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Introduction

We explore scenarios from global to internal buckling in nonlinear finite element studies. Numerical solutions based on the standard continuum formulation assumed initially become unstable if the contrast between the normal and the shear viscosity becomes very severe. As a remedy for the latter situation and also as a means to consider internal structure we derive a couple stress formulation, which is numerically robust in such cases as well. We illustrate the couple stress model by means of numerical solutions of simple, finite shear of an infinite layer, revisit the folding problem in the light of the couple stress theory and illustrate flow alignment in the context of simple shear for initially randomly oriented layer orientations.

Mathematical formation

Initially we assume linear viscous behaviour and designate with h the normal viscosity and h S the shear viscosity in the layer planes normal to n i . The orientation of the normal vector, or director as it is sometimes called in the literature on oriented materials, changes with deformation. Using a standard result of continuum mechanics, the evolution of the director of the layers is described by
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where L=D+W is the velocity gradient, D is the stretching and W is the spin. The superscriped n distinguishes the spin W n of the director n (the unit normal vector of the deformed layer surfaces) from the spin W of an infinitesimal volume element dV of the continuum. The 2D matrix representation of (1) as needed for our computational applications is represented in appendix A2 for easy reference. We define a corotational stress rate as:
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Again the superscripted n distinguishes the stress rate n σ& as observed by a material observer corotating with the director n from the material stress rate σ& observed by a spatially fixed observer.

Specific viscous and viscoelastic constitutive relations

We consider layered, viscous and visco-elastic materials. The layering may be in the form of an alternating sequence of hard and soft materials or in the form of a superposition of layers of equal width of one and the same material, which are weakly bonded along the interfaces. We designate the normal shear modulus and the normal shear viscosity as µ and η respectively; the shear modulus and the shear viscosity measured in simple, layer parallel shear we designate as S µ and S η .

In the following simple model for a layered viscous material we correct the isotropic part ij D′ η 2 of the model by means of the Λ tensor (see appendix A1 for derivation) to consider the mechanical effect of the layering; thus
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(3) where a prime designates the deviator of the respective quantity, and
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Similarly, a visco-elastic constitutive relationship for a layered medium may be written as:
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where n ij σ& is the co-rotational stress rate introduced at the beginning of this section. We could have equally well used the Jaumann derivative of σ which is obtained by replacing n W in (2) by the spin of an infinitesimal element of the continuum W. A remark on the notation: We use index notation which is less ambiguous than symbolic notation when vectors, second and fourth order tensors (such as ijkl Λ ) appear simultaneously in the equations.

The particle-in-cell finite element method

Some difficulties arise in devising a practical implementation of the finite element formulation described in section 3 for the large deformation modeling of layer folding. In particular, since the C matrix is a continuously evolving function of position through its dependence on director orientation, it is necessary that we are able to track an evolving vector function of the material during deformation.

We have therefore developed a hybrid approach -a particle-in-cell finite element method that uses a standard Eulerian finite element mesh (for fast, implicit solution) and a Lagrangian particle framework for carrying details of interfaces, the stress history etc.

Our particle-in-cell finite element method is based closely on the standard finite element method, and is a direct development of the Material Point Method of [START_REF] Sulsky | Application of a Particle-in-Cell Method to Solid Mechanics[END_REF]. The standard mesh is used to discretize the domain into elements, and the shape functions interpolate node points in the mesh in the usual fashion. The problem is formulated in a weak form to give an integral equation, and the shape function expansion produces a discrete (matrix) equation. For the discretized problem, these integrals occur over sub-domains (elements) and are calculated by summation over a finite number of sample points within each element. For example, in order to integrate equation the stiffness matrix of our finite element scheme, over the element domain Ω E e we replace the continuous integral by a summation
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In standard finite elements, the positions of the sample points, x p , and the weighting, w p are optimized in advance. In our scheme, the x p 's correspond precisely to the Lagrangian points embedded in the fluid, and w p must be recalculated at the end of a time step for the new configuration of particles. Constraints on the values of w p come from the need to integrate polynomials of a minimum degree related to the degree of the shape function interpolation, and the order of the underlying differential equation (e.g Hughes,1987). These Lagrangian points carry the history variables including the director orientation which are therefore directly available for the element integrals without the need to interpolate from nodal points. Moresi et al. (2001) give a full discussion of the implementation of the particle-in-cell finite element scheme used here including full details of the integration scheme and its assumptions. ) with a director orientation ( n). The anisotropic layer contains small perturbations to the otherwise horizontal internal layering. V=10 is constant during any given experiment and unchanged between different experiments. The length of the block is L=2 and the width of the central layer 3 is h=0.12.

Numerical simulations

We present an example of a simulation of folding of a layer of anisotropic viscous material sandwiched between two isotropic layers of equal viscosity (Figure 1). To accommodate the shortening of the system, one of the isotropic layers is compressible. In benchmarking this sandwich of incompressible and compressible embedding material was found to give good agreement with analytic results assuming an infinite domain [START_REF] Moresi | Particle-in-Cell Solutions for Creeping Viscous Flows with Internal Interfaces[END_REF]. The Debora number De (relaxation time/process time) is defined as
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. We consider the cases in De= 0.5 and 5 respectively. We assume that
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. The folding process is triggered by initial perturbations of the form
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=5 and 0.5 respectively we observe for the large wavelength perturbation no or at least no significant mode coupling: the initial perturbation is amplified in an unstable fashion. The growth coefficient of the homogeneous rectilinear ground solution is
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would produce an amplification of the initial perturbation of about 4.5 at 40%shortening which is much smaller than what we observe for the long wavelength perturbations in case of the viscous layers and for both short and long wavelength perturbations in the viscoelastic cases. A second, dominant mode emerges at q=10p in case 4 in a rather spectacular way between 25-35% shortening (Figure 2). A more viscous case with De=0.5 is represented in Figure 3. 

Couple Stresses

Couple stresses are significant in situations where the gradient of n i changes strongly over a short distance (limiting case: disinclination). In such cases we have to take the variations of the normal stresses across the layer cross sections into consideration (e.g. [START_REF] Mühlhaus | Continuum models for layered and blocky rock[END_REF]. The couple stress theories (see e.g. [START_REF] Mindlin | Effects of couple stresses in linear elasticity[END_REF][START_REF] Mühlhaus | Continuum models for layered and blocky rock[END_REF]Mühlhaus & Aifantis, 1991a,b) provide a convenient framework for the consideration of stress fluctuations on the layer-scale without having to abandon the homogeneity properties of the anisotropic standard continuum approach. In the present case the couple stress enhancement leads naturally to the superposition of visco-elastic bending stiffness on our standard continuum model. In connection with layered materials the internal length scale introduced by the couple stresses is proportional to the layer thickness (ranging from microns to kilometers in geological applications) and to the differences between the viscosities and shear moduli governing pure and simple shear respectively ( see e.g. [START_REF] Mühlhaus | Continuum models for layered and blocky rock[END_REF]. In layered materials the explanation why the stress tensor is non-symmetric in couple stress materials is straight forward: In a continuum description the stresses represent average values over multiples of the layer thickness. In bending the shear stress obtained by averaging normal to the layering is different in general from the shear stress parallel to the layering. The latter is even zero for instance in the case of a stack of perfectly smooth cards (a standard continuum model would break down in this case). Within the framework of a couple stress theory one considers the variation of the normal stress across the layer thickness (in much the same way as in the standard engineering beam and plate theories), introduces statically equivalent couple stresses balancing the difference between the shear stresses.

The couple stress tensor ì (moment per unit area) is conjugate in the rate of energy to the rate of curvature ê . In the context of layered materials, a natural choice for the rate of curvature reads:
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The power balance for a couple stress medium reads:
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where the superscripted dot means differentiation with respect to time, i d & is the angular momentum, b i and V i m are volume forces and couples respectively ,
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are the surface stress and couple stress tractions and N i is the unit outward normal vector to the surface S of the body. There are a number of complications associated with the application of couple stress theories in finite element analyses. For instance rotations cannot independently varied on surfaces where the normal component of the displacements or velocities are prescribed. In this case the velocity gradients on the surface have to be decomposed into normal and surface parallel components. The surface parallel part will-after application of the surface divergence theorem-produce a contribution to the stress traction (see e.g. Muhlhaus and Aifantis (1991) and [START_REF] Fleck | Strain gradient plasticity[END_REF] for details of the analysis within the context of a strain gradient-and a couple stress theory respectively). Another difficulty arises from the fact that that the volume integrals in (9) contain second order velocity gradients so that the shape functions in a finite element model must be continuously differentiable across element boundaries (C 1 continuity). Standard finite element programs mostly support C 0 continuity only. Both problems, the non-independence of variations of surface gradients and the C 1 continuity, can be circumvented by relaxing the constraint
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in the spirit of a penalty approach (see (1) for definition of n ij W ) by adding the term
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to the lhs of (9). In (12) P is the so called penalty parameter. If the energy supply is bounded then we expect that the original constraint (11) will be satisfied in the limit as

∞ → P
. In the relaxed form of the governing equations we have recovered the equations of the full (unconstrained) Cosserat continuum where the rotations i ϕ are independent degrees of freedom.

In our case this is true as long as P is finite. The independence of the rotations means that the non-independence of surface gradients and the C 1 continuity problem have disappeared. In finite element calculations the velocities and rotations are approximated independently and since the highest order derivative of both velocities and rotations are of the first order (in the power balance) both may be approximated by using the same type of shape function, which needs to be C 0 continuous only.

For illustration of the model we consider the simple shearing of an infinite, viscous layer

h x x ≤ ≤ 2 1 0 , (
). On the surface
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is prescribed and we assume that
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and we designate the local, unknown velocity as V . At
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i.e. initially the material layer surfaces are oriented orthogonal to the surfaces of the shear layer. First we consider the convergence of the penalty scheme for increasing values of the penalty parameter P. Figure 5 shows the dimensionless velocity
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as a function of the dimensionless parameter
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for three cases: analytic solution, finite element solution assuming full numerical integration and a finite element solution using one point integration for the integration of the penalty stiffness terms. The analytic-and the one-point numerical solution coincide to the first three digits , however the finite element solution based on full integration diverges for increasing values of the penalty parameter: the velocity on top tends to zero. The reason for the divergence is that for the present choice of finite elements (4 noded quadrilaterals, periodic boundary conditions on the sides) n W is constant within an element whereas c W is linearily variable. The latter produces to a positive definite contribution to the argument of the penalty stiffness depending quadratically on x 2 . In Figure 5 we show the evolution of V as a function of the director orientation as described by the angle An interesting application of our layered model arises is initially we assign random director orientations to each particle of our particle advection scheme. In this case the model material is macroscopically isotropic initially. Internal reorientations, the evolution of textures are described by the director evolution equation (1). Results for the simple shear problem considered before are shown in Figure 6. 

Conclusions

We have presented a simple formulation for the simulation of large, viscoelastic deformations in layered systems. The influence of the bending stiffness of the individual layers is considered within the framework of a couple stress theory. The combination of the basic model with a large deformation, particle-in-cell finite element method allows the simulation of a diverse range of crustal deformation problems. By way of examples we have given a realistic treatment of folding and simple shear processes, which includes the mechanical influence of fine-scale. The model is relatively simple in its present form but still gives a useful insight into the physical processes involved in certain types of folding processes involving simple shear.

One of the most interesting results occurs for purely viscous, layered simulations where lowwavenumber folding is induced even for very low viscosity contrasts between embedded and embedding media. In the past, the very large viscosity contrasts required to produce Biot-type folding in purely viscous media have led people to discount the possibility that viscous buckling occurs at all in geology.

In folding couple stresses have an appreciable effect only if the ratios of the parameters (layer material/embedding material; normal viscosity/shear viscosity etc) are very extreme, e.g. equal to 1000 or more. In the case of the shear layer the influence of couple stresses appreciable already at relatively low parameter ratios as long as the ratio of the thickness of an individual layer to the width of the shear layer is of the order of 1/10 or more. If couple stresses are considered the deformation of the layer is no longer homogeneous; we observe, depending on the viscosity ratio the formation of a slowly deforming core, rapid shearing concentrates around the layer surfaces. An interesting application of the layered model arises if director orientations are assigned at random to the particles of the advection scheme initially. The material is then macroscopically isotropic initially; texture such as schistosity evolve in the course of the deformation.
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 1 Figure 1. Initial geometry for the folding experiment. Layer 1 is compressible, viscous ( M η ) background material, layer 2 is identical to layer 1 but incompressible (see text for an explanation), layer 3 is the test sample: viscoelastic ( S S η η µ µ , , ,
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 2 Figure 2. Evolution of folding in anisotropic viscoelastic layer. 5 ) /( ) ( = = L V De µ η . Isotropic embedding material has viscosity 1, layer has shear viscosity 10, normal viscosity 1000 and S S µ µ η η / / = . Results are shown for perturbation to the director orientation with wavenumber π 2 = q and π 10 = q

Figure 3 .

 3 Figure 3. Case 4 Evolution of folding in anisotropic viscoelastic layer.5 . 0 ) /( ) ( = = L V De µ η . Isotropic embedding material has viscosity 1, layer has shear viscosity 10, normal viscosity 1000 and S S µ µ η η / / = . Results are shown for perturbation to the director orientation with wavenumber π 2 = q and π 10 = q
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 4 Figure 4. Evolution of folding in viscous layer. Isotropic embedding material has viscosity 1, layer has, normal viscosity 1000. Results are shown for perturbation to the director orientation with wavenumber q = 10π at 40% shortening. (a) layered beam, 1000 / = S η η (b) couple stresses included , same as (a) otherwise.(Layer thickness)/(beam thickness)=0.2. In this example the internal length was chosen relatively large hence the Cosserat terms act on the larger wavelengtht, increase the larger length scale. The effect of couple stresses in connection with higher values of the shear viscosity and in particular in the the context of viscoelasticity requires further investigation
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  Figure5. Dimensionless velocity ) /( h V V S τ η = versus dimensionless penalty parameter S P P η / = ; analytical solution (crossed); numerical, full integration (broken line); numerical, one point integration (solid line). Finite element model: eight by twelve four noded quadrilaterals; sixteen particles per element. Periodic boundaries on the sides, i.e. velocities and rotations are the same on both sides; if one particle leaves the domain on one side it re-appears on the other side. 2 / = S η η , t/h=0.2; t=thickness of the individual layers and h is the thickness of the shear layer. During the calculation the director orientation is fixed at n =(1,0) , i.e. the internal layering is always orthogonal to the x 2 =const.

  and n and the evolution of the dimensionless Cosserat rotation (see Figure caption for definition) at the center of the shear layer respectively.

Figure

  Figure 5. V as a function of
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 6 Figure 6 Simple shear, same boundary conditions as in previous example however the director orientations are initially random: every particle of our advection scheme gets its own spatially randomly distributed director orientation; Φ = angle between the x 2 and the director orientation ranges between p/2 and -p/2. The top row are contour lines of Φ . The deformation increases from (a) to (b). The green line (bottom) row, Figures (a)-(c) show initial and displaced particle positions. The parallel lines in (b) and (c) follow from the periodic boundary conditions