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1 INTRODUCTION

Free inflation of hyperelastic cylindrical membranes has been extensively examined in
the past. For infinite cylinders, some authors developed analytical solutions [1, 2]. In
the case of finite cylinders, numerical procedures have to be used: governing equations
reduce to a two-point boundary value problem of a system of ordinary differential equa-
tions [3]. Some authors used initial-value problem type procedures coupled with shooting
algorithms [4]. Such methods reveal limitations and often fail. More recently, the finite
element method with iterative solvers such as the Newton-Raphson algorithm were im-
plemented [5]. Moreover, it is well-known that inflation of non-linear elastic membranes
exhibits unstable behaviour due to the presence of both limit and bifurcation points [6, 7].
Thus special path-following techniques have to be developed to detect these points and
to predict post-bifurcation behaviour [8, 9].

In the recent past, some structural mechanical studies were carried out with the help of
spline functions. Due to their smoothness and continuity properties, spline functions offer
great advantages compared with classical interpolation methods [10]. The two first works
which report on the use of spline interpolation are due to Shik [11] and Cheung et al. [12].
Later, Gupta et al. [13], and Vermeulen and Heppler [14] analyzed the static behaviour
of shells with cubic B-splines. More recently, dynamics characteristics of beams [15] and
plates [16] are examined.

In the general context of spline functions in structural mechanics, the present paper
reports a first attempt to model large deformations of hyperelastic membranes by B-
splines interpolation. In the next section, the problem is presented. Governing equations
of the inflation problem are briefly recalled. The rubberlike behaviour of the membrane is
described by the classical Mooney-Rivlin model. Section 3 presents the B-splines definition
and highlights the interpolation of the membrane. Some differentiation properties are
proposed. The two next sections focus on the numerical procedure. In section 4 the
interpolation is used to build the out of balance force vector and the numerical method
which coupled the Newton-Raphson algorithm with the arc-length continuation method
is examined in section 5. Last, the method efficiency is illustrated with some numerical
examples.

2 GOVERNING EQUATIONS

Consider the axisymmetric deformations of a cylindrical membrane of non-uniform
radius and uniform thickness in the undeformed state. The membrane is composed of
homogeneous, isotropic, incompressible elastic material and undergoes large strains. By
definition the membrane offers no moment or transverse shear resistance and the thickness
is considered much less than any radius of curvature. In this context the geometry is
described by the cylindrical coordinates systems (r0, θ0, z0) and (r, θ, z) in the undeformed
and deformed states respectively. Due to the symmetry there is no dependence on θ0,
i.e.: θ = θ0. Undeformed coordinates r0 and z0 are imposed functions of arc-length
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coordinate s and a particle originally at r0(s), z0(s) is positioned at (r(s), z(s)) in the
deformed configuration. Respective thicknesses are denoted h0 and h(s). The membrane
is subjected to an imposed internal inflation pressure p.

Due to axial symmetry, principal stretch directions remain constant and coincide with
the meridian, the circumference and the normal to the surface of the deformed mem-
brane [3]. The corresponding principal stretch ratios are given by:

λ1 =

√
r′2 + z′2

r
′2
0 + z

′2
0

, λ2 =
r

r0
, λ3 =

h

h0
(1)

in which the prime denotes differentiation according to s. The outward normal to the
surface of the deformed membrane n is:

n =




z′√
r′2 + z′2

− r′√
r′2 + z′2


 (2)

Considering that the reference configuration is well-known, we formulate the equilib-
rium equation in a variational form [8] with reference to the undeformed configuration for
internal forces (Lagrangian approach). Noting u the displacement vector and δu a virtual
displacement vector, and using the Principle of Virtual Work the residual R(u, δu, p) is
written as follow:

R(u, δu, p) =

∫
B0

δE : S dV −
∫

∂B
δu pn dS (3)

in which B0 is the undeformed volume, ∂B is the deformed surface, and E and S are re-
spectively the Green-Lagrange strain tensor and the second Piola-Kirchhoff stress tensor.
The Green-Lagrange principal strains can be written in terms of principal stretch ratios:

Ei =
λ2

i − 1

2
i = 1, 3 (4)

The first term on the right-hand side of (3) is the virtual work of internal loads and the
second term stands for the virtual work of deformation dependent external loads. It is
defined on the current deformed configuration. The equilibrium equation yields:

∀ δu R(u, δu, p) = 0 (5)

In this paper we study the inflation of rubberlike membranes. The corresponding
material behaviour is considered hyperelastic and we examine the highly used Mooney-
Rivlin model [17]. The corresponding strain energy function W is expressed as:

W = C [(I1 − 3) + α (I2 − 3)] (6)
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where C and α are material parameters, and I1 and I2 are the first and second strain
invariants respectively. In terms of principal stretch ratios and using the incompressibility
assumption λ1λ2λ3 = 1, strain invariants can be written as:

I1 = λ2
1 + λ

2
2 +

1

λ2
1λ

2
2

(7)

I2 =
1

λ2
1

+
1

λ2
2

+ λ2
1λ

2
2 (8)

As the material is isotropic S and E are coaxial tensors: principal stress directions coincide
with principal strain directions. Principal stresses are denoted Si with i = 1, 3 and are
functions of principal stretch ratios [18]:

Si = −ph
1

λ2
i

+ 2C

(
1− α 1

λ4
i

)
(9)

where ph is the hydrostatic pressure due to incompressibility. As the membrane is in a
plane stress state, the hydrostatic pressure can be eliminated by using:

S3 = 0 (10)

and the two first principal stresses becomes:

S1 = 2C

[(
1− 1

λ4
1λ

2
2

)
− α

(
1

λ2
1

− λ2
2

)]
(11)

S2 = 2C

[(
1− 1

λ2
1λ

4
2

)
− α

(
1

λ2
2

− λ2
1

)]
(12)

Finally, using geometrical definitions (1), the virtual work difference (3) can be casted
in the following form:

R(u, δu, p) =

∫ l0

0

2 π (δE1 S1 + δE2 S2) r0 h0 ds

−
∫ l

0

2 π p (δur z
′ − δuz r

′)
r√

r′2 + z′2
ds (13)

in which l0 an l represent respectively the undeformed and deformed lengths of the cylin-
der, δur and δuz are virtual displacements in radial and axial directions.

3 B-SPLINES INTERPOLATION

3.1 Definition

A spline of degree N is a piecewise CN−1 continuous function composed of polynomial
segments defined on each interval of a set of n + 1 knots ξ0, . . . , ξn. In the present paper
cubic B(asic)-splines are considered (N = 3).
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Thus a spline S(ξ) is a linear combination of B-spline functions:

S(ξ) =
n+1∑
i=−1

Bi(ξ)Vi (14)

in which (Vi)i=−1,n+1 are the spline parameters and Bi(ξ) are n+ 2 polynomial functions
build on the set of knots and defined by:

Bi(ξ) =




(ξ−ξi−2)3

(ξi+1−ξi−2)(ξi−ξi−2)(ξi−1−ξi−2)
ξi−2 ≤ ξ < ξi−1

(ξ−ξi−2)2(ξi−ξ)

(ξi+1−ξi−2)(ξi−ξi−2)(ξi−ξi−1)
+

(ξi+1−ξ)(ξ−ξi−1)(ξ−ξi−2)

(ξi+1−ξi−1)(ξi−ξi−1)(ξi+1−ξi−2)

+
(ξ−ξi−1)2(ξi+2−ξ)

(ξi+1−ξi−2)(ξi−ξi−1)(ξi+2−ξi−1)

ξi−1 ≤ ξ < ξi

(ξi+1−ξ)2(ξ−ξi−2)

(ξi+1−ξi−2)(ξi+1−ξi−1)(ξi+1−ξi)
+

(ξi+2−ξ)(ξi+1−ξ)(ξ−ξi−1)

(ξi+2−ξi−1)(ξi+1−ξi−1)(ξi+1−ξi)

+
(ξi+2−ξ)2(ξ−ξi)

(ξi+2−ξi−1)(ξi+2−ξi)(ξi+1−ξi)

ξi ≤ ξ < ξi+1

(ξi+2−ξ)3

(ξi+2−ξi−1)(ξi+2−ξi)(ξi+2−ξi+1)
ξi+1 ≤ ξ < ξi+2

(15)

In this definition, if j ≤ 0 then ξj = ξ0 and if j ≥ n then ξj = ξn. In these special cases,
some denominators can be equal to 0 and we adopt the convention 0/0 = 0 to keep valid
the definition. Figure 1 shows the basic functions (15) for a set of ten equidistant knots.

0 1
ξ

0

0.5

1

B
i(ξ

)

B10(ξ)

B11(ξ)

B4(ξ)B3(ξ)
B2(ξ)

B1(ξ)

B0(ξ)

B9(ξ)
B8(ξ)B7(ξ)B6(ξ)B5(ξ)

Figure 1: The twelve basic polynomial functions built on a set of ten knots

3.2 Membrane interpolation

The membrane is discretized in m subintervals. Boundaries of these intervals are
called nodes (similar to the classical finite element method) and are noted (N j)j=0,m.
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Coordinates of the nodeN j are noted rj0, z
j
0. The coordinates of the undeformed membrane

material points are interpolated on cubic B-splines basis:

r0(ξ) =

n+1∑
i=−1

Bi(ξ)αi (16)

z0(ξ) =

n+1∑
i=−1

Bi(ξ) βi (17)

where (αi)i=−1,n+1 and (βi)i=−1,n+1 are the parameters (similar to Vi in Eq. (14)) for radial
and axial coordinates respectively, and ξ is defined in the undeformed state as:

ξ =
s

l0
for 0 ≤ s ≤ l0 (18)

In order to determine parameters in an unique manner, n + 3 linearly independent
equations are required. Interpolation at each node provides m + 1 equations. Moreover,
mechanical aspects should be taken into account: boundary conditions relative to angles
or moments at membrane extremities give two additional equations. Then the number of
knots must be set equal to the number of nodes: m = n. In this work, the coordinate of
the iiest knot, ξi, is set equal to s(N

i)/l0. In the case of cylindrical membrane, boundary
conditions used to calculate parameters are of the natural end type [19]:

d2r0
dξ2

(0) =
d2r0
dξ2

(1) = 0 and
d2z0
dξ2

(0) =
d2z0
dξ2

(1) = 0 (19)

Figure 2 presents an example of a B-spline interpolation for ten nodes. The spline bound-
ary conditions are similar to those in Eq. (19). Note that the first and the second deriva-
tives of the spline are continuous.

0 1
ξ

S(ξ)
S’(ξ)

S’’(ξ)

Figure 2: A B-spline interpolation S(ξ), its first derivative S′(ξ) and its second derivative S′′(ξ) with
natural end boundary conditions
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Equations (19) can be directly injected in the splines definition (16), (17) and interpo-
lations become:

r0(ξ) =
n∑

i=0

B̄i(ξ)αi (20)

z0(ξ) =

n∑
i=0

B̄i(ξ) βi (21)

in which (B̄i(ξ))i=0,n are linear combinations of the previous (Bi(ξ))i=−1,n+1.
As in the FEM, our spline finite element is considered isoparametrical:

ur(ξ) =
n∑

i=0

B̄i(ξ) γi (22)

uz(ξ) =

n∑
i=0

B̄i(ξ) δi (23)

where (γi)i=0,n and (δi)i=0,n are spline parameters associated with radial and axial dis-
placements respectively. Therefore, the deformed membrane material points coordinates
are interpolated by:

r(ξ) = r0(ξ) + ur(ξ) =

n∑
i=0

B̄i(ξ) (αi + γi) (24)

z(ξ) = z0(ξ) + uz(ξ) =
n∑

i=0

B̄i(ξ) (βi + δi) (25)

(26)

Finally, all parameters can be calculated using the following relations:

ri0 =

n∑
j=0

Aijαj (27)

zi
0 =

n∑
j=0

Aijβj (28)

ui
r =

n∑
j=0

Aijγj (29)

ui
z =

n∑
j=0

Aijδj (30)

where ui
r and ui

z are radial and axial displacement of node i, and Aij = B̄j(ξi) for i = 0, n
and j = 0, n.
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3.3 Properties

Noting A the matrix containing the terms Aij and A−1 its inverse, useful derivative
formulae can be established:

∂r

∂ui
r

(ξ) =

n∑
j=0

B̄j(ξ)A
−1
ji = Di(ξ)

∂r

∂ui
z

(ξ) = 0 (31)

∂z

∂ui
r

(ξ) = 0
∂z

∂ui
z

(ξ) =
n∑

j=0

B̄j(ξ)A
−1
ji = Di(ξ) (32)

∂ṙ

∂ui
r

(ξ) =

n∑
j=0

˙̄Bj(ξ)A
−1
ji = Ḋi(ξ)

∂ṙ

∂ui
z

(ξ) = 0 (33)

∂ż

∂ui
r

(ξ) = 0
∂ż

∂ui
z

(ξ) =
n∑

j=0

˙̄Bj(ξ)A
−1
ji = Ḋi(ξ) (34)

in which the dot stands for differentiation with respect to ξ, and (Di(ξ))i=0,n and (Ḋi(ξ))i=0,n

are functions which have to be computed only once.

4 B-SPLINE ELEMENT FORMULATION

Using the previous interpolation, we define the out of balance force R(U, p) by:

R(u, δu, p) = δUT R(U, p) (35)

with:

R(U, p) = Fint(U)− Fext(U, p) (36)

in which Fint and Fext are respectively vectors of internal and external forces, and U is
the nodal displacements vector which contains (ui

r, u
i
z)i=0,n. The equilibrium equation (5)

becomes:

R(U, p) = 0 (37)

The internal forces vector is given by:

Fint(U) =

∫ l0

0

2 π r0 h0

[
S1

{
∂E1

∂U

}
+ S2

{
∂E2

∂U

}]
ds (38)

and the deformation dependent external forces vector can be written as:

Fext(U, p) =

∫ l

0

2 π p
r√

r′2 + z′2

[
z′

{
∂ur

∂U

}
− r′

{
∂uz

∂U

}]
ds (39)
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As mentioned earlier, all terms in Eqs (38) and (39) are completely determined by the
B-spline interpolation.

From the differentiation of Eq. (36) with respect to the nodal displacement vector, the
tangent stiffness matrix is defined by:

Kt = Kt
int − Kt

ext =
∂Fint

∂U
− ∂F

ext

∂U
(40)

where Kt
int and Kt

ext are the tangent stiffness matrices given by differentiation of the
internal and external vectors respectively.

All the previous expressions are analytically evaluated by using the differentiation chain
rule and the relations of paragraph 3.3.

5 NUMERICAL SOLUTION

Spatial integration of vectors and matrices is performed by a simple Simpson’s method.
Faster methods will be studied in further work to improve our program.

The previous problem (37), (38) and (39) is highly non-linear, because of large strains
and non-linearity of the constitutive equation. External forces vector depends on the
current configuration, therefore it has to be calculated in each step. Moreover, such
problem exhibits numerical difficulties because of the presence of bifurcation or limit
points [6]. Some authors used manual control of the loading variable [20] but it is not
as efficient as an automatic continuation method. In this study, a combination of the
classical Newton-Raphson method and the arc-length method [21] is used to solve the
problem. A similar method was successfully implemented in the case of the classical finite
element method [9].

Denote Ue and pe an equilibrium point obtained on a previous loading step. In order
to find a new equilibrium configuration, the problem consists in finding both displacement
and pressure increments ∆U and ∆p that satisfy simultaneously the following equations:

R(Ue +∆U, pe +∆p) = 0 (41)

A(∆U,∆p) = 0 (42)

where A is the arc-length constraint defined by:

A(∆U,∆p) =
(‖∆U‖2 + ψ2‖∆Fext‖2

) − da2 (43)

in which ∆Fext is the loading increment, ψ is a scale factor between displacement and
force, and da an user-defined arc-length. Here ψ is set to zero and the arc-length method
reduces to the classical displacement control method [22]. Using the Newton-Raphson
algorithm, equilibrium points are obtained by iterations using the tangent stiffness matrix
defined earlier (40). Consider the algorithm at the kiest iteration. Next values of R, A,

9
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∆U and ∆p are calculated by:

Rk = Rk−1 + Kt dU − dp f ext = 0 (44)

Ak = Ak−1 + 2∆UT
k−1 dU = 0 (45)

∆Uk = ∆Uk−1 + dU (46)

∆pk = ∆pk−1 + dp (47)

where dU and dp are changes of displacement and pressure increments to apply in the
next iteration, and f ext is the reduced external forces vector defined by:

f ext(U) =
1

p
Fext(U, p) (48)

Due to the follower force the tangent stiffness matrix is non-symmetric. Thus the arc-
length constraint equation (45) can be considered as a bordered equation [23] of Eq. (44)
without changing the nature of the resolution algorithm. Therefore, dU and dp are the
solutions of the extended following system:[

Kt −f ext

2∆UT
k−1 0

]{
dU
dp

}
= −

{
Rk−1

Ak−1

}
(49)

The present scheme is initiated by the forward-Euler tangential predictor solution [24].

6 NUMERICAL EXAMPLES

In order to illustrate our method, some numerical examples are examined. In these
examples, only uniform radius cylinders are considered. Non-uniform cases may have an
influence on non-linear deformations and deserve further studies. In order to simplify the
discussion the results are presented in terms of dimensionless quantities. The aspect ratio
and the inflation parameter are respectively noted AS and IP , and defined by:

AS =
l0
2r0

IP =
r0 ∆p

2Ch0

(50)

The dimensionless maximum radius at the middle of the cylinder is given by:

Rmax =
r(s = l/2)

r0(s = 0)
(51)

6.1 Influence of the aspect ratio

In order to compare our results with those of Khayat et al. [25], this study is restricted
to the neo-Hookean material i.e.: α = 0 in Eq. (6). Figure 3 presents the inflation
parameter as a function of the maximum radius for three values of the aspect ratio. Our
results are similar to those previously obtained [25]. As in the classical spherical case,
neo-Hookean cylinders exhibit a maximum pressure for all geometries. At this maximum
value, IP starts decreasing as Rmax continues to increase. As it could be expected, it can
be observe that long cylinders are easier to inflate than short ones.
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Rmax

1 2 3 4 5 6 7 8

I P

0,0

0,5

1,0

1,5

2,0

2,5

3,0

AS = 0.5

AS = 1.0

AS = 2.5

Figure 3: Inflation parameter versus maximum radius for different aspect ratios (neo-Hookean material)

6.2 Influence of the Mooney parameter

In this study the aspect ratio is set to 5 and the inflation of uniform radius cylinders
is examined for different values of the Mooney parameter α. Figure 4 shows the inflation
parameter versus the maximum radius in these cases. Behaviours of cylindrical mem-

Rmax

1 2 3 4 5

I P

0,0

0,5

1,0

1,5

2,0

α = 0.

0.10

0.20

0.35

0.50

Figure 4: Inflation parameter versus maximum radius for different Mooney parameters (AS = 5)
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branes are similar to those corresponding to the inflation of spherical membranes [26]. As
mentioned earlier, for a neo-Hookean membrane the curve presents a maximum pressure.
As α increases, this maximum value tends to disappear: curves corresponding to α = 0.1
and α = 0.2 have both a local maximum and a local minimum pressures, and curves with
α = 0.35 and α = 0.5 grow monotonically. For values of α different from 0, our results
are similar to those of Khayat et al.. However for α = 0 the results slightly differ: our
curve decreases faster than the curve they obtained. As the neo-Hookean inflation of long
cylinders without pre-stretching is recognized as a critical case [6], this difference might be
due to boundary conditions. In the paper cited above, the evolution of the mid-cylinder
radius is imposed as one of the boundary condition of the system of differential equations.
In the present work, the value of Rmax is not imposed as a boundary condition: with the
arc-length constraint, both the maximum radius and the pressure are calculated to ensure
equilibrium.

6.3 Inflation profiles

Finally, two inflation profile evolutions are shown in Figure 5 for α = 0 and α = 0.2. In
both cases, the aspect ratio is equal to 5. In the neo-Hookean case (α = 0), the profiles are

r0, r

0,5 1,0 1,5 2,0 2,5 3,0

z 0
, z

-5

-4

-3

-2

-1

0

1

2

3

4

5

IP = 0

0.65

0.84

0.76

0.72

α = 0

r0, r

0,5 1,0 1,5 2,0 2,5 3,0 3,5

z 0
, z

-5

-4

-3

-2

-1

0

1

2

3

4

5

IP = 0

0.78

1.11

1.08

α = 0.2

Figure 5: Inflation profiles of cylinders with AS = 5 for different values of IP
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regular until IP reaches the maximum pressure 0.84. In the second part of the inflation,
IP monotonically decreases and simultaneously a bulge develops in the mid-cylinder. This
bulge never disappears. Similar observations are made by Khayat and Derdouri [27] for
the same cylinder, and by Verron et al. [28] for an ellispoidal plane membrane. In both
references, authors use the classical finite element method. In the case of α = 0.2, the
membrane inflates regularly and profiles are dome-like shape for all values of the inflation
parameter.

7 CONCLUDING REMARKS

In this paper, the B-splines interpolation method is successfully used to model the
axisymmetrical inflation of cylindrical rubberlike membranes. The numerical implemen-
tation does not present major difficulties and it highly reduces the number of degrees of
freedom needed to obtain a good description of the membrane, thanks to the continuity of
both B-spline functions and their derivatives. Moreover the use of the Newton-Raphson
algorithm coupled with an arc-length method considered as a bordered equation ensures
convergence of the scheme even in the vicinity of limit points.

As a perspective, further works are in progress on the B-splines boundary conditions to
model the case of circular membranes with ends on the symmetry axis. The main goal of
this approach remains the developments of small size models which will be associated with
optimization procedures to determine rubberlike material parameters using experimental
bubble inflation results [18].
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