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INTRODUCTION

Corrosion is the major cause of degradation of reinforced concrete (RC) structures. RC structures corrode when they are subjected to the exposure to chlorides or carbon dioxide in the environment [START_REF] Duprat | Reliability of RC beams under chlorideingress[END_REF]. This study focuses on the penetration of chlorides into concrete. Chloride ingress induces corrosion when a threshold concentration of chlorides reaches the reinforcement.

Modeling chloride penetration into concrete is crucial for optimizing maintenance interventions (inspection and repair) of these structures [START_REF] Duracrete | Statistical quantification of the variables in the limit state functions[END_REF]. Chloride penetration is a very complex process influenced by many factors -i.e., concrete properties, environment, etc. (Bastidas-Arteaga et al., 2011). Consequently, its modeling should be based on experimental measurements in order to make relevant lifecycle predictions and maintenance recommendations. One type of experimental test could be used to determine the profiles of chloride content at a point of the structure. However, maintenance decision-making cannot be only based on these measurements because these results are highly variable and measurement error is very significant [START_REF] Bonnet | Effect of error measurements of chloride profiles on reliability assessment[END_REF]. Therefore, a large number of measurements could be needed to determine the relevant input parameters for modeling. Taking into account that these tests are expensive and difficult to implement in practice, the use of experimental results should be optimized. This optimization could be therefore based on a probabilistic approach that accounts for uncertainties.

Within this context, this paper proposes a probabilistic approach based on Bayesian inference to optimize the identification of the input parameters for two chloride penetration models. The proposed approach will consider the randomness related to both material properties and mechanisms of chloride ingress. The Bayesian network (BN) methodology is a powerful approach for such updating challenges, especially when the available information evolves in time and the updating must be done in real time [START_REF] Straub | Bayesian network enhanced with structural reliability methods: methodology[END_REF]. That is the case for the bridge application in this paper (Section 4).

Section 2 describes the analytical models of chloride penetration and Bayesian formulation used to identify the input random variables of the problem. To validate the Bayesian method we used numerical samples obtained from Monte Carlo simulations (Section 3). Finally, Section 4 will present an application of the proposed approach for the identification of model parameters of chloride penetration in a real structure.

APPLICATION OF BAYES THEOREM TO CHLORIDE DIFFUSION MODELS

Assessment of corrosion effects on RC structures is a difficult task because several deterioration mechanisms interact in the process. Chloride-induced corrosion involves the interaction between three mechanisms: chloride ingress, corrosion of reinforcing steel and concrete cracking. Chloride ingress induces corrosion initiation of the reinforcing bars. The accumulation of corrosion products in the Bayesian identification of uncertainties in chloride ingress modeling into reinforced concrete structures ABSTRACT: Chloride penetration is one of the major causes leading to the degradation of reinforced concrete structures by reinforcement corrosion. Therefore, its modeling is a major component in planning and quantifying maintenance operations of the structure. Modeling needs relevant material and environmental parameters determined from experimental measurements. The main objective of this paper is to develop a method for identifying the model parameters of chloride penetration into concrete from measurements using an inverse analysis model based on probabilistic principles. The results of the identification indicate that the Bayesian approach may be useful to identify the model parameters from real data.

steel/concrete interface generates concrete cracking, which plays an important role in the steel corrosion rate when excessive concrete cracking is reached.

Based on the previous considerations, the corrosion process is divided into two stages namely 'corrosion initiation' and 'corrosion propagation'. The following sections describe firstly the physical phenomena as well as present the adopted analytical models to determine the time to corrosion initiation caused by chloride ingress. Afterwards, it presents the Bayesian formulation to identify the input random variables from real measurements.

Simplified model for chloride diffusion

The second law of diffusion of Fick is generally used to model chloride flow into concrete [START_REF] Tuutti | Corrosion of steel in concrete[END_REF]. Assuming that concrete is homogeneous, isotropic, saturated and subjected to a constant concentration of chlorides at the surface C s , the solution of differential equations is expressed as the concentration of chloride ions C(x, t) at depth x and time t, as follows:

C(x,t) = C s 1-erf x 2 Dt " # $ $ % & ' ' ( ) * * + , - - (1) 
where D is the effective chloride diffusion coefficient and erf (•) is the error function. The Bayes theorem can be used to calculate the probability distributions of the random variables in this problem [START_REF] Naïm | Les réseaux bayésiens[END_REF]. In this case, the main purpose of the Bayesian identification is to identify the randomness of D and C s . Assuming that D and C s are two independent random variables (eq. ( 3)), the probability of assessment of a chloride concentration at a point x and a given time t, p(C(x, t)), writes [START_REF] Nguyen | Algorithmes probabilistes appliqués à la durabilité et à la mécanique des ouvrages de génie civil[END_REF]:

p C(x,t) ( ) = p C(x,t) D,C s ( ) p D,C s ( ) D,C s ∑ (2) with p D,C s ( ) = p D ( ) p C s ( ) (3) 
In eq. ( 2), the conditional probability p(C(x, t)| D, C s ) must already be known. This conditional probability relates the chloride content C(x, t) to the material characteristics. In other words, it accounts for transfer mechanisms, such as the modeled by eq. ( 1), in a purely probabilistic form. This probability could be computed based on the conditional probability table (CPT) of the BN. The CPT can be determined from:

1. a given model -e.g., eq. ( 1) or 2. expert knowledge.

Once p(C(x, t)) is computed, a posteriori probability distributions (distributions to be identified) can be calculated from a set of measurements of C(x, t). p(C(x, t)|o) represents the probability distribution of C(x, t) given evidence o. In this case, chloride profiles are used as evidence, assuming that measurements are perfects. Thus, for identifying the probability distribution of the effective chloride diffusion coefficient, the application of the Bayes theorem gives:

p D o ( ) = p D C(x,t) ( ) p C(x,t) o ( ) (4) with p D C(x,t) ( ) = p C(x,t) D ( ) p D ( ) p C(x,t) ( ) (5) 
Similarly for the identification of the distribution of the concentration of chlorides at the surface C s :

p C s o ( ) = p C s C(x,t) ( ) p C(x,t) o ( ) (6) 
with p C s C(x,t) ( ) = p C(x,t) C s ( ) p C s ( ) p C(x,t) ( ) (7) 
The determination of conditional probabilities is carried out herein by Bayesian learning and inference using the Netica® software. Note that the error of the model can be also updated by a BN as suggested by (Deby et al., 2011).

Duracrete model

The closed-form solution of Fick's diffusion law can be easily used to predict the time to corrosion initiation. However, eq. ( 1) is valid only when RC structures are saturated and subjected to constant concentration of chlorides on the exposed surfaces. These conditions are rarely present for real structures because concrete is a heterogeneous material that is frequently exposed to time-variant surface chloride concentrations. Besides, this solution does not consider chloride binding capacity, concrete aging and other environmental factors as temperature and humidity (Saetta et al, 1993;[START_REF] Bastidas-Arteaga | Influence of weather and global warming in chloride ingress into concrete: a stochastic approach[END_REF][START_REF] Nguyen | Identification statistique de paramètres de diffusion dans le béton à partir de mesures[END_REF].

The European Union project [START_REF] Duracrete | Statistical quantification of the variables in the limit state functions[END_REF] proposes an expression similar to eq. ( 1) which considers the influence of material properties, environment, concrete aging and concrete curing on the chloride diffusion coefficient:

C(x,t) = C s,D 1-erf x 2 k e k t k c D o t o t ( ) n D t " # $ $ $ $ % & ' ' ' ' ( ) * * * * + , - - - - (8) 
where C s,D is the chloride surface content computed for this model, k e is a factor taking into account the characteristics of the environment (k e = 0.924 for a tidal zone and k e = 0.676 for an atmospheric zone), k t is a factor defined according to the method used to determine the diffusion coefficient D o , k c is a factor which takes into account the curing time (k c = 0.8 for 28 days), t o is the time for which D o has been measured and n D is the aging factor. Table 1 presents some values of n D for different types of concrete in the atmospheric environment according to [START_REF] Duracrete | Statistical quantification of the variables in the limit state functions[END_REF]. In all cases, n D follows a beta distribution. These distributions are plotted in Figure 1. Some parameters of eq. ( 8) could be considered as constant taking into account the characteristics of the structure. For instance, it is possible to suppose that the following factors are constant: the exposure zone, the method to estimate D o and the curing time. Then, k e , k t and k c are constant and there are three random variables to identify: D o , C s,D and n D . Assuming that D o , C s,D and n D are independent random variables, p(C(x,t)) becomes:

p(C(x, t)) = p C(x, t) D o , C s,D , n D ( ) D o ,C s,D ,n D ∑ p D o , C s,D , n D ( ) (9) 
with

p D o ,C s,D ,n D ( ) = p D o ( ) p C s,D ( ) p n D ( ) (10) 
Note that D o and C s,D are modeled as independent random variables due to physical considerations. D o is directly related to material properties whereas C s,D depends on the environmental exposure. However, the assumption of independence for D o and n D is more questionable because both parameters are related to material properties. This point is not treated in the paper but recent methods allow to extent BN to correlated random variables [START_REF] Bensi | Bayesian network modeling of correlated random variables drawn from a Gaussian random field[END_REF]. The conditional probability p(C(x,t)|D 0 ,C s,D ,n D ) in eq. ( 9) must already be known. It is also computed based on the CPT of the BN. When p(C(x,t)) is determined, a posteriori distributions for D o , C s,D and n D can be calculated from a set of measurements of chloride profiles. Thus, the application of the Bayes theorem to identify the probability distribution of D o gives:

p D o o ( ) = p D o C(x,t) ( ) p C(x,t) o ( ) (11) 
with

p D o C(x,t) ( ) = p C(x,t) D o ( ) p D o ( ) p C(x,t) ( ) (12) 
For the identification of the distribution of C s,D :

p C s,D o ( ) = p C s,D C(x,t) ( ) p C(x,t) o ( ) (13) with p C s,D C(x,t) ( ) = p C(x,t) C s,D ( ) p C s,D ( ) p C(x,t) ( ) (14) 
Finally, for the identification of the distribution of n D :

p n D o ( ) = p n D C(x,t) ( ) p C(x,t) o ( ) (15) 
with

p n D C(x,t) ( ) = p C(x,t) n D ( ) p n D ( ) p C(x,t) ( ) (16) 
The determination of conditional probabilities is also carried out by using the Netica® software.

IDENTIFICATION USING NUMERICAL SAMPLES

Bayesian updating provides a posteriori information that considers real observations (evidence) of the studied phenomenon. This evidence could be obtained both from experimental measurements or expert knowledge. Before identifying random variables from real evidence, this section tests the performance of the BN and optimizes its configuration. Towards this aim, we use numerical evidence obtained from known input random variables. Therefore, we will focus on the Bayesian identification of the distributions of D and C s for the diffusion model presented in eq. (1).

Generation of numerical evidence

For the sake of simplicity, the generation of numerical evidence assumes that D and C s follow normal distributions with the parameters presented in Table 2. However, these random variables usually follow lognormal distributions [START_REF] Duracrete | Statistical quantification of the variables in the limit state functions[END_REF][START_REF] Vu | Structural reliability of concrete bridges including improved chloride-induced corrosion[END_REF]. These distributions were used to generate 3000 random values for D and C s from Monte Carlo simulations. Then, each set of values was used to compute numerical chloride profiles at different depths and times. These results serve afterwards to compute the probability that C(x,t) belongs to a given interval for different depths. For instance, Table 3 presents the numerical evidence estimated from simulations for t = 10 years. These results are given in terms of probability of belonging to each interval. As expected, the probabilities of containing higher chloride concentrations (i.e., C(x,t) > 2 kg/m 3 ) increase for small depths because the exposure time is short. 

Identification of model parameters

This section presents the approach taken into account for identifying both the mean and standard deviation of D and C s from numerical evidence. Figure 2 shows the adopted network configuration. The characteristics of the network (number of nodes, position and time to determine C(x,t)) were defined after testing several configurations [START_REF] Nguyen | Identification statistique de paramètres de diffusion dans le béton à partir de mesures[END_REF]. There are:

-two parent nodes representing the random variables to identify (C s and D) and -six child nodes representing chloride concentrations C(x,t) at different times (10 and 20 years) and depths (1, 4 and 8cm.).

Bayesian networks algorithms only account for discrete random variables. Therefore the random variables D and C s must be discretized. The chloride surface concentration was into 16 intervals varying between 1 and 9 kg/m 3 . The chloride diffusion coefficient was divided into 20 intervals ranging from 3×10 -13 to 6.3×10 -12 m 2 /s (Figure 2). The conditional probability tables are obtained from simulations using eq. ( 1) and the software Netica®.

At the beginning of the identification, it is assumed that both C s and D follow uniform distributions (a priori distributions). This assumption increases the computational time (number of iterations until convergence) but avoids making any assumption about the distribution shape. This problem is especially important on distribution tails where there is few information but high influence on reliability. A posteriori distributions of C s and D are computed when numerical evidence is introduced in the network. To improve the identification, we use an iterative procedure where a posteriori distributions of the iteration i will be used as a priori distributions for the iteration i + 1. All iterations are always performed with the same numerical evidence.

Figures 2 and3 show the evolution of both the mean and standard deviation C s and D after 3 iterations. For the first iteration, the identified mean and standard deviation of C s and D are very different from theoretical values used in the generation of the numerical evidence (Table 2). The difference is more appreciable in the identification of the standard deviation. However, for both random variables, the mean and standard deviation are close to the theoretical values when the number of iterations increases. Figure 5 compares the numerical profiles of chloride content at t = 10 years (points) with the mean profile and its 5% and 95% quantiles identified after three iterations. It is observed that most of the numerical profiles are in the area corresponding to 90% probability. Therefore, it is possible to conclude that the network configuration used for identification Bayesian might be useful to identify the randomness of model parameters from real data. 

IDENTIFICATION OF DIFFUSION PARAMETERS FROM MEASUREMENTS

Problem description

This section presents the application of Bayesian inference to the identification of random variables based on measurements on the Ferrycarrig Bridge (Figure 6). This structure is located in Wexford on the southeast coast of Ireland and passes over the River Slaney. Built in 1980, the structure is located in a marine environment. In 2007, the manager Eirspan completed an inspection of the main structure. Chloride content profiles were collected from different beams of the bridge during the inspection. These beams were exposed to an atmospheric marine environment. The identification performed in this section will consider these experimental results as well as the Duracrete model (eq. ( 8)). This model is more appropriate than the simplified solution of Fick law because it considers the influence of other parameters as discussed in section 2.2. 

Bayesian identification

The random variables to identify are defined taking into account the characteristics of the bridge.

Therefore, some parameters of eq. ( 8) are considered as constant. For instance, it is possible to assume that k e = 0.676 because the beams are placed in an atmospheric zone. If we consider that the identified chloride diffusion coefficient corresponds to a migration test the factor k t = 1. Assuming that the curing time is t o = 28 days, the factor k c = 0.8. And the exposure time was 27 years when inspection was carried out. Taking into account these simplifications, the problem is reduced to identify three random variables: C s,D , D o and n D .

Figure 7 depicts the configuration of the Bayesian network used in identification. This network has the following characteristics: -three parent nodes representing the random variables to identify (C s,D , D o and n D ) and -eight child nodes representing chloride concentrations C(x,t) at different depths (1 to 8 cm.) and after 27 years of exposure. As previously mentioned, the identification is based on experimental results. Table 4 presents the experimental evidence computed from measurements of total chloride concentrations on several points of the Ferrycarrig Bridge. As expected, the probability of belonging to a state with low chloride content increases for larger depths.

The following discretization was considered for the random variables to identify (Figure 7): -11 intervals for n D within the interval [0.45, 1].

These limits were defined according to the distributions presented in Figure 1.

-8 intervals for C s,D within the interval [4"10 -2 , 12"10 -2 ] % per weight of concrete. These values were adopted taking into account the experimental results presented in Table 4. -24 intervals for D o within the interval [5"10 -13 , 1"10 -9 ] m 2 /s. This interval was defined according to values found in the literature for different concretes [START_REF] Duracrete | Statistical quantification of the variables in the limit state functions[END_REF]Vu and Stewart, 2007;[START_REF] Duprat | Reliability of RC beams under chlorideingress[END_REF]. Considering that there is no information about the distribution shape of C s,D , D o and n D , it is assumed that these random variables follow uniform a priori distributions for the first iteration. Following the same iterative procedure described in section 3.2, we carried out five iterations to illustrate the identification process. Table 5 shows the a posteriori mean and standard deviation of C s,D , D o and n D . It is observed that after five iterations, the mean and standard deviation gradually lead to constant values. These results are fairly stable after five iterations. However, the results will be more accurate if the number of iterations increases. Afterwards, this work focuses on determining which type of distribution is most appropriate to represent the random variables of C s,D , D o and n D . To find the best kind of distribution, we compute the "log likelihood" value for some distribution types after 5 iterations. This estimation is performed using the distribution fitting tool in Matlab®. These results are presented in Table 6. The selection of the pdf type will rely both on the physical understanding of the variations of each random variable (range, shape, etc.) and this estimate.

For C s,D , the log likelihood is larger for a lognormal distribution according to the results presented in Table 6. Consequently, this random variable will be represented by a lognormal distribution with a mean of 0.0802 % per wt. of concrete and a standard deviation of 0.0064 % per wt. of concrete. It is expected that C s,D follows a lognormal distribution because this variable cannot physically take negative values. This kind of distribution is also widely found in the literature -e.g., [START_REF] Duracrete | Statistical quantification of the variables in the limit state functions[END_REF], [START_REF] Vu | Structural reliability of concrete bridges including improved chloride-induced corrosion[END_REF], [START_REF] Duprat | Reliability of RC beams under chlorideingress[END_REF].

For D o , the largest log likelihood value corresponds to a beta distribution. However, there is no significant difference with the log likelihood values obtained for the gamma and lognormal distributions.

The beta distribution could not be appropriate to represent this random variable because it is defined into the range [0, 1]. Therefore, D o could be represented by gamma or lognormal distributions with the following parameters: mean = 6.75×10 -10 m 2 /s, standard deviation =1.3×10 -10 m 2 /s, shape = 27.2 and scale = 2.48×10 -11 . These types of distributions have been also reported for other authors in the literature. [START_REF] Kirkpatrick | Impact of specification changes on chlorideinduced corrosion service life of bridge decks[END_REF] found that this variable follows a gamma distribution. [START_REF] Wallbank | The performance of concrete in bridges: a survey of 200 highway bridges[END_REF][START_REF] Hoffman | Predicting critical chloride levels in concrete bridge decks[END_REF] and [START_REF] Enright | Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion[END_REF] conclude that this random variable follows a lognormal distribution. The identified mean value of D o could seem higher with respect to different values reported in the literature. The difference is explained by the fact that this diffusion coefficient is computed from results of total chloride concentration. For n D , the maximum log likelihood value corresponds to a normal distribution. Nevertheless, this kind of distribution is not appropriate to represent this random variable because it could take values outside of the range [0, 1] that are not allowed by the Duracrete model. Thus, it is assumed that the aging factor follows a beta distribution that takes only values between 0 and 1. [START_REF] Duracrete | Statistical quantification of the variables in the limit state functions[END_REF] also suggest this kind of distribution. The parameters for n D are: mean = 0.9 and the shape parameters a = 56.39 and b = 6.18.

CONCLUSIONS

Chloride ions have been recognized as a critical agent leading to reinforcement corrosion of RC structures. Therefore, the prediction of chloride penetration into concrete is necessary for optimal management of RC structures placed in chloridecontaminated environments. Prediction results depend on both the quality of chloride ingress models and their input data. This work focused on the as-sessment of comprehensive input data from real measurements by Bayesian identification. The Bayesian approach can update information in the model by an iterative method. In other words, the Bayesian method can effectively take advantage of the limited number of experimental measurements. The results of the identification of numerical evidence generated by Monte Carlo simulations indicate that the identified values are close to the theoretical values. The approach was also used to identify random variables on a more complex model from measurements on a real structure.
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 7 Figure 7. Bayesian network to identify the diffusion parameters of the Duracrete model

Table 1 .

 1 Values of n D for different types of ciment

	Cement type	Mean Std. dev. a	b
	Ordinary Portland (OPC)	0.65 0.07	0	1
	Portland with Fly Ash (PFA)	0.66 0.07	0	1
	Blastfurnace slag (GGBS)	0.85 0.07	0	1
	Portland with Silica Fume (SF) 0.79 0.07	0	1

Figure 1. Distributions of n D .

Table 2 .

 2 Mean and std. dev. for C s and D

	µ Cs (kg/m 3 )	σ Cs (kg/m 3 ) µ D (m 2 /s)	σ D (m 2 /s)
	5	1	3 ×10 -12	3 ×10 -13
	Table 3. Numerical evidence at 10 yr.	
	Interval (kg/m 3 )	x = 1cm	x = 4cm	x = 8cm
	0.0 -0.6	0	0.00033	0.992333
	0.6 -1.2	0.0003	0.05467	0.007667
	1.2 -1.8	0.0017	0.46333	0
	1.8 -2.4	0.0147	0.42667	0
	2.4 -3.0	0.0757	0.05433	0
	3.0 -3.6	0.1810	0.00067	0
	3.6 -4.2	0.2666	0	0
	4.2 -4.8	0.2620	0	0
	4.8 -5.4	0.1380	0	0
	5.4 -6.0	0.0500	0	0
	6.0 -6.6	0.0090	0	0
	6.6 -7.2	0.0010	0	0
	7.2 -7.8	0	0	0
	7.8 -8.4	0	0	0
	8.4 -9.0	0	0	0
	Total	1	1	1

Table 4 .

 4 Experimental evidence.

	C(x,t) (10 -2 % per				Depth (cm)		
	wt. of concrete) 1	2	3	4	5	6	7	8
	0 -1	0	0	0	0	0	0	0	0
	1 -2	0.2 0.2 0.2 0.2 0.2 0.6 0.6 1
	2 -3	0.6 0	0	0	0.2 0	0.2 0
	3 -4	0.2 0	0	0.2 0.2 0.		

Table 5 .

 5 A posteriori results for C s,D , D o and n D .

	Variable	Iteration	Mean	Std. dev
		0	0.0809	0.01
	C s,D (% per wt. of concrete)	1 2 3 4	0.0803 0.0799 0.08 0.0801	0.0078 0.0069 0.0065 0.0064
		5	0.0802	0.0064
		0	4.91	2.8
		1	5.66	2.5
	D o	2	6.38	2
	(×10 -10 m 2 /s)	3	6.75	1.7
		4	6.81	1.5
		5	6.75	1.3
		0	0.804	0.14
		1	0.844	0.11
	n D	2 3	0.879 0.894	0.075 0.053
		4	0.898	0.044
		5	0.9	0.038

Table 6 .

 6 Log likelihood test for the identified random variables.

	Variable	Distribution	Log likelihood
		Normal	834.63
	C s,D	Lognormal	836.47
	(/wt. of	Weibull	825.00
	concrete)	Gamma	835.91
		Beta	835.91
		Normal	2092.18
	D o (m 2 /s)	Lognormal Weibull Gamma	2093.37 2089.73 2093.43
		Beta	2093.44
		Normal	195.47
		Lognormal	195.42
	n D	Weibull	189.60
		Gamma	195.46
		Beta	190.70
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