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1 INTRODUCTION 

Corrosion is the major cause of degradation of rein-
forced concrete (RC) structures. RC structures cor-
rode when they are subjected to the exposure to 
chlorides or carbon dioxide in the environment 
(Duprat, 2007). This study focuses on the penetra-
tion of chlorides into concrete. Chloride ingress in-
duces corrosion when a threshold concentration of 
chlorides reaches the reinforcement. 

Modeling chloride penetration into concrete is 
crucial for optimizing maintenance interventions (in-
spection and repair) of these structures (Duracrete, 
2000). Chloride penetration is a very complex pro-
cess influenced by many factors –i.e., concrete prop-
erties, environment, etc. (Bastidas-Arteaga et al., 
2011). Consequently, its modeling should be based 
on experimental measurements in order to make rel-
evant lifecycle predictions and maintenance recom-
mendations. One type of experimental test could be 
used to determine the profiles of chloride content at 
a point of the structure. However, maintenance deci-
sion-making cannot be only based on these meas-
urements because these results are highly variable 
and measurement error is very significant (Bonnet et 
al., 2009). Therefore, a large number of measure-
ments could be needed to determine the relevant in-
put parameters for modeling. Taking into account 
that these tests are expensive and difficult to imple-
ment in practice, the use of experimental results 
should be optimized. This optimization could be 
therefore based on a probabilistic approach that ac-
counts for uncertainties.  

Within this context, this paper proposes a proba-
bilistic approach based on Bayesian inference to op-
timize the identification of the input parameters for 
two chloride penetration models. The proposed ap-
proach will consider the randomness related to both 
material properties and mechanisms of chloride in-
gress. The Bayesian network (BN) methodology is a 
powerful approach for such updating challenges, es-
pecially when the available information evolves in 
time and the updating must be done in real time 
(Straub and der Kiureghian, 2010). That is the case 
for the bridge application in this paper (Section 4). 

Section 2 describes the analytical models of chlo-
ride penetration and Bayesian formulation used to 
identify the input random variables of the problem. 
To validate the Bayesian method we used numerical 
samples obtained from Monte Carlo simulations 
(Section 3). Finally, Section 4 will present an appli-
cation of the proposed approach for the identifica-
tion of model parameters of chloride penetration in a 
real structure. 

2 APPLICATION OF BAYES THEOREM TO 
CHLORIDE DIFFUSION MODELS 

Assessment of corrosion effects on RC structures is 
a difficult task because several deterioration mecha-
nisms interact in the process. Chloride-induced cor-
rosion involves the interaction between three mech-
anisms: chloride ingress, corrosion of reinforcing 
steel and concrete cracking. Chloride ingress induces 
corrosion initiation of the reinforcing bars. The ac-
cumulation of corrosion products in the 
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steel/concrete interface generates concrete cracking, 
which plays an important role in the steel corrosion 
rate when excessive concrete cracking is reached. 
Based on the previous considerations, the corrosion 
process is divided into two stages namely ‘corrosion 
initiation’ and ‘corrosion propagation’. The follow-
ing sections describe firstly the physical phenomena 
as well as present the adopted analytical models to 
determine the time to corrosion initiation caused by 
chloride ingress. Afterwards, it presents the Bayesi-
an formulation to identify the input random variables 
from real measurements. 

2.1 Simplified model for chloride diffusion 
The second law of diffusion of Fick is generally 
used to model chloride flow into concrete (Tuutti, 
1982). Assuming that concrete is homogeneous, iso-
tropic, saturated and subjected to a constant concen-
tration of chlorides at the surface Cs, the solution of 
differential equations is expressed as the concentra-
tion of chloride ions C(x, t) at depth x and time t, as 
follows: 

C(x,t) =Cs 1− erf
x
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where D is the effective chloride diffusion coeffi-
cient and erf (·) is the error function. The Bayes the-
orem can be used to calculate the probability distri-
butions of the random variables in this problem 
(Naïm et al., 2007). In this case, the main purpose of 
the Bayesian identification is to identify the ran-
domness of D and Cs. Assuming that D and Cs are 
two independent random variables (eq. (3)), the 
probability of assessment of a chloride concentration 
at a point x and a given time t, p(C(x, t)), writes 
(Nguyen, 2007): 
p C(x,t)( ) = p C(x,t) D,Cs( ) p D,Cs( )

D,Cs

∑ (2) 

with 
p D,Cs( ) = p D( ) p Cs( ) (3) 

In eq. (2), the conditional probability p(C(x, t)| D, 
Cs) must already be known. This conditional proba-
bility relates the chloride content C(x, t) to the mate-
rial characteristics. In other words, it accounts for 
transfer mechanisms, such as the modeled by eq. (1), 
in a purely probabilistic form. This probability could 
be computed based on the conditional probability ta-
ble (CPT) of the BN. The CPT can be determined 
from:  

1. a given model –e.g., eq. (1) or
2. expert knowledge.
Once p(C(x, t)) is computed, a posteriori probabil-

ity distributions (distributions to be identified) can 
be calculated from a set of measurements of C(x, t). 
p(C(x, t)|o) represents the probability distribution of 

C(x, t) given evidence o. In this case, chloride pro-
files are used as evidence, assuming that measure-
ments are perfects. Thus, for identifying the proba-
bility distribution of the effective chloride diffusion 
coefficient, the application of the Bayes theorem 
gives: 
p D o( ) = p D C(x,t)( ) p C(x,t) o( ) (4) 

with 

p D C(x,t)( ) =
p C(x,t) D( ) p D( )

p C(x,t)( ) (5) 

Similarly for the identification of the distribution 
of the concentration of chlorides at the surface Cs: 
p Cs o( ) = p Cs C(x,t)( ) p C(x,t) o( ) (6) 

with 

p Cs C(x,t)( ) =
p C(x,t) Cs( ) p Cs( )

p C(x,t)( ) (7) 

The determination of conditional probabilities is 
carried out herein by Bayesian learning and infer-
ence using the Netica® software. Note that the error 
of the model can be also updated by a BN as sug-
gested by (Deby et al., 2011).  

2.2 Duracrete model 
The closed-form solution of Fick's diffusion law can 
be easily used to predict the time to corrosion initia-
tion. However, eq. (1) is valid only when RC struc-
tures are saturated and subjected to constant concen-
tration of chlorides on the exposed surfaces. These 
conditions are rarely present for real structures be-
cause concrete is a heterogeneous material that is 
frequently exposed to time-variant surface chloride 
concentrations. Besides, this solution does not con-
sider chloride binding capacity, concrete aging and 
other environmental factors as temperature and hu-
midity (Saetta et al, 1993; Bastidas-Arteaga et al, 
2010, 2011). 

The European Union project (Duracrete, 2000) 
proposes an expression similar to eq. (1) which con-
siders the influence of material properties, environ-
ment, concrete aging and concrete curing on the 
chloride diffusion coefficient: 

C(x,t) =Cs,D 1− erf
x
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where Cs,D is the chloride surface content computed 
for this model, ke is a factor taking into account the 
characteristics of the environment (ke = 0.924 for a 
tidal zone and ke = 0.676 for an atmospheric zone), kt 
is a factor defined according to the method used to 
determine the diffusion coefficient Do, kc is a factor 
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which takes into account the curing time (kc = 0.8 
for 28 days), to is the time for which Do has been 
measured and nD is the aging factor. 

Table 1 presents some values of nD for different 
types of concrete in the atmospheric environment 
according to (Duracrete, 2000). In all cases, nD fol-
lows a beta distribution. These distributions are plot-
ted in Figure 1. 

 
Table 1. Values of nD for different types of ciment  
 Cement type  Mean  Std. dev.  a  b 
 Ordinary Portland (OPC)  0.65  0.07  0  1 
 Portland with Fly Ash (PFA)  0.66  0.07  0  1 
 Blastfurnace slag (GGBS)  0.85  0.07  0  1 
 Portland with Silica Fume (SF)  0.79  0.07  0  1 
 

 
Figure 1. Distributions of nD. 

 
Some parameters of eq. (8) could be considered 

as constant taking into account the characteristics of 
the structure. For instance, it is possible to suppose 
that the following factors are constant: the exposure 
zone, the method to estimate Do and the curing time. 
Then, ke, kt and kc are constant and there are three 
random variables to identify: Do, Cs,D and nD. As-
suming that Do, Cs,D and nD are independent random 
variables, p(C(x,t)) becomes: 

 
p(C(x, t)) = p C(x, t) Do,Cs,D,nD( )

Do,Cs,D,nD

∑ p Do,Cs,D,nD( )  (9) 

with 
p Do ,Cs,D ,nD( ) = p Do( ) p Cs,D( ) p nD( )  (10) 

 
Note that Do and Cs,D are modeled as independent 

random variables due to physical considerations. Do 
is directly related to material properties whereas Cs,D  
depends on the environmental exposure. However, 
the assumption of independence for Do and nD is 
more questionable because both parameters are re-
lated to material properties. This point is not treated 
in the paper but recent methods allow to extent BN 
to correlated random variables (Bensi et al., 2011). 
The conditional probability p(C(x,t)|D0,Cs,D,nD) in 
eq. (9) must already be known. It is also computed 
based on the CPT of the BN. When p(C(x,t)) is de-
termined, a posteriori distributions for Do, Cs,D and 

nD can be calculated from a set of measurements of 
chloride profiles. Thus, the application of the Bayes 
theorem to identify the probability distribution of Do 
gives: 
 
p Do o( ) = p Do C(x,t)( ) p C(x,t) o( )  (11) 

with 

 p Do C(x,t)( ) =
p C(x,t) Do( ) p Do( )

p C(x,t)( )
 (12) 

 For the identification of the distribution of Cs,D: 
 
p Cs,D o( ) = p Cs,D C(x,t)( ) p C(x,t) o( )   (13) 

with  

 p Cs,D C(x,t)( ) =
p C(x,t) Cs,D( ) p Cs,D( )

p C(x,t)( )
 (14) 

 Finally, for the identification of the distribution of 
nD:  
p nD o( ) = p nD C(x,t)( ) p C(x,t) o( )  (15) 

with 

p nD C(x,t)( ) =
p C(x,t) nD( ) p nD( )

p C(x,t)( )
 (16) 

The determination of conditional probabilities is 
also carried out by using the Netica® software. 

3 IDENTIFICATION USING NUMERICAL 
SAMPLES 

Bayesian updating provides a posteriori information 
that considers real observations (evidence) of the 
studied phenomenon. This evidence could be ob-
tained both from experimental measurements or ex-
pert knowledge. Before identifying random variables 
from real evidence, this section tests the perfor-
mance of the BN and optimizes its configuration. 
Towards this aim, we use numerical evidence ob-
tained from known input random variables. There-
fore, we will focus on the Bayesian identification of 
the distributions of D and Cs for the diffusion model 
presented in eq. (1).  

3.1 Generation of numerical evidence 
For the sake of simplicity, the generation of numeri-
cal evidence assumes that D and Cs follow normal 
distributions with the parameters presented in Table 
2. However, these random variables usually follow 
lognormal distributions (Duracrete, 2000; Vu and 
Stewart, 2000). These distributions were used to 
generate 3000 random values for D and Cs from 
Monte Carlo simulations. Then, each set of values 
was used to compute numerical chloride profiles at 
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different depths and times. These results serve af-
terwards to compute the probability that C(x,t) be-
longs to a given interval for different depths. For in-
stance, Table 3 presents the numerical evidence 
estimated from simulations for t = 10 years. These 
results are given in terms of probability of belonging 
to each interval. As expected, the probabilities of 
containing higher chloride concentrations (i.e., C(x,t) 
> 2 kg/m3) increase for small depths because the ex-
posure time is short. 
 
Table 2. Mean and std. dev. for Cs and D 
 µCs (kg/m3)  σCs (kg/m3)  µD (m2/s)  σD (m2/s) 

 5  1  3 ×10-12  3 ×10-13 
 
Table 3. Numerical evidence at 10 yr.  
 Interval (kg/m3) x = 1cm x = 4cm x = 8cm 

 0.0 - 0.6 0 0.00033 0.992333 
 0.6 - 1.2 0.0003 0.05467 0.007667 
 1.2 - 1.8 0.0017 0.46333 0 
 1.8 - 2.4 0.0147 0.42667 0 
 2.4 - 3.0 0.0757 0.05433 0 
 3.0 - 3.6 0.1810 0.00067 0 
 3.6 - 4.2 0.2666 0 0 
 4.2 - 4.8 0.2620 0 0 
 4.8 - 5.4 0.1380 0 0 
 5.4 - 6.0 0.0500 0 0 
 6.0 - 6.6 0.0090 0 0 
 6.6 - 7.2 0.0010 0 0 
 7.2 - 7.8 0 0 0 
 7.8 - 8.4 0 0 0 
 8.4 - 9.0 0 0 0 

Total 1 1 1 

3.2 Identification of model parameters 
This section presents the approach taken into ac-
count for identifying both the mean and standard de-
viation of D and Cs from numerical evidence. Figure 
2 shows the adopted network configuration. The 
characteristics of the network (number of nodes, po-
sition and time to determine C(x,t)) were defined af-
ter testing several configurations (Nguyen, 2011). 
There are: 
– two parent nodes representing the random vari-

ables to identify (Cs and D) and  
– six child nodes representing chloride concentra-

tions C(x,t) at different times (10 and 20 years) 
and depths (1, 4 and 8cm.).  

 
Bayesian networks algorithms only account for 

discrete random variables. Therefore the random 
variables D and Cs must be discretized. The chloride 
surface concentration was discretized into 16 inter-
vals varying between 1 and 9 kg/m3. The chloride 
diffusion coefficient was divided into 20 intervals 
ranging from 3×10-13 to 6.3×10-12 m2/s (Figure 2). 
The conditional probability tables are obtained from 
simulations using eq. (1) and the software Netica®. 

At the beginning of the identification, it is as-
sumed that both Cs and D follow uniform distribu-
tions (a priori distributions). This assumption in-
creases the computational time (number of iterations 
until convergence) but avoids making any assump-
tion about the distribution shape. This problem is es-
pecially important on distribution tails where there is 
few information but high influence on reliability. A 
posteriori distributions of Cs and D are computed 
when numerical evidence is introduced in the net-
work. To improve the identification, we use an itera-
tive procedure where a posteriori distributions of the 
iteration i will be used as a priori distributions for 

                           
Figure 2. Network configuration adopted. 
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the iteration i + 1. All iterations are always per-
formed with the same numerical evidence. 

Figures 2 and 3 show the evolution of both the 
mean and standard deviation Cs and D after 3 itera-
tions. For the first iteration, the identified mean and 
standard deviation of Cs and D are very different 
from theoretical values used in the generation of the 
numerical evidence (Table 2). The difference is 
more appreciable in the identification of the standard 
deviation. However, for both random variables, the 
mean and standard deviation are close to the theoret-
ical values when the number of iterations increases. 

Figure 3. Evolution of the mean and the standard deviation of 
Cs with the iterations. 

Figure 4. Evolution of the mean and the standard deviation of 
D with the iterations. 

Figure 5 compares the numerical profiles of chlo-
ride content at t = 10 years (points) with the mean 
profile and its 5% and 95% quantiles identified after 
three iterations. It is observed that most of the nu-
merical profiles are in the area corresponding to 
90% probability. Therefore, it is possible to con-
clude that the network configuration used for identi-
fication Bayesian might be useful to identify the 
randomness of model parameters from real data. 

Figure 5. Comparison between simulated profiles (points) and 
the mean and quantiles. 

4 IDENTIFICATION OF DIFFUSION 
PARAMETERS FROM MEASUREMENTS 

4.1 Problem description 
This section presents the application of Bayesian in-
ference to the identification of random variables 
based on measurements on the Ferrycarrig Bridge 
(Figure 6). This structure is located in Wexford on 
the southeast coast of Ireland and passes over the 
River Slaney. Built in 1980, the structure is located 
in a marine environment. In 2007, the manager Eir-
span completed an inspection of the main structure. 
Chloride content profiles were collected from differ-
ent beams of the bridge during the inspection. These 
beams were exposed to an atmospheric marine envi-
ronment. The identification performed in this section 
will consider these experimental results as well as 
the Duracrete model (eq. (8)). This model is more 
appropriate than the simplified solution of Fick law 
because it considers the influence of other parame-
ters as discussed in section 2.2. 

Figure 6. Ferrycarrig Bridge. 

4.2 Bayesian identification  
The random variables to identify are defined taking 
into account the characteristics of the bridge. 
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Therefore, some parameters of eq. (8) are considered 
as constant. For instance, it is possible to assume 
that ke = 0.676 because the beams are placed in an 
atmospheric zone. If we consider that the identified 
chloride diffusion coefficient corresponds to a mi-
gration test the factor kt = 1. Assuming that the cur-
ing time is to = 28 days, the factor kc = 0.8. And the 
exposure time was 27 years when inspection was 
carried out. Taking into account these simplifica-
tions, the problem is reduced to identify three ran-
dom variables: Cs,D, Do and nD.   

Figure 7 depicts the configuration of the Bayesian 
network used in identification. This network has the 
following characteristics: 
– three parent nodes representing the random var-

iables to identify (Cs,D, Do and nD) and 
– eight child nodes representing chloride concen-

trations C(x,t) at different depths (1 to 8 cm.) 
and after 27 years of exposure.  

As previously mentioned, the identification is 
based on experimental results. Table 4 presents the 
experimental evidence computed from measure-
ments of total chloride concentrations on several 
points of the Ferrycarrig Bridge. As expected, the 
probability of belonging to a state with low chloride 
content increases for larger depths. 

The following discretization was considered for 
the random variables to identify (Figure 7): 
– 11 intervals for nD within the interval [0.45, 1]. 

These limits were defined according to the dis-
tributions presented in Figure 1. 

– 8 intervals for Cs,D within the interval [4"10-2, 
12"10-2] % per weight of concrete. These values 
were adopted taking into account the experi-
mental results presented in Table 4. 

–  24 intervals for Do within the interval [5"10-13, 
1"10-9] m2/s. This interval was defined accord-
ing to values found in the literature for different 
concretes (Duracrete, 2000; Vu and Stewart, 
2007; Duprat, 2007).  

 
Table 4. Experimental evidence. 
C(x,t) (10-2 % per Depth (cm) 
wt. of concrete) 1  2  3  4  5  6  7  8  
0 - 1 0 0 0 0 0 0 0 0 
1 - 2 0.2 0.2 0.2 0.2 0.2 0.6 0.6 1 
2 - 3 0.6 0 0 0 0.2 0 0.2 0 
3 - 4 0.2 0 0 0.2 0.2 0.2 0 0 
4 - 5 0 0 0.4 0 0.2 0.2 0.2 0 
5 - 6 0 0.4 0.2 0.2 0.2 0 0 0 
6 - 7 0 0.4 0 0.2 0 0 0 0 
7 - 8 0 0 0 0.2 0 0 0 0 
8 - 9 0 0 0 0 0 0 0 0 
9 -10 0 0 0 0 0 0 0 0 
10 - 11 0 0 0.2 0 0 0 0 0 
11 -12 0 0 0 0 0 0 0 0 
Total 1 1 1 1 1 1 1 1 

 
Considering that there is no information about the 

distribution shape of Cs,D, Do and nD, it is assumed 
that these random variables follow uniform a priori 
distributions for the first iteration. Following the 

Figure 7. Bayesian network to identify the diffusion parameters of the Duracrete model 
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same iterative procedure described in section 3.2, we 
carried out five iterations to illustrate the identifica-
tion process. Table 5 shows the a posteriori mean 
and standard deviation of Cs,D, Do and nD. It is ob-
served that after five iterations, the mean and stand-
ard deviation gradually lead to constant values. The-
se results are fairly stable after five iterations. 
However, the results will be more accurate if the 
number of iterations increases. 

 
Table 5. A posteriori results for Cs,D, Do and nD.  
Variable Iteration Mean Std. dev 

Cs,D 
(% per wt. of 
 concrete) 

0 0.0809 0.01 
1 0.0803 0.0078 
2 0.0799 0.0069 
3 0.08 0.0065 
4 0.0801 0.0064 
5 0.0802 0.0064 

Do  
(×10-10 m2/s) 

0 4.91 2.8 
1 5.66 2.5 
2 6.38 2 
3 6.75 1.7 
4 6.81 1.5 
5 6.75 1.3 

nD 

0 0.804 0.14 
1 0.844 0.11 
2 0.879 0.075 
3 0.894 0.053 
4 0.898 0.044 
5 0.9 0.038 

 
Afterwards, this work focuses on determining 

which type of distribution is most appropriate to rep-
resent the random variables of Cs,D, Do and nD. To 
find the best kind of distribution, we compute the 
"log likelihood" value for some distribution types af-
ter 5 iterations. This estimation is performed using 
the distribution fitting tool in Matlab®. These results 
are presented in Table 6. The selection of the pdf 
type will rely both on the physical understanding of 
the variations of each random variable (range, shape, 
etc.) and this estimate. 
 

For Cs,D, the log likelihood is larger for a lognor-
mal distribution according to the results presented in 
Table 6. Consequently, this random variable will be 
represented by a lognormal distribution with a mean 
of 0.0802 % per wt. of concrete and a standard devi-
ation of 0.0064 % per wt. of concrete. It is expected 
that Cs,D follows a lognormal distribution because 
this variable cannot physically take negative values. 
This kind of distribution is also widely found in the 
literature –e.g., Duracrete (2000), Vu and Stewart 
(2000), Duprat (2007). 

For Do, the largest log likelihood value corre-
sponds to a beta distribution. However, there is no 
significant difference with the log likelihood values 
obtained for the gamma and lognormal distributions. 

The beta distribution could not be appropriate to rep-
resent this random variable because it is defined into 
the range [0, 1]. Therefore, Do could be represented 
by gamma or lognormal distributions with the fol-
lowing parameters: mean = 6.75×10-10 m2/s, stand-
ard deviation =1.3×10-10 m2/s, shape = 27.2 and 
scale = 2.48×10-11. These types of distributions have 
been also reported for other authors in the literature. 
Kirkpatrick et al. (2002) found that this variable fol-
lows a gamma distribution. Wallbank (1989), Hoff-
man et al. (1994) and Enright and Frangopol (1998) 
conclude that this random variable follows a 
lognormal distribution. The identified mean value of 
Do could seem higher with respect to different values 
reported in the literature. The difference is explained 
by the fact that this diffusion coefficient is computed 
from results of total chloride concentration.  

 
Table 6. Log likelihood test for the identified random variables. 

Variable Distribution Log likelihood 

Cs,D 
(/wt. of 
 concrete) 

Normal 834.63 
Lognormal 836.47 
Weibull 825.00 
Gamma 835.91 
Beta 835.91 

Do  
(m2/s) 

Normal 2092.18 
Lognormal 2093.37 
Weibull 2089.73 
Gamma 2093.43 
Beta 2093.44 

nD 

Normal 195.47 
Lognormal 195.42 
Weibull 189.60 
Gamma 195.46 
Beta 190.70 

 
For nD, the maximum log likelihood value corre-

sponds to a normal distribution. Nevertheless, this 
kind of distribution is not appropriate to represent 
this random variable because it could take values 
outside of the range [0, 1] that are not allowed by the 
Duracrete model. Thus, it is assumed that the aging 
factor follows a beta distribution that takes only val-
ues between 0 and 1. Duracrete (2000) also suggest 
this kind of distribution. The parameters for nD are: 
mean = 0.9 and the shape parameters a = 56.39 and 
b = 6.18.  

5 CONCLUSIONS 

Chloride ions have been recognized as a critical 
agent leading to reinforcement corrosion of RC 
structures. Therefore, the prediction of chloride pen-
etration into concrete is necessary for optimal man-
agement of RC structures placed in chloride-
contaminated environments. Prediction results de-
pend on both the quality of chloride ingress models 
and their input data. This work focused on the as-
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sessment of comprehensive input data from real 
measurements by Bayesian identification. The 
Bayesian approach can update information in the 
model by an iterative method. In other words, the 
Bayesian method can effectively take advantage of 
the limited number of experimental measurements. 
The results of the identification of numerical evi-
dence generated by Monte Carlo simulations indi-
cate that the identified values are close to the theo-
retical values. The approach was also used to 
identify random variables on a more complex model 
from measurements on a real structure.  
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