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 and has this far been used mainly to reproduce the behavior of soils. It is here applied to two bending tests of reinforced concrete beams.

INTRODUCTION

Strain localization in quasi-brittle materials, or more generally in materials exhibiting strain softening is a well-known problem [START_REF] Hill | Bifurcation phenomena in the plane tension test[END_REF] [9] [START_REF] Rudnicki | Conditions for the localization of deformation in pressure-sensitive dilatant materials[END_REF]. It is a phenomenon that can be clearly observed in experimental tests, and yet cannot be modeled with classical continuum mechanics models. Analytically, the solution is a crack with zero energy dissipation [START_REF] Pijaudier-Cabot | Nonlocal damage theory[END_REF]; numerically, it leads to a pathological mesh dependency. These shortcomings are due to the lack of an internal length in the continuum model.

Several ways of introducing an internal length have since been proposed. Non local integral models were first formulated by Pijaudier-Cabot et al. [START_REF] Pijaudier-Cabot | Nonlocal damage theory[END_REF] and then extended to damage theory. The gradient models of Aifantis [START_REF] Aifantis | On the microstructural origin of certain inelastic models[END_REF] enrich the conventional plasticity and damage theories with gradient of the internal variables. This type of model can be shown to be equivalent to the integral type models. More recently, strain localization due to damage has been treated using the thick level set approach [START_REF] Moës | A level set based model for damage growth: The thick level set approach[END_REF].

A rather natural way of introducing (indirectly) a length parameter in a continuum model is to somehow account for the microstructure of the material. The general class of so called microstructured models or higher order continuum models allows for the description of the kinematics of the microstructure by using an additional tensor in the displacement field. Higher order continuum theories can be traced back to the works of the Cosserat brothers [START_REF] Cosserat | Théorie des corps déformables[END_REF] and have been generalized and properly formulated by Germain [START_REF] Germain | La méthode des puissances virtuelles en mécanique des milieux continues: Première partie : théorie du second gradient[END_REF][START_REF] Germain | The method of virtual power in continuum mechanics. Part 2[END_REF] using the method of virtual power.

The local second gradient model developed by Chambon et al. can be seen as a particular case of a higher order continuum and has been used to regularize problems involving localization in geomaterials [START_REF] Chambon | Plastic continuum with microstructure, local second gradient theories for geomaterials: localization studies[END_REF][START_REF] Matsushima | Second gradient models as a particular case of microstructured models: a large strain finite elements analysis[END_REF]. It is used here to model two different bending tests on reinforced concrete beams. The first one is a 3 point bending test with a beam of 5m span, the second one is a 4 point bending test with a beam of 6.1m span.

THE SECOND GRADIENT MODEL AND CONSTITUTIVE LAWS

Theoretical framework

As detailed in the seminal work of Germain, using the virtual power method one can chose a field of virtual displacement to describe the proper kinematics of the continuum (including its microstructure). The internal stresses, limit conditions and equilibrium equations then appear naturally as long as the linear form representing the virtual power is correctly defined and that it respects the principle of material independence.

Following this, if one chooses the virtual displacement field as the "field of continuous and continuously differentiable velocities", the principle of virtual work yields:
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Where u i is the virtual displacement field, D ij is the symmetric part of its gradient, σ ij is the macro stress (conjugate of first gradient) and Σ ijk is a double stress (conjugate of the second gradient of the velocity field). G i is the classical body force, p i is a contact force and P i a double contact force. Du i refers to the normal derivative: Du i = n k u i / x k . Here and henceforth * denotes a virtual quantity.

The equilibrium equations and boundary conditions are given by:
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Σ = (4) Where Dq/Dx j is the tangential derivative.

Numerical implementation

The second gradient of the displacement in the weak formulation of the problem necessitates the use of C 1 elements in a finite element code. This can be avoided by introducing a new field v ij imposed to be equal to the gradient of u i by lagrange multipliers [START_REF] Matsushima | Large strain finite element analysis of a local second gradient model: application to localization[END_REF]. The new weak formulation of the problem then becomes: * + Σ , * Ω -! " * - * # Ω -$ = 0 (5)
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The problem is then discretized using 9 nodes finite elements, where 8 of the nodes are used for u i , 4 for v ij and the center node for λ ij . This element has been implemented in the finite element code Lagamine and the problem is solved using the classical Newton-Raphson method.

Constitutive laws

Here we suppose that the model uses two constitutive equations, one linking the macro stress to the first gradient of the displacement and the other linking the double stress to the second gradient of the displacement. The two equations are also supposed to be decoupled. The first gradient law can be any classical constitutive law (involving or not damage, plasticity etc…). The constitutive laws can be written in rate form as:
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If the second gradient law is an isotropic elastic one, the general form of the constitute law involves five material parameters. particular form of this latter constitutive equation has been proposed by Chambon et al. [START_REF] Matsushima | Second gradient models as a particular case of microstructured models: a large strain finite elements analysis[END_REF] with a single modulus B.
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The internal length does not appear clearly from these equations. However, analytical solution of localization in a one problem with a bilinear first gradient law of moduli A 1 and A 2 , exhibits a localized strain band, whose length l s is given by [START_REF] Chambon | One-dimensional localization studied with a second grade model[END_REF]: 56 7 89 : . 2 ;< = > ?@ 9 : . : 56 A9 : 2

It is shown that the internal length mainly a function of the ratio of B

The use of the second gradient model allows for the proper representation of strain localization. It does not however imply uniqueness of the solution. For a one dimensional tension test or a biaxial compression test, the number of bands and their positions can vary [START_REF] Bésuelle | Switching deformation modes in post-localization solutions with a quasibrittle material[END_REF]. This is in accordance with experimental results which tend to be poorly reproducible when strain localization.

The first gradient law used here for t concrete behavior is the classical damage law [START_REF] Mazars | Application de la mécanique de l'endommagement au comportement non linéaire et à la rupture du béton de structure[END_REF]. The equivalent strain is defined as:
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Where 〈 〉 G denote the positive part and is the double dot product. The damage is separated in two part D t and D c , one due to the tension, and the other due to compression. 

If the second gradient law is an isotropic elastic one, the general form of the constitute five material parameters. A particular form of this latter constitutive equation has been proposed by Chambon et al. 
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The internal length does not appear clearly from these equations. However, analytical solution of localization in a one-dimensional problem with a bilinear first gradient law of , exhibits a localized strain y [14]:
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It is shown that the internal length l s is B over A 2 . The use of the second gradient model allows for the proper representation of strain however imply uniqueness of the solution. For a onedimensional tension test or a biaxial compression test, the number of bands and ]. This is in accordance with experimental results which tend to be poorly reproducible when involving

The first gradient law used here for the behavior is the classical Mazars The equivalent strain is [START_REF] Pijaudier-Cabot | Nonlocal damage theory[END_REF] denote the positive part and : he damage is , one due to the tension, and the other due to compression.
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R XY Z [START_REF] Moës | A level set based model for damage growth: The thick level set approach[END_REF] Where ε d0 , A c , A t , B parameters. The total damage is given
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[ U is equal to 0 when there is no traction and to 1 when there is no compression. Its value is given by:
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B U are the principal strains caused by the positive part of the principal stresses

In the tests modeled here, using Mazars damage law in a two dimensional setting, equation ( 10) is not valid, but gives nevertheless an indication of the width of the localization zones at their inception

THREE POINT BENDING

Experimental test

This experimental test was conducted on a reinforced concrete beam according to the specifications of the CEOS.FR benchmark [START_REF]Réponse au benchmark statique monotone du projet national CEOS[END_REF]. The beam is of thickness b=200mm, height h=500mm and 5000mm span (see: figure 2). It was subjected to cyclic controlled load. 

Numerical model

The bending test is modeled as a two dimensional problem using the 9 node finite element described above. Two meshes have , B c and A t are material The total damage is given by:
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when there is no traction when there is no compression. Its 〉 B U _ [START_REF] Bésuelle | Switching deformation modes in post-localization solutions with a quasibrittle material[END_REF] the principal strains caused by the of the principal stresses. In the tests modeled here, using Mazars damage law in a two dimensional setting,

) is not valid, but gives nevertheless an indication of the width of the ation zones at their inception.

THREE POINT BENDING TEST

experimental test was conducted on a reinforced concrete beam according to the CEOS.FR benchmark The beam is of thickness b=200mm, h=500mm and 5000mm span (see: figure 2). It was subjected to cyclic controlled 3 point bending test: beam dimensions [START_REF]Réponse au benchmark statique monotone du projet national CEOS[END_REF] The bending test is modeled as a two dimensional problem using the 9 node finite element described above. Two meshes have been used for the simulations. The first mesh consists of 5180 elements, 4148 of which are second gradient elements and 1032 truss elements representing the horizontal reinforcement. The average size of the concrete elements for this mesh is of 0.02mx0.035m. The second mesh consists of 13494 elements with an average size of 0.01mx0.017m for the concrete elements. Concrete and steel elements are supposed to be perfectly bonded. The end nodes at each lower extremities of the beam are blocked vertically; the right node is also blocked horizontally. On the upper part where the loading is applied, and near the supports at both ends of the beam, an elastic linear law is introduced to prevent from unwanted damage. An elastoplastic law with isotropic hardening is used for the reinforcement. The elastic modulus B for the second gradient constitutive law is equal to 1.5.MN.

Results

Overall, the numerical results are in good accordance with the experimental data. Figure 5 shows the numerical global force versus displacement at the center of the beam compared to the experimental results (note: for the experimental test the beam was loaded and unloaded cyclically whereas in the simulation the beam was loaded with a monotonic increasing displacement). The force displacement graph exhibits the classical reinforced concrete behavior in three stages: In the first stage, concrete and steel stay both in the elastic regime; then concrete starts to damage and the slope on the force displacement curve changes. Finally, steel enters in its plastic phase and the second change in the slope appears. The final slope of the numerical simulation doesn't match completely the experimental one. This is due to the second gradient constitutive law which considers no damage (elastic).

Figure 5 shows the pattern of the damage variable in concrete at different stages of loading and for the two mesh sizes. The damage pattern develops with sudden "peaks" which experimentally correspond to developing cracks. The crack opening is not modeled directly in this simulation as the displacement field remains continuous, but it can be calculated from the damage model either through energetic equivalence or by simply measuring the jump in displacement between two points located on the opposite sides of a damaged zone. This obviously works only when the damaged bands are clearly separated. The width and separation of the damage bands can be controlled by changing the internal length, which in our case would mean changing the slope of either or both the first gradient and second gradient constitutive laws.

The damage distributions for the two different meshes do not match exactly although the global force displacement curve The damage pattern develops with sudden "peaks" which experimentally correspond to developing cracks. The crack opening is not modeled directly in this simulation as the displacement field remains continuous, but it can be calculated from the damage model either through energetic equivalence or by simply measuring the jump in displacement between two points located on the opposite sides of a damaged zone. This obviously rks only when the damaged bands are clearly separated. The width and separation of the damage bands can be controlled by changing the internal length, which in our case would mean changing the slope of either or both the first gradient and second gradient

The damage distributions for the two different meshes do not match exactly although the global force displacement curves are almost identical. This is due to the fact that, as stated above, the second gradient method doesn't restore solution and small differences different solutions. All the solutions are still physically acceptable.

For similar bending tests, non damage models which define an equivalent strain by averaging over a certain distance have a tendency to develop damage on the upper compressed part of the beam the local strain is not high enough to caus compressive damage. This is due to the averaging over an area. There is no such problem with this model as all the variables are local.

FOUR POINT BENDING T 4.1 Experimental test

In this case, the experimental point bending test on a large reinforced concrete beam. (6.10m x 0.8m x 1.6m) ( figure 7, « Mock up During the experimental test, the beam was cast and then let to shrink freely. was then fixed to a testing bench wit of pre-stressed steel bars with two rows of pistons force of 2250kN and then unloaded completely. . This is due to the fact as stated above, the second gradient tore the unicity of the differences can trigger different solutions. All the solutions are still For similar bending tests, non-local damage models which define an equivalent strain by averaging over a certain distance l c , have a tendency to develop damage on the compressed part of the beam, even when the local strain is not high enough to cause compressive damage. This is due to the averaging over an area. There is no such problem with this model as all the variables

FOUR POINT BENDING TEST

In this case, the experimental test is a 4 point bending test on a large reinforced 10m x 0.8m x 1.6m) (see Mock up », www.ceosfr.org). During the experimental test, the beam was cast and then let to shrink freely. The beam was then fixed to a testing bench with the help stressed steel bars. The beam is loaded with two rows of pistons up to an imposed force of 2250kN and then unloaded The concrete and steel characteristics are given in the following tables: 

Numerical model

For this test, it was chosen to model only one half of the beam and to consider a symmetry condition to reduce the computational cost. We used once again the two dimensional 9 nodes second gradient elements to model concrete and one dimensional truss elements for the reinforcement. Two different meshes are used: a coarser one with 5200 elements (4640 second gradient elements and 560 truss elements) and another one with 10000 elements (9209 second gradient elements). The material parameters adopted here don't match exactly the experimental ones. This is because in our calculations only the mechanical loading phase is modeled (the free shrinkage phase that damaged concrete is not simulated). The elastic modulus for the second gradient law B is equal to 1.5.MN.

Results

The force-vertical displacement curve for the numerical model and the experimental data is given in figure 9. The results for the two different meshes are the same and are in good accordance with the experimental ones (note: only the loading phase is reproduced). During the experiment the beam was unloaded; this is the reason why the global force displacement curve shows only two phases compared to the three phases of the previous test. As was the case with the three point bending test, the damage distributions for the two different meshes do not match exactly, although the global force displacement curves are almost identical.

CONCLUSIONS

A second gradient model has been used to model two bending tests of reinforced concrete beams. The results show that the model is able to reproduce the force-displacement curves obtained experimentally. Damage localizes into bands whose width is controlled by the model parameters. The uniqueness of the solution is however not restored. For the two experiments modeled here, the bands are of the same size but their numbers vary (figure 5 and 10). Being a local theory, the second gradient method avoids the limitations caused by the use of a non-local definition of the equivalent strain.

These results are encouraging and represent the first steps toward a wider use of the local second gradient method for concrete structures.
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 1 Figure 1: 2 nd gradient finite element[START_REF] Matsushima | Second gradient models as a particular case of microstructured models: a large strain finite elements analysis[END_REF] 
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 3 Figure 3: 3 point bending test: finite element meshes

Figure 4 :
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 9 Figure 9: 4 point bending test: force-displacement
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 6 Figure 6 presents the pattern of the damage variable in concrete at different stages of loading and for the two mesh sizes.
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 10 Figure 10.1. F = 940kN

Table 1 :

 1 3 point bending test: concrete material parameters

	E (GPa)	ε d0	A t	B t	A c	B c	β
	37.2	9.10 -5 0.7	6800 0.42 780	1.1

Table 2 :

 2 3 point bending test: reinforcement material parameters

		Upper trusses	
	E (GPa)	σ (MPa)	Area (cm²)
	195	466	16.085 (2HA32)
		Lower trusses	
	E (GPa)	σ (MPa)	Area (cm²)
	195	466	1.0053(2HA8)

Table 3 :

 3 4 point bending test: concrete characteristics

	Category E (GPa)	ν	f c (MPa) f t (MPa)
	C50/60	40.2	0.19	63.7	4.65

Table 4 :

 4 

		4 point bending test: reinforcement
		characteristics	
	Catégorie	E (GPa)	f e (MPa)	ν
	Fe500	200	500	0.3

Table 5 :

 5 4 point bending test: concrete material parameters

	E (GPa)	ε d0	A t	B t	A c	B c	β
	25.2	1.1.10 -4 0.7 6800 0.42 780 1.1

point bending test: experimental test[START_REF] Livrable | Prise en compte des résultats expérimentaux dans les modélisations[END_REF] are indicated in the
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