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Meshless methods are an appealing choice for constructing functional approxima-
tions (with di�erent degrees of consistency and continuity) without a mesh support.
Some members of the vast family of meshless methods are the smooth particle hydro-
dynamics (SPH) proposed in , the element free Galekin (EFG) , the di�use elements
(DE) , the reproducing kernel particle method (RKPM) , the natural element method
and others.

In this work we are going to perform a deeper analysis of Hermite moving least
square based approximations. Here, we are analysis its use in the solution of fourth or-
der partial di�erential equations usually encountered in structural mechanics involving
beams or plates.

It is well known that in the framework of the more experienced discretization tech-
niques the treatment of fourth order PDE induces some issues. One possibility to
treat these equations lies in the use of collocation techniques. In simple geometrical
domains �nite di�erences schemes could be applied as well as other schemes based on
use of pseudo-spectral collocation techniques. Of course these techniques only implies
one degree of freedom per node, but the enforcement of boundary conditions deserve
some further developments because two conditions must be simultaneously enforced at
the nodes on the domain boundary. The most common approach consist of enforcing
the second boundary condition by penalization or by introducing a Lagrange multi-
plier. However, the use of collocation techniques was restricted to simple geometrical
domains. In the more general case variational formulation were widely adopted.

We would like to emphasize that within the meshless approximation framework
one could derive fourth order derivatives formulas (because the excellent continuity
properties of usual meshless approximations) to be used in the discretization of fourth
order PDE in complex geometries. However, this potentiality has not been explored,
in our knowledge, su�ciently to conclude about its bene�ts and weakness. In any case,
the issue related to the extra-boundary conditions persists.

Within the variational framework is well known that �rst order continuity of the �eld
approximation is needed to discretize the weighted residual formulation after integration
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by parts twice. In the �nite element context this fact implied the use of Hermite
approximation whose more peculiar consequence is the necessity of introduce also the
�eld derivatives as nodal degrees of freedom. Thus, the continuity of the �eld derivatives
across the element boundaries is ensured preserving the fully consistency of the discrete
form. Moreover in this context the imposition of the two boundary conditions results
natural. The prize to be paid is the increase of the number of degrees of freedom
involved in the discreet model.

With the advent of meshless techniques the just referred issue was revisited. Most
part of meshless approximations has an adjustable degree of continuity. For moving least
squares based techniques (RKPM, EFG or ED) this is quite obvious. Thus, one could
expect that the use of any of these approximations should solve the aforementioned
continuity issues.

Thus two possibilities come: (i) using a standard meshless approximations every-
where in the whole domain and then enforce the boundary condition by invoking an
appropriate technique (penalization, Lagrange multipliers, Nitsche, ...) or (ii) using an
Hermite MLS based approximation everywhere in the whole domain and enforce the
boundary conditions by direct collocation at nodes located on the boundary (as in the
�nite element framework) or by invoking again other strategies like penalization, La-
grange multipliers or Nitsche. Obviously the second alternative seems "a priori" more
natural to address the boundary conditions issue whereas the �rst one seems more ap-
pealing from the computational point of view because it only involves a single degree
of freedom by node.

We present a mixed approach that consists of a standard MLS approximation inside
the domain but that becomes a Hermite-MLS when the domain boundary is approached.
Thus, only extra-degrees of freedom are introduced at the nodes located in the boundary
neighborhood. Thus we could: (i) reduce drastically the number of degrees of freedom
od the discreet model and then the CPU time; (ii) compare a simple enforcement of
boundary conditions at nodes located on the boundary with the enforcement of such
boundary conditions by using a penalty strategy (the use of Lagrange multipliers and
the Nistche technique is a work in progress) and (iii) compare the error and convergence
rates of a fully Hermite approximation, a standard MLS one and the mixed formulation
here proposed, when boundary conditions are treated exactly in the same manner (using
two penalty coe�cients) and also compare these results with the ones coming from a
direct nodal enforcement of the boundary conditions.

The just referred discussion will be carried out by considering both 1D and 2D
models and a riche enough Gauss numerical integration.
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