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M.N. BUSSAC AND P. COLLET 
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In this paper, we are interested in separating waves in elastic and viscoelastic rods 
propagating in opposite direction. N strain and P velocity measurements are taken into 
account. This application of the likelihood method gives a solution in the frequency domain. 
Using the inverse Fourier transform, one can recover the strain, stress, displacement and 
velocity at any section of the rod. In experimental conditions, the results are stable against 
noise when N+P>2 and NP ¢0. 

1 Introduction 

In the classical configuration, the loading time in the SHB (Split Hopkinson Bar) 
system is limited by the length of the bars together with the maximum measured 
strain in the specimen, because of the need to separate opposite waves propagating in 
the bar. Hence, for many materials, it is of no interest to carry out tests with the SHB 
apparatus at medium strain-rates. As mechanical testing machines are limited at 
much lower strain rates because of sensor oscillations, "alternative solutions have 
been already investigated, in particular the wave separation technique. They are 
based on a two strain measurement and they take account of wave dispersion1

• ?-s or 
noe·4• Bussac and al.2 showed that the noise is amplified on the reconstructed 
signals when using only two measurements. In this paper, a new separation method 
using N strain and P velocity measurements is presented. It is based on the Maximum 
of Likelihood principle2
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2 Theory 

Let us consider an L-long elastic or viscoelastic bar. In the case of single mode 
propagating longitudinal waves, the Fourier transform of stress, strain, displacement 
and velocity are expressed as follows : 

f(x,m )= A(m )e-•~(m)x + B(m )e'Hm)x' 

O'(x,m )= E * (m) (A(m )e-•~(m)x + B(m )e'~(m)x ), 
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- _ CO(- A(co )e-i~(ru)x + B(co )e'~(ru)x) 
v(x,co)- ~(co) , 

- _ i (A(co )e-i~(ru)x - B(co )e'~(ru)x) 
u(x,co)- ~(co) , 

where A(co) and B(co) are the Fourier components of the ascendant and descendant 
waves at origin, respectively. E * (co) is the complex Young's modulus and 
~(co)=k(co)+ia(co) is the complex wave number. The two parameters E*(co) and 
~(co) are only related to the bar properties (geometry and material). In the following, 
it is assumed that they are known. 

From strain and/or speed measurements, we want to recover A(co) and B(co) so 
that strain, stress, displacement and velocity can be calculated at any point of the bar, 
in particular at both ends. 

We perform N strain and P velocity measurements on the bar. The corresponding 
record is modelled as the superposition of the exact measurement and a Gaussian 
white noise: 

fJ(t)=e(xJ,t)+WJ(t} J=I, .. ,N, 
vK(t)=v(xJ,t)+WJ(t} J=N+l, .. ,N+P 

The N + P white noises are supposed to be two-by-two independent. The 

amplitudes of the noise concerning strain and velocity are denoted 1/ a~ and I I a~ , 

respectively. 

In order to estimate the two functions A(co) and B(co), the Maximum Likelihood 
Method is used2

. 

We denote XJK• J=I, .. ,N+P and K=l, .. ,M, the random variable 
corresponding to the noise stored on the measurement made at the station J at the 
time t = K/ f.,h , where M is the maximum measured points and f.,h is the 
sampling frequency. 

The likelihood function is given by : 

V (t, (t);, (t) A(w )B(w ))~ {;:;~;(x • =W, (KIf~)) l 
Since all the noises are white and two-by-two independent, the likelihood function is 
then expressed as follows : 

v(e J (t) vJ (t) A(m ),B(m ))= II p(X JK =W J (K 1 J,c}, )) 

Noises are also Gussiens, hence : 

J=l ... ,N+P 

K=I, .. ,M 
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where v 1 = 1 I a 1 is the standard deviation and J1 1 is the mean of the noise W
1 

• 

This method consists in writing that what is measured corresponds to the most 
probable event (a particular application is the least-square method). This leads to 
maximize the function v(eAttv1 {t)A(w~B(w)) which is equivalent to minimizing 
the following function: 

F =I { t (a 1 Y(i1 (t )- e(xJ' t))' + 1~1(a1 ) (v1 (t )- v(x1 ,t ))' }dt 

According to Parseval's theorem: 
+-N ,_ 2 

F = JI(aJ2ieJ(w)-A(w~-~~(m)x, -B(w~'~(m)x,l dw 
_.,., J=l 

+ Ji (aJ2 ~~1 (w )+ ~(A(w ~-tHmk - B(w ~~~(mh, f dw 
__ J=l ~(w) 1 

The function F is minimized when: 

where: 

A( co)= h2 (co )E, (co)- g(co)E2 (co) 
h,(co)h

2
(co)-g(co)g(co) ' 

B(co) = h, (co)E2 (co)- ~~(co) 
h, (co )h

2 
(co)- g(co)g(co) ' 

h,(co)= i(aJ e-•(~(mt-rr.»lk +1_!!!_12 t (axY e-·(~(m}-rr.;])y, ' 
J=l ~(co) K=' 

h
2
(co)= i(aJ2 e'~(m}-rr.;])x, )~~

2 t (axY e'~(.,~""Tm})y, , 
J=l ~ K=l 

g(co) = i (a J e'(~(ml+rr.»lk -1_!!!_12 t (a K Y e'(~(m}+rr.;])y, ' 
J=l ~(co) K=l 

N p 

E,(co)= L(axJ e'rr.;)"•,f'Jo)-~ L(axJ e'~(m)y,Jx(co), 
J=l ~(co) K=l 

N p 

E,(co)= L(axJ e-•~(m)x,f'Aw)+~ L(axY e-•~(m)y,~K(co). 
J=l ;(co) K=l 

A(co) and B(co) are then calculated. 

Assuming that mechanical values are constant in a bar cross-section, formulas 1 
provide forces and displacements at any point, and in particular at bar ends. 
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3 Numerical simulation 

In this section we propose to validate the method with a numerical test. The bar 
simulated is elastic. It is 3m long and 40 mm in diameter. The Young's modulus is 
E. = 70 GPa , the Poisson's ratio is v = 0.34, and volumic mass is p = 2800 kg/ m' . A 
I .2m long striker, having the same chracteristic as the bar, is launched at one end of 
the bar (x = 0) at a speed V, = 12 m/s. Five strain measurements at sections 

x, = 0.5m, x, = 1.02m, x, = 1.4m, x. = 1.78m, x, = 2.2m and two velocity 
measurements at sections x. = 0. 8m, x, = 1.4m are simulated. 

Gaussian noise with amplitude 2 % of the maximum strain or the maximum 
velocity is added to each measurement. We suppose also that the mean of each noise 
on strain measurements is not zero and equals 5 %o of the maximum strain. 

We compare results provided by the method developed in section 2. to exact 
simulated signals. We denote med the maximum relative error on strain and meu the 
maximum relative error of reconstructed displacements. Figs. 1 and 2 compare the 
error on strain and displacement for different values of Net P. The results show that 
it is sufficient to use three strain and one velocity measurement to have good 
accuracy on reconstruct strain and displacement. For experimental application we 
choose this solution (Tab. 1 ). 

Figure 1. Error on strain (a) N=2 and P=O- (b) N=3 and P= I -
(c) N=3 and P=2 -(d) N=3 and P=O- (e) N=4 and P=O- (/) N=S and P=O 
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Figure2. E"or on displacement (a) N=Z and P=O- (b) N=3 and P=l -
(c) N=3 and P=Z -(d) N=3 and P=O- (e) N=4 and P=O- (f) N=5 and P=O 

N 2 3 4 5 r: . .$<······. 3 
p 0 0 0 0 lc·J > .' 2 

med(%) 11,90 3,50 1,80 1,50 t,;tl4fc 2,10 

meu(%) 71,00 74,00 57,00 56,00 , ·f,'J;~c· 0,98 

Table 1. Maximum error on strain and displacement 

4 Application to a Nylon bar 

The validity of the method is checked using a nylon bar. A nylon striker is launched 
at the left end of the bar at a speed of 3.03 mls. The right end is free. Three strain and 
one-velocity measurements are recorded on the bar. We use the method developed in 
section 2. to reconstruct the stress at two ends of the bar and the displacement at the 
free end. 
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Figure 3. Reconstructed stresses at the ends of the bar and displacement at the free end (The stress at 
the free end has been shifted down by 0.2 MPa to make the figure more readable). 

The stress at the left end was almost zero as expected. At the right end, the stress 
became almost zero after the first incident wave. Compared to the amplitude of the 
impact stress, the error on the reconstructed stress was less than 3.5% (Fig 3). The 
reconstructed displacement was similar to the directly measured one. The relative 
error was less than 2.5% (Fig 3). 

5 Conclusion 

A multi-point method (multi-strain and/or multi-velocity measurements) is presented 
for reconstructing one-dimensional waves in bars. This method is exact when used 
with the single-mode dispersive propagation model commonly applied to Hopkinson 
bars. It yields consistent results (the inaccuracy due to imprecise measurements does 
not increase with time). It is illustrated here by applying it successfully to the analysis 
of a real test on a Nylon bar. It provides a significant increase in the observation time 
available when using measuring techniques based on the use of bars such as SHPB 
set-ups. The method would make it possible to obtain precise measurements at 
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mediwn strain rates in a test range in between that of mechanical testing machines 
and that of Hopkinson bars. 
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