Keywords: wire rope, fiber, aramid, analytical model, FEM, testing

This study deals with the modeling of the static behavior of synthetic wire ropes. The objective is the determination of the validity domain of two analytical models (Costello and Labrosse) used to predict the overall axial stiffness. First investigations have been performed for isotropic material. The results of the two analytical models are compared with a three-dimensional finite element cable model, using a non-dimensional analysis. Next, Labrosse's model is extended for synthetic fibers rope applications. Tests performed to obtain experimental stiffness measurements are then presented. Finally, predicted stiffness is compared to test results thus validating the analytical approach.

INTRODUCTION

Synthetic spiral stranded cables, which are often composed of steel chain at the ends and a central synthetic fiber rope, are increasingly finding applications as offshore oil exploration goes to deeper sites. It is well known that a main advantage of such elements is their ability to support large axial load with comparatively small bending or torsion stiffness. It is therefore essential to be able to model the mechanical behavior of very long mooring lines. Large synthetic ropes are assemblies of millions of fibers. The rope is made up of strands, which are obtained from twisted yarns, where each yarn is made of parallel fibers, see [START_REF] Leech | The modelling of friction in polymer fiber ropes[END_REF]. In this work, the case of a synthetic fiber (aramid) is considered.

Several analytical models are available to predict the mechanical behavior of simple straight strand cables subjected to axial loads. The first approach only incorporates effects associated with tension, the bending and torsion stiffnesses of the wires being neglected. Such developments have been performed by Hruska (1951Hruska ( ,1953) ) and by [START_REF] Knapp | Nonlinear Analysis of a Helically Armored Cable With Nonuniform Mechanical Properties in Tension and Torsion[END_REF] for a rigid core. More recent and complex analytical models are based on beam theory assumptions: the behavior of wires is described using Love's curved beam equations. Following this approach, [START_REF] Machida | Response of a Strand to Axial and Torsional Displacements[END_REF] have studied the effects of the bending and torsion stiffness of individual wires on the cable stiffness matrix. [START_REF] Knapp | Derivation of a new stiffness matrix for helically armoured cables considering tension and torsion[END_REF] studied the effect of variations in core radius. This approach, primarily devoted to soft core cables, can also be applied to more rigid core structures. Costello and Philips (1976) presented a general non-linear theory for a layer of helical wound wires without core, which included the effects of radius and helix angle variations. This formulation leads to a set of non-linear equations. A more recent paper by [START_REF] Philips | Analysis of Wire Rope With Internal-Wire-Rope Cores[END_REF] presents a solution of the same theory applied to multi-layered cables. [START_REF] Kumar | Closed-Form Analysis for Elastic Deformations of Multilayered Strand[END_REF] have developed a linearized form of this theory, leading to a closed-form expression for axial stiffness coefficients. Recently, Costello (1997) presented a theory including the effects of curvature and twist variations. Finally, [START_REF] Labrosse | Contribution à l'etude du rôle du frottement sur le comportement et la durée de vie des câbles monocouches[END_REF] presented a new analytical approach to predict the overall behavior of isotropic cables subjected to bending, tension and torsion.

Another approach for multi-layered spiral strands consists in modeling each layer as an equivalent orthotropic sheet (Hobbs and Raoof (1982), [START_REF] Raoof | The analysis of multilayered structural strands[END_REF]). Therefore, the accuracy of this model grows when the number of wires in a given layer increases. Leech et al. (1993), presented a quasi-static analysis of fiber ropes and included it in a computer program. Their analysis is based on the principle of virtual works and can take into account friction effects. The program computes tension and torque from their dependence on elongation and twist.

The present study deals with the modeling of the axial behavior of synthetic ropes. The structures considered are simple straight strand cables consisting of six helical wires wrapped around a straight core. The loading consists of an axial force and a torque. The small strain hypothesis is assumed. The overall linear static axial behavior of such cables exhibits coupling between tension and torsion phenomena and thus can be expressed using a 2×2 stiffness matrix. The objective of this work is the determination of the validity domain of the two analytical models developed by Costello and Labrosse for the predictions of the corresponding four stiffness matrix components.

The study of the validity domains of these two analytical formulations is performed in two steps: in a first part, the constitutive material is assumed to be Hookean. Reference results are obtained from a three-dimensional finite element (FE) cable model. The study is carried out for wire helix angle varying between 2.5 and 35°: the stiffness matrix terms are calculated using the two analytical models and compared with the FE model results. The values are post-processed using a general non-dimensional form. Next, Labrosse's model is modified to take into account anisotropy. For synthetic rope, this model is then compared with first experimental results. Some details of experimental data obtained on aramid strands and ropes are given. The accuracy of the analytical model and its validity domain are then discussed.

CABLE OVERALL BEHAVIOR

Let us consider a single straight strand cable made of six helical wires wrapped around a straight core as illustrated in Fig. 1. The geometry is characterized by the core radius , the wires radius , and the helical angle α measured with respect to the cable z-axis. The wires centerline is then an helical curve of radius :
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It can be noticed that the wire cross-sections are approximately elliptical in the x-y plane at lay angle smaller than about 20° (see Fig. 1). Therefore, the pitch length denoted by P can be calculated using the following expression:
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The axial behavior of such a cable exhibits coupling between tension and torsion due to the helical design of the wires. Thus, the overall behavior for linear elastic small deformation can be expressed in the form : 
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The following assumptions are made for both models :

• Displacements and strains are supposed to be small.

•

Strains and friction effects due to contact between core and wires are neglected.

Costello's Model

Costello's theory (1997), based on Love's curved beam equations, takes into account the effects of radius and helix angle variations, as well as wire bending and torsion moments. The equilibrium is expressed using a set of non-linear equations which is also valid for large deflection. In the case of wire rope, it is assumed that change in helix angle is small. It follows that the cable axial strain and twist , as well as changes in curvature and twist per unit length in each wire are linearized with respect to .
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Each wire section is characterized by its area , its moment of inertia and its torsional rigidity . The core and wires characteristics are denoted using subscripts c and respectively. Considering the development detailed in Costello (1997), the relationships for each wire may be written as: Projecting on the cable axis and summing for all the wires, one gets :
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The stiffness matrix is obtained in two steps. First, we let and , and calculate and through Eqs. (4-5), which leads to and from Eq. ( 3). In the same way, and will be obtained by setting and .
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It should be noted that no closed-form expressions are available for the cable stiffness matrix coefficients. Moreover, the stiffness matrix symmetry is lost.

Labrosse's Model

Labrosse (1998) presented an analytical model for a cable subjected to bending, tension and torsion loadings. In this approach, the wires are also studied as curved beams, and the changes in curvature and twist of the wires are assumed to be negligible. The axial force, bending moments and torque on a cable cross section, as well as the inter-wire efforts are expressed as a function of the cable strains and derivative of the inter-wire slippage. The influence of relative inter-wire motions on the cable overall response has been discussed in [START_REF] Labrosse | Contribution à l'etude du rôle du frottement sur le comportement et la durée de vie des câbles monocouches[END_REF], and [START_REF] Nawrocki | A finite element model for simple straight wire rope[END_REF]. All the possible cases of inter-wire contacts have been studied, and the results demonstrate that rolling and sliding have no influence on the overall behavior in axial loading. Moreover, the comparison with experimental shows that the pivoting has to be considered as free. It is therefore possible to describe the kinematics of the cable section as a function of the degrees of freedom of the core. The behaviour of the cable can thus be deduced from the behaviour of its constituents. Closed-form expressions are then obtained for the stiffness matrix components:
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Therefore, this model leads to a symmetric matrix.

VALIDITY DOMAINS FOR HOOKEAN CABLE

This first step has consisted of evaluating the validity domains of Costello and Labrosse's analytical models for cable helix angle varying between 2.5 and 35°. In this approach, the constitutive material is assumed to be Hookean.

FE Model

The simple straight strand cable structure has been computed using Samcef FE code. The geometry of the core has been obtained by a linear z-axis extrusion. Each wire has been generated by the extrusion of a circular surface along an helical curve corresponding to the centroidal line of the wire. As shown in Fig. 2, each wire section consists of twelve finite elements (six 11-node and six 16-node solid elements).

The applied boundary conditions are defined as follows:

•

One end-section of the cable is fully clamped.

•

At the other end-section, the wires and the core nodes are linked using rigid body elements connected to a master node located at the cross-section center. • On this master node, the transverse loads and bending moments are prescribed to zero.

The stiffness coefficients are computed in four successive steps corresponding to different loading conditions in tension and torsion on the master node, the cable strains being calculated from the master node axial displacement and rotation :

•

: an axial load is applied while the rotation angle is prescribed to zero. Preliminary tests, performed for models of lengths between two and ten pitches, have demonstrated that the overall axial response is not influenced by end effects. Thus, the results detailed in next paragraph have been obtained for FE model consisting (for each value of the helix angle α) of only two pitch lengths modeled.

The structures considered are "6+1" cables having wires touching each other as illustrated in Fig. 2. [START_REF] Huang | Finite extension of an elastic strand with a core[END_REF] has shown that even if the wires are in radial contact in the undeformed state, they tend to separate while loading. In a preliminary study, the influence of inter-wire contact conditions between the wires and the core has been examined for two limit cases: sliding without friction and merging. These contact conditions have been applied for nodes situated on the helical lines of contact between core and wires. The results obtained show that the static overall behavior is not sensitive to these modeling hypotheses.

Therefore, for the present study, the contact nodes are merged. 

Results and discussion

Numerical tests have been performed for helix angle varying between 2.5 and 35°. The stiffness matrix terms k characterizing the overall behavior have been calculated using the two analytical models with the ij FE model considered as a reference. Moreover, the stiffness coefficients obtained have been post-processed using the following general non-dimensional matrix form deduced from Eq.(3):
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where the reduced loading components are defined by:
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The non-dimensional stiffness terms are then expressed as follows: ). As can be seen, these results exhibit similar tendencies, the evolutions of the analytical coefficients appear to be similar to the FE ones. Moreover, the deducted ij k values are in good agreement for helix angle values below 20°. The relative differences between analytical and FEM results are then always less than 10 %. Nevertheless, the discrepancies grow rapidly and significantly for α values beyond 20°. These differences are then substantial (up to 45 %) especially for the coupling terms εθ k and θε k .
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Considering these results, it may be noted that the prediction of axial stiffness coefficients using the analytical formulations appears to be reliable for helix angle less than 20°. The stiffness values deduced from the models of Costello and Labrosse are then very close, and lead to small differences compared with the FEM reference results. It should also be noted that the synthetic cables under consideration for the present study have helix angles situated between 5 and 15°. Due to its general beam formulation leading to closed-form expressions for k , Labrosse's model has been chosen for synthetic cable stiffness analysis and will be applied in the following paragraphs. 

EXTENSION OF LABROSSE'S MODEL

Let us now consider a "6+1" stranded synthetic fiber rope. The aim is to extend the Labrosse's model for such applications. Due to the hierarchical structure of large synthetic ropes, the sub-ropes are not homogeneous, and are themselves formed from "6+1" strands, see Fig. 4. However, at the rope level, the sub-ropes (strands) may be considered as homogeneous, provided that their behavior takes into account their substructure. For fiber strands, the bending stiffness is assumed to be small compared to the axial stiffness, so that the overall behavior is of the form (3), in a local axis system, the axial direction being tangent to the centroidal line helix. In that way, each wire can be considered as an anisotropic curved Love beam, and following the Labrosse's approach, the wire rope behavior equation becomes: 
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EXPERIMENTAL STUDIES

Experimental studies have been performed at all scale levels. Tensile tests at single fiber and yarn, level give an indication of the material behavior without the effects of twist and construction. Chailleux (2003) has used yarn tests to identify the intrinsic viscoelastic and viscoplastic behaviour of the aramid fibers used in the present study ( Twaron 1000, tex = 336 g/Km). These results are available elsewhere and will not be discussed further here.

In order to provide data for correlation with the models, tests have been performed on strands taken from a 25 ton break load rope, on the rope itself (several test specimens were characterized) and on one large 205 ton break load rope with the same "6+1" construction. All the ropes have a design similar to that shown in Fig. 4 and were made with the same aramid fiber grade. Table 1gives the construction details for the 25 ton synthetic rope. Loads were introduced via resin-filled metallic cones for the strand and splices for the ropes.

The tests on strands and small ropes were performed on the 100 ton test frame at the IFREMER Center in Brest. This allows specimens up to 8 meters long to be loaded using a hydraulic piston. Fig. 5 shows the test frame. 5. 100 ton capacity test frame, test on rope.
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In order to provide reliable results great care is needed during testing, particularly concerning the following points:

extensometry load measurements test procedure. The extensions were measured by three measuring systems:

wire transducers attached to the cable, -two digital cameras an LVDT measuring piston displacement. The first two measure the true strain in the central part of the rope (away from the splices) and give similar results, as shown in Fig. 6. They allow the stiffness measurements to be checked. For tests to failure only the camera based system can be used. The piston displacement is recorded but not used in stiffness determination as it includes splice, end loop and rope displacements. Force measurements are made using a load cell. For tests on ropes a 100 ton load cell is fixed to the end of the piston. For tests on strands a smaller 20 ton load is fixed to the other end of the test frame. Load cells are checked annually by the Bureau Veritas. The test procedure includes a preliminary bedding-in loading of 5 cycles to 50% of the nominal break load, followed by either loading to failure, cycling or creep tests. For the large ropes additional cycles between 10 and 30% of the break load were performed but measurements showed that these further cycles resulted in less than a 1% change in the initial stiffness for this aramid material so these were not retained for the smaller ropes. This initial stabilization of the rope removes bedding-in strain but also results in an internal molecular realignment of the fibers. Fig. 7 shows an example of strains measured during the bedding-in cycles of a 25 ton break load rope. It is clear that without a consistent bedding-in procedure significant variations in stiffness can be measured.

Examples of the results from tests on bedded-in strands and rope are shown in Fig. 8. All the tests described above were performed in tension with fixed ends. Tests were also run on strands with a constant length and an applied twist, measuring the axial force variation. Fig. 9 shows an example of results. This enabled the coupling term , to be determined.
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The tests on the large rope were performed at the Laboratoire des Ponts et Chaussées (LCPC) in Nantes on a 3000 ton capacity test frame. Fig. 10 shows the rope in place. Tests were performed over several days and included stiffness measurements at various mean loads and amplitudes. More details have been given elsewhere (Davies 2002). An example of the results from the large rope tests is shown in Fig. 11. The results are plotted as N/tex (tex is the rope weight in grams per km) so that results at different scales can be compared directly. This shows that in the initial region the stiffness of the two ropes are quite similar, while at higher loads the bigger rope appears stiffer.

COMPARISON BETWEEN PREDICTION AND TESTS

It should be noted that to model a new, unconditioned rope, it would be necessary to account for component shape change [START_REF] Leech | The modelling of friction in polymer fiber ropes[END_REF]). In order to avoid this here all ropes were bedded-in by cycling to 50% break load before taking measurements.

From the tests on the strands (core and outer wires tested separately) the following stiffness were measured :

(outer strands)= 1500 kN ± 10% w k εε (core) = 1770 kN ± 10% c k εε = 2 kN.m ± 3% w k εθ
For the 25T rope test the axial stiffness , was determined in the range from 30 to 90 kN to be 8610 kN ±5%. For the same test the lay angle of the outer strands after bedding-in was measured by image analysis to be 13.5° ± 1°. The value of (see Fig. 4) is 6.57 mm. The strand stiffness then enable a prediction to be made of the rope stiffness using the modified model (Eq. ( 11 So far all the tests performed have concentrated on the axial stiffness by testing cables with fixed end loading conditions. However, a small number of tests have shown that there is measurable tensiontorsion coupling in these ropes. In order to determine the other coefficients and to compare them with predicted values a test program is currently underway. 

Fig. 1 :

 1 Fig.1: Geometry of a "6+1" stranded cable

  represent changes in curvature and twist per unit length, respectively and is the axial strain in an outer wire.

  Fig.3 details the evolutions of the non-dimensional stiffness coefficients. As underlined previously, only Costello's model leads to non-symmetrical matrix terms ( θε εθ k k ≠). As can be seen, these results exhibit similar tendencies, the evolutions of the analytical coefficients appear to be similar to the FE ones. Moreover, the deducted ij k values are in good agreement for helix angle values
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 3 Fig. 3: Non-dimensional stiffness coefficients.

  Fig. 4. Synthetic rope structureTable. 1. Construction details for 25 ton synthetic rope Radius (mm) Number of yarns ( Twaron 1000 ) Pitch length (mm) Sub-Core 17 . 1 1 = c R 16 rope 1 Wires 17 . 1 1 = w R 16 53 Sub-Core 02 . 1 2 = c R 12 rope 2 Wires 02 . 1 2 = w R 12 92
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 6 Fig.6. Comparison between measurements with wire transducer and image analysis system, test on 25T break load rope.
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 78 Fig.7. Five bedding-in cycles, 25 ton break load rope

  Fig.10. Test on large rope.
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  and this gives a value of 10000 kN ±11%. The comparison is shown graphically below in Fig.12.

Fig. 12 .

 12 Fig.12. Comparison between test and prediction, 25 Ton break load rope.

  has been developed which allows the axial stiffness of a preconditioned synthetic wire rope to be predicted with reasonable accuracy, based on the properties of strands and the measured helix angle. The validity of this model is limited to small helix angles but for typical synthetic rope constructions these are within this range. Preliminary test results are presented and indicate a good correlation for axial stiffness. Further tests to examine tension-torsion and pure torsion loading are underway. REFERENCES Chailleux E, Davies P (2003) "Modelling the non-linear viscoelastic and viscoplastic behaviour of aramid fiber yarns," accepted for publication in Mechanics of Time dependent materials journal. Costello, GA, and Philips, JW (1976). "Effective Modulus of twisted wire cables," J of the Engineering Mechanics Division, ASCE, Vol 102, pp 171_181. Costello, GA (1997). "Theory of wire rope," 2nd ed. New York: Springer, 1997 Davies P, Grosjean F, Francois M, Baron P, Salomon K, Trassoudaine D, (2002). "Synthetic mooring lines down to 3000 meters depth," OTC 14246. Hobbs, RE, and Raoof, M (1982). "Interwire slippage and fatigue prediction in stranded cables for TLP tethers," Behaviour of Offshore Structures, Hemisphere publishing/McGraw-Hill, New York, Vol 2, pp 77-99. Hruska, FH (1951). "Calculation of stresses in wire ropes," Wire and wire products, Vol 26, No 9, pp 766-767. Hruska, FH. "Tangential forces in wire ropes," Wire and wire products, Vol 28, No 5, pp 455-460.
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