

Fiabilité des Matériaux et des Structures 2010 6^{èmes} Journées Nationales de Fiabilité

Approche stochastique pour l'optimisation de l'inspection de structures de béton armé soumises à la pénétration des ions chlorure

Par : E. Bastidas-Arteaga, <u>F. Schoefs</u>, A. Chateauneuf D. Breysse, E. Sheils, A. O'Connor

24-25-26 Mars 2010 - Toulouse

- 1. Introduction
- 2. Modélisation probabiliste des inspections/réparations
- 3. Matrices de transition pour la modélisation de la pénétration des chlorures
- 4. Analyse de coûts
- 5. Exemple numérique

Conclusions

1. Introduction

- Enjeux de la conception et du management des infrastructures :
 - réduction l'impact environnemental,
 - optimisation la gestion des ressources et
 - diminution la production des déchets
- Objectif:
 - développer une méthode pour optimiser les intervalles d'inspection des structures en béton armé soumises à la pénétration des ions chlorure.

2. Modélisation probabiliste des inspections/réparations

- 2.1. Stratégie d'inspection/réparation
- Définie dans le cadre du projet MAREO <u>MAintenance et REparation d'Ouvrages</u> littoraux et fluviaux en béton: <u>Optimisation par analyse de risque</u>
 - maîtres d'ouvrage,
 - entreprises et
 - laboratoires de recherche
- Stratégie
 - 1. Profils de chlorures => carottage
 - 2. Démolition du béton pollué
 - 3. Reconstruction de l'enrobage

2. Modélisation probabiliste de la pénétration des ions chlorure

2.2. Modèle d'inspection

- lnspections périodiques $= \Delta t$ anées
- But => déterminer la concentration des chlorures à la profondeur de l'enrobage C
- Résultat de l'inspection => évaluation bruitée

$$\hat{C} = C + \eta$$

le bruit η

- sans biais
- indépendant de la concentration de chlorures mesurée \hat{C} (Schoefs *et al.* 2009).
- suit une loi normale
- probabilité de détection, PoD :

$$PoD = P(\hat{C} \ge C_{min} | \hat{C} \ge C_{min}) = \Phi\left(\frac{\hat{C} - C_{min}}{\sqrt{\sigma_C^2 + \sigma_\eta^2}}\right)$$

2. Modélisation probabiliste de la pénétration des ions chlorure

2.2. Modèle de réparation

- Critère de réparation => reconstruction quand la concentration des ions chlorure mesurée atteint une valeur seuil C_{th} (dépassivation de l'acier ou initiation de la corrosion)
- Seuil $C_{th} =>$ loi normale (Duracrete, 2000)
- Probabilité d'initiation de la corrosion entre les périodes d'inspection:

$$p_f = \Phi\left(\frac{\overline{C} - C_{th}}{\sigma_{C_{th}}}\right)$$

- Processus de Markov => prédire le futur en sachant l'état présent
- Méthode
 - discrétisation de l'espace de la variable d'intérêt en M états
 - détermination de la matrice de transition P

Chapman-Kolmogorov :

$$\mathbf{q}(t) = \mathbf{q}_{ini} \mathbf{P}^t$$

- Variable d'intérêt => concentration des chlorures à la profondeur de l'enrobage
- Problèmes avec la détermination de P
 - longue durée des essais de pénétration d'ions chlorure
 - grand nombre de mesures nécessaires pour bien représenter le phénomène
- Solution proposée => détermination à partir de simulations de Monte Carlo d'un modèle étendu de pénétration des chlorures

- 3.1. Modélisation de la pénétration des chlorures
- Loi de Fick => Approche numérique (différences et éléments finis)

Avantages

- $C_s \rightarrow variable$
- dépendance de la température, l'humidité et le vieillissement
- béton \rightarrow conditions de non-saturation
- fixation des chlorures
- variables d'entrée → dépendantes du temps, stochastiques
- flux des chlorures en deux dimensions
- conditions de borne \rightarrow Robin

3.1. Modélisation de la pénétration des chlorures

Variables aléatoires de base (Bastidas-Arteaga et al., 2009)

Variable	Unité	Distribution	Moy.	COV
– Coefficient de référence de la	m^2/s	log-normale	$3 \cdot 10^{-11}$	0.20
diffusion des ions chlorure, $D_{c,ref}$				
– Énergie d'activation du processus de	kJ/mol	beta sur [32;44.6]	41.8	0.10
diffusion des ions chlorure, U_c				
Facteur de réduction de l'âge, m		beta sur [0;1]	0.15	0.30
 Coefficient de référence de la 	m^2/s	log-normale	$3 \cdot 10^{-10}$	0.20
diffusion de l'humidité, $D_{h,ref}$				
– Paramètre représentant le quotient		beta sur [0.025;0.1]	0.05	0.20
$D_{h,min}/D_{h,max}, \alpha_0$				
– Paramètre caractérisant l'étendue du		beta sur [6;16]	11	0.10
saut en D_h , n				
– Conductivité thermique du béton, λ	W/(m°C	beta sur [1.4;3.6]	2.5	0.20
)			
– Capacité thermique spécifique du	J/(kg°C)	beta sur [840;1170]	1000	0.10
béton, c_q	_			
– Densité du béton, ρ_c	kg/m ³	normale	2400	0.20

3.2. Obtention des matrices de transition à partir des simulations

Simulations => détermination d'un histogramme de concentrations à un instant donné

$$\hat{q}_j(t) = \frac{n_o(t)}{N}$$

où $n_o(t)$ est le nombre d'observations dans l'état *j* mesurées à un instant *t* et *N* le nombre de simulations

États utilisés pour la discretization du problème

État i	1	2	3	4	5	6	7	8	9	10
\overline{C} minimum (kg/m ³)	0,0	0,4	0,8	1,2	1,6	2,0	2,4	2,8	3,2	3,6
C maximum (kg/m ³)	0,4	0,8	1,2	1,6	2,0	2,4	2,8	3,2	3,6	4,0

Les probabilités de transition a => optimisation multi-objectif

$$\begin{cases} \min_{\mathbf{a}} \max_{\mathbf{F}} \mathbf{F}(\mathbf{a}) = (f_1(\mathbf{a}), f_2(\mathbf{a}), \dots, f_M(\mathbf{a}))^T \\ \text{s.c.} \ a_{ij} \ge 0 \text{ et } \sum_{j=0}^{\infty} a_{ij} = 1 \end{cases} \text{ avec } = \sum_{t=0}^{t_{ana}} |\hat{q}_j(t) - q_j(t, \mathbf{a})|$$

4. Analyse de coûts

Les coûts sont calculés comme une fraction du coût initial de construction C₀

coûts d'inspection

$$C_I = C_0 k_I$$

(

coûts réparation

$$C_R = C_0 k_R$$

coûts de défaillance

$$C_F = C_0 k_F$$

où k_{l} , k_{R} et k_{F} sont des coefficients de pondération des coûts d'inspection, de réparation et de défaillance, respectivement.

5. Exemple numérique

- Modélisation stochastique du climat (Bastidas-Arteaga et al. 2009)
 - variation moyenne annuelle de la température => 5 à 25 °C
 - variation moyenne annuelle de l'humidité relative => 0.6 à 0.8
- Modélisation stochastique de la concentration d'ions chlorure à la surface :
 - moyenne = 6 kg/m^3 (très corrosif) (Weyers, 1994)
 - coefficient de variation = 0.2
- Obtention des matrices de Markov :

Paramètres retenus pour les modèles => jugement

Modèle d'inspection/réparation

Bruit de la mesure, η , km/m ³	0.30
Écart type du bruit, σ_{η} , km/m ³	0.50
Seuil de détection C_{min} , km/m ³	0.10
Écart type de la mesure, σ_C , km/m ³	0.20
Concentration seuil, C_{th} , km/m ³	2.00
Écart type de la concentration seuil σ_{Cth} , km/m ³	0.40
Probabilité annuelle de défaillance acceptable, p_a	0.95
Modèles de coût	
Coût initial de construction, C_0	1000
Coefficient d'inspection, k_i	0.05
Coefficient de réparation, k _r	0.3
Coefficient d'impact de la défaillance, k_f	1

5. Exemple numérique

Evolution des coûts avec l'intervalle d'inspection

- Approche globale de l'optimisation IMR disponible
- Compatible avec une mise à jour par réseaux bayésiens (travail actuel)
- Données réelles disponibles à partir de mars (coûts, efficacité)
- ► Approche multicritère développement durable (Bastidas-Arteaga et al. 2010)

Perspectives :

- Prise en compte de la variabilité spatiale et de la pénétration 2-D
- Optimisation multi-critère de la quantité de matériau à enlevée (multi-matériau, modélisation de l'aléa géométrique)
- Maintenance simultanée sur critères ELS ELU

The partners:

• GEM (PGCO), LCPC (PGCO), IFREMER, CERIB (PGCO),LMDC, CETE de l'Ouest (PGCO),

 SEMEN-TP (PGCO), ETPO (PGCO), ARCADIS-ESG (PGCO), OXAND, ETPO (PGCO), CG44 et PANSN (PGCO, associated members), Trinity College of Dublin (IRELAND)

PGCO: Pôle Génie Civil Ouest (West Competitiveness Pole for Civil Engineering)

Contact us:

This project is leaded by ARCADIS ESG and scientifically coordinated by the Institute for research in civil and mechanical engineering (GeM, Nantes Atlantic University) Dr Franck Schoefs: <u>franck.schoefs@univ-nantes.fr</u>

This project supports a Master of Science: MASTER RISOME (Nantes Atlantic University)

MAintenance and REpair of concrete coastal structures: risk based Optimization

JFMS'10 - Toulouse - 24, 25, 26 Mars 2010