Mean-Variance plane depending
on their wind speed time series mean and variance. We partition
Germany’s wind speed sensors ; each color being associated with
a specific class while in (d) we represent each French geographic
cluster as a star, in the Mean-Variance plane depending on its wind
power production.

For France and Belgium, we use data provided by the Op-

timate project [3]. In this project, France (resp. Belgium) was

partitioned in 8 (resp. 2) clusters. Wind speed measurements

are performed at various points in the clusters. The measures
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Clust.
ind.

1 2 3 4 5 6 7 8

Mean
prod.

2.94 1.33 0.43 0.02 0.13 0.43 0.92 0.09

Stand.
dev.

3.27 1.56 0.54 0.02 0.19 0.49 1.15 0.12

TABLE II
WIND FARM MEAN PRODUCTION (MW) AND STANDARD

DEVIATION (MW) FOR FRANCE.

are then averaged over the clusters and, over each cluster,

the average wind power production of a turbine is estimated.

Correlation among the clusters is taken into account to evaluate

the wind power production. We use hourly forecasts of wind

power for year 2015.

In Figure 2 (c) right, we represent each of the 8 French

clusters averaged wind production per turbine in the Mean-

Variance plane. These data sets are used to estimate the mean

production (MW) and standard deviation (MW) of a single

wind farm, over each French cluster (cf. Table II for France).

The geographic coordinates of the cluster areas can be found

in [3] ; here, each cluster area will be referenced with an index.

Estimated wind production for Germany and Belgium is

fixed so that: ŵGe = 15(GW) and ŵBe = 10(GW). The

forecast error difference standard deviations are set so that:

σ∆Be
= σ∆Ge

= 5(GW). For France, if 1000 turbines were

placed in each cluster, ŵFr = 6.3(GW) and the forecast error

difference standard deviation would be: σ∆Fr
= 21.2(GW).

(a) (b)

Fig. 3. Energy consumption of one household over one year (in
kW), the value being averaged over a day (a) and its associated
empirical distribution function compared to the best fit Gaussian
density function (b).

For estimating the variance associated to the demand fore-

cast, we use a data base containing one year power measure-

ment (in kW) for an individual household, with a granularity of

one measure per second [30]. We first take the average of this

time serie to obtain one value per day. Then we calculate the

average and the standard deviation for the whole year and we

multiply these values by the number of inhabitants per French

cluster divided by two11 (cf. Table III for France). In Figure 3

left, we represent the time serie of one household power

consumption (in kW), over a year, data being averaged over a

day. In Figure 3 right, we compare the empirical distribution

of the household energy consumption time series with the best

11According to INSEE statistics, on average, a household is composed of
two inhabitants http : //www.insee.fr/.

Clust.
ind.

1 2 3 4 5 6 7 8

House-
holds
(Mil-
lion)

5.3 2.6 1 1.4 3.9 2.1 2 3.5

Mean
conso.

5.77 2.81 1.11 1.50 4.25 2.32 2.19 3.83

Conso.
stand.
dev.

4.75 2.31 0.91 1.23 3.49 1.91 1.81 3.16

TABLE III
MILLION OF HOUSEHOLDS, MEAN CONSUMPTION (GW) AND

CONSUMPTION STANDARD DEVIATION PER FRENCH CLUSTER.

fit Gaussian density function which validates our assumptions

on the demand forecast error generation.

For France, the end users’ total demand is estimated by:

d̂Fr = 23.8(GW) ; for Germany and Belgium we fix: d̂Ge =

d̂Be = 40(GW).

B. Optimal reserves and Markowitz Frontier representations

for France

In Figure 4 (a), we plot the optimal reserve for the two

tiered market with exogenous prices described in Section III

as a function of the exogenous price ratio
p0

Fr

pf and of the

forecast error standard deviation σ∆Fr
. We observe that the

reserve increases parabolically as the real time price over

the day ahead price ratio increases and as the uncertainty

on the difference between the end users’ total demand and

the renewable production in real time (dFr −wFr) increases.

In Figure 4 (b), we plot the optimal reserve for the two

tiered market with endogenous prices and reserves described

in Section IV as a function of the wind forecast ŵFr and of

the forecast error standard deviation σ∆Fr
. We observe that

the reserve increases in the wind forecast and in dFr −wFr.

(a) (b)

Fig. 4. In (a) (resp. (b)), we represent the optimal reserve ri in case
of exogenous prices (resp. endogenous prices) as a function of the
forecast error difference standard deviation σ∆i

and of the exogenous

price ratio (p
0

pf ) (resp. of the wind forecast ŵi).

In Figure 5, we plot the MF for the wind farm portfolio over

each French cluster as a function of the number of turbines

and of the concentration of the wind farms over the cluster.

These plots are issued from the theoretical relation derived in

Theorem 9.

We assume that the investor can deploy 0, 3000 or 6000

turbines over each cluster leading to 38 combinations for

France. This choice of numerical values is justified by the

fact that largest wind farms nowadays have around 6000
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Fig. 5. Over each French cluster, the Markowitz Frontier for the wind
farm portfolio is represented as a function of the number of turbines
and of the concentration between the wind farms over the cluster.
Each of the 8 French clusters is characterized by a specific color.

turbines. Assuming that a wind farm counts on the average

3000 turbines, the investor has the choice between deploying

0, 1 or 2 wind farms per cluster. We observe in Figure 6 that

the value of costinv and the form of the investment cost (i.e.,

linear, quadratic, etc.) deeply influence the MF shape.

Fig. 6. Markowitz Frontier (MF) in red in the
E[I(Fr,T)]

T
−RVar(Fr, T)

plane. In (a), we represent all the portfolio combinations and the MF
for costinv = 1 and a linear investment cost

∑
c∈CFr

γFr(c). In (b),

we plot all the portfolio combinations and the MF for costinv = 900
and a linear investment cost. In (c), the same setting holds but
we select exclusively the portfolios associated with two investment
levels:

∑
c∈CFr

γi(c) = 24.103 and 36.103. In (d), we plot the

portfolio combinations and the MF for costinv = 1 and a quadratic
investment cost i.e.,

∑
c∈CFr

γFr(c)
2.

VII. CONCLUSION

We developed a methodology for optimizing an investor’s

wind farm portfolio, using Markowitz Frontier theory, in

a Market Coupling organization. We considered N ∈ N
∗

interacting geographic demand markets optimizing selfishy

their reserve and bilateral trades with the others. The novelty,

compared to previous works, relies on the fact that we have

introduced some competition among the geographic demand

markets and that the problem is modeled as a bilevel Signaling

Game. The signal i.e., the information shared among the

players, was based either on prices or on quantities. We proved

analytically that first, in both classes of games there exist

conditions guaranteeing the existence and the uniqueness of a

Nash Equilibrium for N ≤ 3 and second, that the Markowitz

Frontier can be expressed as a function of the number of

settled wind farms and of their concentration independently

of the Market Design. Finally we propose an algorithm and

simulate, on real life data sets, the contour of the Markowitz

Frontier in the expected cost-conditional variance plane.

The modeling of the end users’ demand and of the renew-

able production dynamic evolutions were voluntarily simpli-

fied to enable the derivation of analytical results, enabling a

better understanding of the market system behavior. Boostrap-

based Extreme Learning Machine [28] appears as very promis-

ing to perform online learning on erratic processes such as

renewable productions. We plan to compare its performance

with expert advise fusion on the basis of real life large and

distributed data bases of wind and solar data.

APPENDIX A: PROOF OF PROPOSITION 4

By substitution of the day ahead and real time prices at

equilibrium obtained in Lemmas 1 and 2 in market i expected

procurement cost, we obtain:

Ui = qf
i

∑
j q

f
j +Af

Bf
+ E[

(q0
i )

2

B0
i

+
A0

i +
∑

j 6=i t
0
i→j

B0
i

q0
i ]

Using Lemma 3 and the fact that E[q0
i ] = E[(∆i − ri)+] =

E[(∆i − ri)|∆i ≥ ri], we obtain:

∂Ui

∂ri
=

∑
j q

f
j +Af

Bf
+

qf
i

Bf

+
∂

∂ri

( 1

B0
i

E[(∆i − ri)
2|∆i ≥ ri]

)

+
A0

i +
∑

j 6=i t
0
i→j

B0
i

∂

∂ri
E[(∆i − ri)|∆i ≥ ri]

+ b0
i (

1

Bfbf
i

− 1)E[(∆i − ri)|∆i ≥ ri]

Since the forecast error differences ∆i are distributed accord-

ing to Gaussian distribution functions centered in 0 and of

standard deviation σ∆i
, it is possible to express the first and

second derivatives of (∆i − ri) and (∆i − ri)
2 conditionally

to the event {∆i ≥ ri} as functions of the incomplete gamma

function which enables us to derive the following closed

forms:

E[(∆i − ri)|∆i ≥ ri] =

∫+∞

ri

∆f∆i
(∆)d∆

−ri

∫+∞

ri

f∆i
(∆)d∆ =

σ∆i√
2π

exp(−
r2i

2σ2
∆i

) − riF̄∆i
(ri)



15

∂

∂ri
E[(∆i − ri)|∆i ≥ ri] = −F̄∆i

(ri)

∂2

∂r2i
E[(∆i − ri)|∆i ≥ ri] = f∆i

(ri) (18)

and

E[(∆i − ri)
2|∆i ≥ ri] =

∫+∞

ri

∆2f∆i
(∆)d∆

− 2ri

∫+∞

ri

∆f∆i
(∆)d∆+ r2i

∫+∞

ri

f∆i
(∆)d∆

∂

∂ri
E[(∆i − ri)

2|∆i ≥ ri] = 2[ri

∫+∞

ri

f∆i
(∆)d∆

−

∫+∞

ri

∆f∆i
(∆)d∆]

∂2

∂r2i
E[(∆i − ri)

2|∆i ≥ ri] = 2F̄∆i
(ri) (19)

Using Equations (18) and (19), we obtain:

∂2Ui

∂r2i
=

2

Bf
+b0

i (3−
1

Bfbf
i

)F̄∆i
(ri)+

A0
i +

∑
j 6=i t

0
i→j

B0
i

f∆i
(ri)

Since F̄∆i
(ri) > 0 and f∆i

(ri) > 0 for any ri ∈ R and

Bf > 0, B0
i > 0, the sign of ∂2Ui

∂r2
i

for ri ∈ [0; +∞[ depends

on the sign of
A0

i+
∑

j6=i t
0
i→j

B0
i

. Two cases are possible:

Case 1:
A0

i+
∑

j6=i t
0
i→j

B0
i

≥ 0 ⇔
∑

j 6=i t
0
i→j ≥ −A0

i

This first case corresponds to the case where the quantity of

imports is not too high compared to the quantity of exports, for

market i. In this first case, we infer that ∂2Ui

∂r2
i

> 0, ∀ri ≥ 0.

Hence Ui is convex in ri ≥ 0. Therefore, there exists a unique

ri ≥ 0 minimizing Ui.

Case 2:
A0

i+
∑

j6=i t
0
i→j

B0
i

< 0 ⇔
∑

j 6=i t
0
i→j < −A0

i

This second case corresponds to the case where the quantity

of imports is very high compared to the quantity of exports,

for geographic market i.

Derivating three times Ui with respect to ri, we obtain:

∂3Ui

∂r3i
= −b0

i (3−
1

Bfbf
i

)f∆i
(ri)

−
A0

i +
∑

j 6=i t
0
i→j

B0
i

ri

σ2
∆i

f∆i
(ri)

= −
f∆i

(ri)

B0
i

1

σ2
∆i

[(3−
1

Bfbf
i

)σ2
∆i

+ ri(A
0
i +

∑

j 6=i

t0i→j)]

using the fact that
df∆i

(ri)

dri
= − ri

σ2
∆i

f∆i
(ri),∀ri ∈ R since

∆i is distributed according to a Gaussian distribution function

centered in 0 and of standard deviation σ∆i
. Then: ∂3Ui

∂r3
i

=

0 ⇔ ri = −
(3− 1

Bfbf
i

)σ2
∆i

A0
i
+
∑

j6=i t
0
i→j

.

We set: r0i , −
(3− 1

Bfbf
i

)σ2
∆i

A0
i
+
∑

j6=i t
0
i→j

. Then, we note that:

• If ri < r0i then ri < −
(3− 1

Bfbf
i

)σ2
∆i

A0
i
+
∑

j6=i t
0
i→j

⇔ (3− 1
Bfbf

i

)σ2
∆i

+

ri(A
0
i +

∑
j 6=i t

0
i→j) > 0. This implies in turn that

∂2Ui

∂r3
i

< 0.

• Identically, if ri > r0i then ∂3Ui

∂r3
i

> 0.

Both of these observations imply that ∂2Ui

∂r2
i

is decreasing on

[0; r0i [ and increasing on [r0i ; +∞[. Furthermore, the number

of points where ∂2Ui

∂r2
i

= 0 depend on the value of ∂2Ui

∂r2
i

|ri=r0
i
.

Case 2 (a): ∂2Ui

∂r2
i

|ri=r0
i
> 0

Then ∂Ui

∂ri
> 0, ∀ri ≥ 0. This implies that Ui is

convex on R+. Therefore it admits a unique minimum

on [0; +∞[.

Case 2 (b): ∂2Ui

∂r2
i

|ri=r0
i
< 0

Then two sub-cases should be distinguished depending

on the sign of ∂2Ui

∂r2
i

|ri=0.

Case 2 (b) (i): ∂2Ui

∂r2
i

|ri=0 < 0 There exists a unique

r1i ∈ [r0i ; +∞[ such that ∂2Ui

∂r2
i

< 0 on [0; r1i [ and

∂2Ui

∂r2
i

=≥ 0 on [r1i ; +∞[. This implies that ∂Ui

∂ri

in decreasing on [0; r1i [ and increasing on [r1i ; +∞[.

Hence ∂Ui

∂ri
= 0 in 0, 1 or 2 points for ri ≥ 0. But

∂2Ui

∂r2
i

> 0 exclusively for ri ∈ [r1i ; +∞[. Then: either
∂Ui

∂ri
> 0, ∀ri ∈ [r1i ; +∞[ which implies that Ui is

striclty increasing on R+ reaching its minimum in

ri = 0 ; or there exists a point r∗i ∈ [r1i ; +∞[ such

that ∂Ui

∂ri
|ri=r∗

i
= 0. Since ∂2Ui

∂r2
i

> 0 on [r1i ; +∞[,

this implies that r∗i is the unique minimum of Ui on

R+.

Case 2 (b) (ii): ∂2Ui

∂r2
i

|ri=0 > 0 There exist 0 ≤
r2i ≤ r0i and r0i ≤ r3i such that ∂2Ui

∂r2
i

> 0 on [0; r2i [,

< 0 on [r2i ; r
3
i [ and > 0 on [r3i ; +∞[.

If ∂Ui

∂ri
|ri=0 ≥ 0 then there exists a unique

r∗i ∈ [r3i ; +∞[ such that ∂Ui

∂ri
|ri=r∗

i
= 0 and

∂2Ui

∂r2
i

|ri=r∗
i
> 0. In this case, r∗i is the unique

minimum of Ui over R+.

Otherwise i.e., if ∂Ui

∂ri
|ri=0 < 0 then: either

∂Ui

∂ri
|ri=r2

i
< 0 in which case Ui admits a unique

minimum over R+ belonging to [r3i ; +∞[ ; or
∂Ui

∂ri
|ri=0 ≥ 0 in which case Ui admits two

minima over R
+, the first one in [0; r2i [ and the

second one in [r3i ; +∞[.

The case ∂Ui

∂ri
|ri=0 < 0 and ∂2Ui

∂r2
i

|ri=0 > 0 should

be avoided since it might give rise to a large number of

equilibria (2N) for Program 3. Therefore, in the case where∑
j 6=i t

0
i→j < −A0

i , it might be reasonable to impose some

conditions on the problem parameters so that Case 2 (b) (ii)
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is avoided. In other words:

∂2Ui

∂r2i
|ri=0 =

2

Bf
+

1

2B0
i

(3−
1

Bfbf
i

)

+
A0

i +
∑

j 6=i t
0
i→j

B0
i

f∆i
(0) < 0

⇔ f∆i
(0) > −

2B0
i

Bf + 1
2
(3− 1

Bfbf
i

)

A0
i +

∑
j 6=i t

0
i→j

⇔ σ∆i
< −

1√
2π

[
A0

i +
∑

j 6=i t
0
i→j

2B0
i

Bf + 1
2
(3− 1

Bfbf
i

)
]

Therefore, to avoid Case 2 (b) (ii), the standard-deviation

related to the knowledge of ∆i should be smaller than

− 1√
2π

[
A0

i+
∑

j6=i t
0
i→j

2B0
i

Bf + 1
2
(3− 1

Bfbf
i

)

].

APPENDIX B: PROOF OF PROPOSITION 8

Ui = (d̂i − ŵi + ri)
1

Bf
[
∑

l

(d̂l − ŵl + rl) +Af]

+ E[(∆i − ri)+
1

B0
i

((∆i − ri)+ +A0
i +

∑

j 6=i

t0i→j)]

But:

E[(∆i − ri)+
1

B0
i

((∆i − ri)+ +A0
i +

∑

j 6=i

t0i→j)]

= b0
iE[(∆i − ri)

2
+|∆i ≥ ri] + a0

iE[(∆i − ri)|∆i ≥ ri]

+ b0
i

∑

j 6=i

E[t0i→j(∆i − ri)|∆i ≥ ri]

Derivating Ui with respect to ri gives:

∂Ui

∂ri
=

1

Bf
[
∑

l

(d̂l − ŵl + rl) +Af]

+
1

Bf
(d̂i − ŵi + ri) + 2b0

i [ri

∫+∞

ri

f∆i
(∆)d∆

−

∫+∞

ri

∆f∆i
(∆)d∆] − a0

i F̄∆i
(ri)

+ b0
i

∑

j 6=i

∂

∂ri
E[t0i→j(∆i − ri)|∆i ≥ ri]

But:

E[t0i→j(∆i − ri)|∆i ≥ ri] =
1

b0
j

∑

l6=i

(ηj,l

− ηi,l)E[(∆l − rl)|∆l ≥ rl]E[(∆i − ri)|∆i ≥ ri]

+
1

b0
j

(η̃j − η̃i)E[(∆i − ri)|∆i ≥ ri]

+
b0
i + ηj,i − ηi,i

b0
j

E[(∆i − ri)
2|∆i ≥ ri]

since (∆l)l6=i and ∆i are independent.

Finally, we obtain:

∂Ui

∂ri
=

1

Bf
[
∑

l

(d̂l − ŵl + rl) +Af] +
1

Bf
(d̂i − ŵi + ri)

+2b0
i [ri

∫+∞

ri

f∆i
(∆)d∆−

∫+∞

ri

∆f∆i
(∆)d∆] − a0

i F̄∆i
(ri)

+b0
i {−

∑

j 6=i

1

b0
j

∑

l6=i

(ηj,l − ηi,l)E[∆l − rl|∆l ≥ rl]F̄∆i
(ri)

−
∑

j 6=i

1

b0
j

(η̃j − η̃i)F̄∆i
(ri)

+2
∑

j 6=i

b0
i + ηj,i − ηi,i

b0
j

[ri

∫+∞

ri

f∆i
(∆)d∆

−

∫+∞

ri

∆f∆i
(∆)d∆]}

Derivating twice Ui with respect to ri, we obtain:

∂2Ui

∂r2i
=

2

Bf
+ F̄∆i

(ri)µ1(i) + f∆i
(ri)µ2(i)

where: µ1(i) = [2b0
i (1 +

∑
j 6=i

b0
i+ηj,i−ηi,i

b0
j

)] and µ2(i) =

[a0
i +

∑
j 6=i

b0
i

b0
j

∑
l6=i(ηj,l − ηi,l)E[∆l − rl|∆l ≥ rl] +

∑
j 6=i

b0
i

b0
j

(η̃j − η̃i)].

Derivating three times Ui with respect to ri:

∂3Ui

∂r3i
= −f∆i

(ri)[µ1(i) −
ri

σ2
∆i

µ2(i)]

Since f∆i
(ri) > 0,∀ri, ∂3Ui

∂r3
i

= 0 ⇔ ri = r0i = σ2
∆i

µ1(i)

µ2(i)
.

Furthermore, we observe that: ∂3Ui

∂r3
i

|ri=0 = −f∆i
(0)µ1(i).

To prove the existence of a unique minimum for Ui on R+

we distinguish between four cases depending on the signs of

µ1(i), µ2(i):

• Case 1: µ1(i) > 0 and µ2(i) > 0. This implies that r0i >

0 and that ∂3Ui

∂r3
i

|ri=0 < 0. Furthermore, we observe that:

∂2Ui

∂r2
i

|ri=0 = 2
Bf + F̄∆i

(0)µ1(i) + f∆i
(0)µ2(i) > 0 and

∂2Ui

∂r2
i

|ri=r0
i
= 2

Bf + F̄∆i
(r0i )µ1(i) + f∆i

(r0i )µ2(i) > 0.

Then either ∂Ui

∂ri
|ri=0 > 0 in which case ∂Ui

∂ri
> 0,∀ri ≥

0 and Ui is increasing on R+ implying that the minimum

is reached in ri = 0 ; or ∂Ui

∂ri
|ri=0 < 0 implying that Ui

admits a unique minimum on R+.

• Case 2: µ1(i) > 0 and µ2(i) < 0. This implies that

r0i < 0 and that ∂3Ui

∂r3
i

|ri=0 < 0. Then either Ui admits a

unique minimum in [0; +∞[ or Ui is striclty decreasing

on R+ in which case the minimum should be reached on

the reserve upper bound.

• Case 3: µ1(i) < 0 and µ2(i) > 0. This implies that

r0i < 0 and that ∂3Ui

∂r3
i

|ri=0 > 0. Then either Ui admits a

unique minimum in [0; +∞[ or Ui is striclty increasing

on R+ in which case the minimum should be reached in

ri = 0.

• Case 4: µ1(i) < 0 and µ2(i) < 0. This implies that

r0i > 0 and that ∂3Ui

∂r3
i

|ri=0 > 0. Then either Ui admits a
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unique minimum in [0; +∞[ or Ui in increasing and then

decreasing on R+ in which case the minimum should be

reached either in ri = 0 or in the reserve upper bound.

We observe that the Case µ1(i) > 0, µ2(i) > 0 is

the only one which guarantees a positive reserve, different

from the upper bound. Furthermore, derivating ∂Ui

∂ri
with

respect to rj, we obtain: ∂2Ui

∂rj∂ri
= 1

Bf + b0
i

∑
l6=i

1
b0

l

(ηj,j −

ηi,j)F̄∆j
(rj)F̄∆i

(ri),∀j 6= i. The diagonal dominance condi-

tion, introduced in Proposition 5, is checked provided µ1(i) >

b0
i

∑
l6=i

1
b0

l

∑
j 6=i(ηj,j − ηi,j)F̄∆j

(rj) and N ≤ 3 ; for other

µ1(i), N values it is not straightforward.

APPENDIX C: ALGORITHM FOR THE GENERATION OF

SEQUENCES OF FORECAST ERROR DIFFERENCES

We let: ∆s
i (t) be the s-th sampled realization of the random

variable ∆i(t). According to the CE algorithm for rare event

simulation [7], σ∆i
update coincides with the solving of the

following stochastic program:

max
σ∆i

1

S

∑

s

1∆s
i
(t)≥threshold ln fi(∆

s
i (t);σ

2
∆i

)

⇔ σ2
∆i

=

∑
s 1∆s

i
(t)≥threshold(∆

s
i (t))

2

1∆s
i
(t)≥threshold

Generation of sequences of forecast error differences

(∆i(t))t

Input:

– (γi(c), θi(c))i,c
– S sample size

– ρ = 10−2 rarity parameter

– initial threshold > 0 value

For each geographic market i = 1, ...,N

Initialization: σ̂∆i
(1) = σ∆i

(1) Generate a sample of size S such that (∆s
i (t))s ∼

N (0; (σ̂∆i
(t))2)

(2) Compute the sample (1 − ρ)- quantile
^threshold(t) which coincides with the (1 − ρ)S-

th order statistic of the sequence
(

∆s
i (t)

)

s
, pro-

vided ^threshold(t) < threshold. Otherwise set
^threshold(t) = threshold.

(3) Use the same sample and compute: ^σ∆i
(t) =

√∑
s 1∆s

i
(t)≥threshold(∆s

i
(t))2

1∆s
i
(t)≥threshold

.

(4) If ^threshold(t) < threshold set t = t+1 and

reiterate from (1) ; else STOP.
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[10] Hagspiel S., Jägemann C., Lindenberger D., Brown T., Cherevatskiy
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