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An overview of numerical methods for Earth simulations

Geological simulation problems are distinct from engineering problems in having a strongly evolving geometry which is often developed through non-linear interaction between structure and rheology. Engineering simulation codes are therefore often, by design, unsuitable for geological applications. We summarize the important features of a small number of numerical methods which have been developed with geological and geotechnical simulations in mind, summarize the advantages and disadvantages of some of these methods and introduce the sorts of problems for which each method is best suited.

Introduction

A long-term goal of geological modeling is to achieve the degree of simulation capability currently enjoyed by the engineering community. The routine ability to recreate the evolution of geological structures during deformation and simultaneously compute stresses, temperatures, fluid flow vectors and chemical evolution would greatly enhance our ability to understand the Earth. A reliable forward modeling capability is also a prerequisite to any attempt to develop an inverse method for structural geology. Many questions in geology are formulated in terms of inverse analysis ("what produced this final state ?"). Boschetti & Moresi consider this issue explicitly in another paper at this conference. Unlike most engineering simulations, however, the geometry of the geological model is a result of the continuously evolving non-linear interaction of the structure and the rheology at extremely large strains. Initially the geometry might be relatively simple, e.g. flat layering, but during the course of the simulation very intricate patterns will develop and need to be accurately resolved by the numerical method. In many cases the complexity reflected in the geometry results from post-failure deformation of the material. To make matters worse, the rheological laws which govern particular geological materials at a given scale are often poorly determined -this is partly due to the difficulty in measuring behaviour at realistic strain rates, and partly due to the microstructural complexity of the materials which make up a given rock suite. The fact that the materials also undergo metamorphic transformations and phase changes during the evolution of a geological structure is another complicating factor which makes simulation difficult. As an example, on a global scale, the continents drift as an integral part of the surface thermal boundary layer of the convecting mantle. They have retained a distinct identity within the mantle flow for billions of years while developing a strong physical and chemical fabric along the way. From a modeling point of view, it is necessary to consider the fluid convection of the mantle and the history-dependent viscoelastic/brittle behaviour of the continental crust as a single coupled system. At the same time, the precise structure and composition of the deep continental crust is not well known. The requirements for a geological simulation code are therefore an ability to track boundaries and interfaces through extremely large deformation, including fluid convection, of non-linear history dependent materials. The wide range of physical and temporal scales, and the many coupled physical processes also impose a need for computational efficiency. The code should also be very flexible in the rheological laws which it can treat. Many different numerical methods have been devised for mechanical simulations of this kind. Some derive from standard engineering methods, while others were developed to handle specific problems in the physical sciences. We provide an introduction to a number of these methods in order to illustrate the difficulties involved in creating convincing, realistic simulations. By way of example, we demonstrate how large deformation viscoelasticity is handled in our own ELLIPSIS Lagrangian Integration Point code.

Modelling techniques

The key to all these problems is to find a way to deal efficiently with the most general case: finite strain viscoelasticity with strongly history-dependent material behaviour. This is a specialized problem: most engineering codes are optimized to study the modest strains which accumulate prior to failure. Nevertheless, an enormous amount of research has been done in developing numerical methods suited for large strain problems in different application areas.

The principal difficulty in finite strain modelling is the tendency for any computational or logical connecting mesh between material points to become arbitrarily tangled during the simulation. For example, the mesh in Figure 1 shows how relatively modest deformation in the global sense rapidly becomes tangled in regions where strain is concentrated.

Figure 1: This figure from a simulation by the Geodynamics modeling group at Dalhousie University ( shows the deformation of an initially orthogonal mesh during a transient simulation of convection in a fluid. Incedentally, the mesh in this example is used to track strain, not compute velocity vectors.

Broadly speaking there have been two approaches to dealing with this problem. One approach is to retain the mesh, but to reorganize it periodically and, perhaps, modify the method to cope with a less-than-optimal distribution of discretization points, and the other is to dispense with the mesh entirely for computing mechanical behaviour and derive a formulation where the material points interact with each other directly. The approach used in ELLIPSIS is distinct from these methods in relaxing the requirement that material points and computational points need to be the same.

Large deformation mesh-based methods

Mesh based Lagrangian methods are not particularly well suited to very large strain fluid flow applications as the mesh is subject to tangling and considerable effort is required to regrid or reconnect the mesh to prevent the computation of derivatives and shape functions from becoming inaccurate. The Arbitrary Lagrangian Eulerian method [START_REF] Huerta | Viscous flow with large free surface motion[END_REF]) avoids mesh tangling by allowing computational points to move independently from the underlying material. This strategy makes it possible to prevent mesh points from approaching one another too closely, while still preserving important interface details. However, additional advection terms are required to handle transport of quantities relative to the mesh and these terms are dispersive. The Dynamical Lagrangian Remeshing method (Braun and Sambridge 1994) reconnects all mesh points after any deformation to ensure the mesh always remains optimally configured (in DLR this means the mesh is always a Delaunay triangulation). Stress histories can be computed at integration points and therefore need to be interpolated when new element connections occur. The extension to 3D is non-trivial and the method is limited to linear triangles/tetrahedra. An alternative approach, the Natural Element Method (NEM, Braun and Sambridge 1995) uses a natural-neighbour interpolation scheme over a Delaunay triangulation to develop finite-element-like shape functions associated with each computational, material point. The Natural Element Method (NEM) does not suffer from the same difficulties as FEM when elements are highly distorted and, although it uses a triangulated mesh, has the advantage that the interpolation functions are continuously differentiable away from the computational points. NEM shares with DLR the difficulty associated with preserving tensor information at integration points after reconnection of the mesh. [START_REF] Braun | A numerical nethod for solving partial differential equations on highly irregular evolving grids[END_REF] point out that the use of a standard gaussian integration scheme in NEM is not exact for natural neighbour interpolation functions. Another complication is that the shape functions overlap element boundaries, and therefore descriptions of flux boundary conditions may not be accurate.

Meshless methods

Meshless methods include, among others, the Discrete Element Method (DEM, [START_REF] Cundall | A Discrete Numerical Model for Granular Assemblies[END_REF], Smoothed Particles Hydrodynamics (SPH, Monaghan 1992), Element Free Galerkin (EFG, [START_REF] Belytschko | Element-free galerkin methods[END_REF], and the Point Integration Method (PIM, [START_REF] Liu | A point interpolation method for two-dimensional solids[END_REF].

In the DEM, computational points are associated with a finite size and shape. Interaction between points (particles) occurs only where they are in contact -according tothe specified interaction rules. This method is very well suited to modeling of fracture since particle interactions can take the form of breakable bonds. The interaction of a particle with it's neighbours varies with angle and time, since it is a function of the neighbours' coordinates,and the interaction history. SPH and EFG are continuum methods in which the material points are associated with a radial basis function which can be used as an interpolant for field variables, and to develop an expansion for PDEs. The basis functions overlap other particles, making it more complicated to apply constraints to values at individual material points but allowing particles to pass arbitrarily close to one another during simulations of fluid motion with stagnation points. PIM is also a continuum method. In PIM, global basis functions are defined which can be combined to produce nonoverlapping shape functions. The method therefore eliminates one of the principal obstacles in efficient formulation of meshless solvers. However, very little in the way of practical applications for the method has been published to date so the promise of the method is largely unexplored. SPH, EFG and PIM are formulated in such a way that implicit solution methods or explicit methods can be used.

Figure 2: A conceptual comparison of meshless methods, the standard finite element method, and the Lagrangian Integration Point finite element method. The latter differs in having a set of computational points and a distinct set of material points. In most other methods the two sets coincide, or one is neglected completely.

Lagrangian integration point Finite Element methods

The method used in ELLIPSIS is a hybrid mesh / particle code --the idea being to retain the generality and robustness of mesh-based FEM, and capture the geometrical flexibility of a fully-Lagrangian set of particles for tracking material deformation. The computational points are a set of nodes fixed in space, connected by a mesh of finite elements. An independent set of material points which carry material properties and the solution history is embedded in the mesh. Since the material and computational points have been formally separated, a strategy for coupling the two representations is needed. The usual finite element interpolation of nodal point values to element interiors is used to update the locations of particles and history variables. The particle properties are coupled to the computational mesh through a non-standard element quadrature in which the particles which happen to be in a given element are used as integration points. Boundary conditions constrain unknowns and therefore belong to the mesh ... This formulation is very close to the material point method developed by Sulsky, Schreyer and their coworkers (e.g. [START_REF] Sulsky | Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems[END_REF] who use an Eulerian mesh with Lagrangian particles. Their formulation was derived from problems where momentum dominates: impacts between elastoviscoplastic materials, suspensions in fast-moving fluids, and fast granular flows. Considerable modifications are needed to model the extreme deformations of convecting fluids with history dependent properties.

Standard Finite Element Analysis v. ELLIPSIS

Simply put, the algorithm used in ELLIPSIS is identical to the standard FEM but with a modified integration scheme. There are, however, a number of practical details involved in building such a scheme. Full implementation details are given in [START_REF] Moresi | Mantle convection modeling with viscoelastic/brittle lithosphere: Numerical methodology and plate tectonic modeling[END_REF]Muhlhaus et al (2001), the salient ingredients are summarized here.

• A scheme for updating the locations of the integration points (material points) based on the velocity solution at the computational points.

• The formulation of a weak form based on integration-point-derived material property matrices, and the storage of constitutive relationships (and the required variables and history) on the integration points.

• The ability to map arbitrary locations within distorted elements to a master-element coordinate scheme. This is the inverse mapping of points within the element onto the regular domain in which element integrals are computed. It is required because the integration scheme is derived "on the fly" rather than being optimized in advance to specific coordinates in the master-element.

• A mechanism for splitting and merging integration points based on strain history. This is required to prevent flow near stagnation points from producing distributions of particles which are poorly distributed for integration.

Example / Benchmark

Viscoelastic formulation

We use a Maxwell viscoelastic constitutive relationship which assumes that the deformation rate is the sum of viscous and elastic parts

τ 2µ + τ 2η = Dv + De = D (1)
where τ is the Jaumann corotational stress rate for an element of the continuum, µ is the shear modulus and η is shear viscosity. D is the deviatoric part of D.

τ = τ + τ W -Wτ ; W ij = 1 2 ∂V i ∂x j - ∂V j ∂x i (2) 
W is the material spin tensor, The material spin tensor, W , terms account for material spin during advection which reorients the elastic stored-stress tensor.

As we are primarily interested in solutions where very large deformations may occur -such as buoyancy driven fluid convection, we prefer to work with a fluid-like system of equations from the outset.

Hence we obtain a stress / strain-rate relation from (1) by expressing the Jaumann stress-rate in a difference form:

τ ≈ τ t+∆t e -τ t ∆t e -W t τ t + τ t W t (3)
where the superscripts t, t+∆t e indicate values at the current and future timestep respectively. ∆t e is a timestep which captures the relevant timescales of the changes in elastic stresses. This timestep could, in fact, differ from that chosen for updating the particle positions.

(1) becomes

τ t+∆t e = η eff 2 Dt+∆t e + τ t µ∆t e + W t τ t -τ t W t µ ; η eff = η ∆t e ∆t e + α ( 4 
)
Where α = η/µ is the shear relaxation time, and η eff is an effective viscosity.

Our system of equations is thus composed of a quasi-viscous part with modified material parameters and a right-handside term depending on values from the previous timestep. This approach makes it possible to develop a viscoelastic formulation in the context of a viscous flow code.

In the finite element momentum balance equation, to solve for terms at t + ∆t e we require access to values stored at time t at the integration points of the mesh at t + ∆t e . In the ELLIPSIS code this corresponds to storing the Jaumann material derivative tensor on the Lagrangian integration points.

Yielding

In a geological context we frequently deal with situations where part of the system is subjected to stresses greater than the yield stress. Under such conditions the material fails, but, unlike many engineering simulations, we are interested in simulating in the post-failure behaviour up to very large strains. On the basis that the post yield deformation trends increasingly to dominant, simple structures with increasing strain (Ben-Zion and Sammis, 2001), our geological modeling for large strains uses very simple descriptions of yielding. Brittle behaviour is parameterized using a non-linear effective viscosity which is introduced whenever the stress would otherwise exceed the yield value τ yield . This approach ignores details of individual faults, and treats only the influence of fault systems on the large-scale convective flow.

To determine the value of the effective viscosity at any point we extend (1) by introducing a Prandtl-Reuss flow rule for the plastic part of the stretching:

τ 2µ + τ 2η + λ τ 2 |τ | = De + Dv + Dp = D (5)
where λ is a parameter to be determined such that the stress remains on the yield surface, and |τ | ≡ (τ ij τ ij /2) (1/2) . The plastic flow rule introduces a non-linearity into the constitutive law which, in general, requires iteration to determine the equilibrium state.

The implementation is as follows, starting from equation ( 5), we again express the Jaumann stress rate in first order difference form (using the Lagrangian particle reference frame):

τ t+∆t e 1 2µ∆t e + 1 2η + λ 2 |τ | + = Dt+∆t e + 1 2µ∆t e τ t + 1 2µ (W t τ t -τ t W t ) (6) 
No modification to the isotropic part of the problem is required when the von Mises yield criterion is used. At yield we use the fact that |τ | = τ yield to write

τ t+∆t e = η 2 Dt+∆t e + 1 µ∆t e τ t + 1 µ (W t τ t -τ t W t )
where η = ητ yield µ∆t e ητ yield + τ yield µ∆t e + ληµ∆t e (7)

We determine λ by equating the value of |τ t+∆t e | with the yield stress in (7). Alternatively, in this particular case, we can obtain η directly as

η = τ yield / Deff where Deff = 2 Dt+∆t e + 1 µ∆t e τ t + 1 µ (W t τ t -τ t W t ) and |D| = (2D ij D ij ) 1/2 (8)
The value of λ or η is iterated to allow stress to redistribute from points which become unloaded. The iteration is repeated until the velocity solution is unchanged to within the error tolerance required for the solution as a whole.

A beam failing under extension

The yielding algorithm is benchmarked by measuring the second invariant of the stress and displacement at points within a viscoelastic beam extendedat a fixed rate, v = 5, by an imposed velocity boundary condition at one end.

The sample was 0.5 units thick, occupying the central half of a 3 x 1 mesh, and was surrounded by a low viscosity, compressible material. Three sampling points (a,b,c) for recording the stress invariant and displacement were chosen within the sample initially placed along the mid-line at x = 0.2, 0.5, 0.8. The material parameters of the sample (η = 10 8 , µ = 10 6 ) were chosen such that the relaxation time was long (α = η/µ = 100 ) compared to the duration of the experiment ( 0.25 ) so that the material behaved almost as an elastic solid.

Figure 3 shows the progress of the experiment. Initially, deformation was uniform, resulting in gradual stretching of the sample (t ≤ 0.180). The entire sample reached the yield point at the same time (t = 0.212) and initially deformed uniformly with all points yielding. However, the deformation soon localized to a number of shear bands (t = 0.220), then to two places along the sample (t = 0.227), and finally to a single location (t = 0.2359) which focussed all subsequent deformation until the sample failed entirely (t ≥ 0.2404). The frames are not uniformly spaced in time since the post-failure behaviour occurred on a much shorter timescale than the gradual loading.

Even with a material which has no strain softening, there is a tendency for deformation to localize in a particle-in-cell representation of the sample. This occurs because the sample boundary is never perfectly flat (as in real life) due to numerical fluctuations in the particle locations, and to a mild interference (moiré) effect between the array of particles and the underlying grid. These effects produce small fluctuations in the stress field which can result in early failure at certain points. Once nucleated, shear bands can propagate from these points -ultimately resulting in necking and complete separation of the two halves of the sample. It is worth discussing at this point a consequence of the fact that the yield criterion only applies to the deviatoric stress.

During the separation of the layer, the pressure becomes enormous at the constriction, which obviously could not occur in a real material. To model this situation in a more realistic manner we would need to complement the yield criterion on the deviatoric stress with a suitable tension cutoff condition.

Discussion

Geological modeling problems present an unusual set of difficulties which are every bit as challenging as problems encountered elsewhere in the simulation community. Engineering codes may not be optimal for geological modeling -whether in terms of computational efficiency or ability to handle unusual rheological descriptions in very large deformation. The algorithms we have covered are all well suited to one or other aspects of the spectrum of geological modeling. No one method can deal with the entire range. In developing a "universal solver" for geological and geomechanical one would therefore be required to build a suite of codes which can hand off elements of a problem to each Taken from [START_REF] Moresi | Mantle convection modeling with viscoelastic/brittle lithosphere: Numerical methodology and plate tectonic modeling[END_REF].

other according to the special needs inherent in a particular simulation. Some of these issues will be addressed at this meeting.

Figure 3 :

 3 Figure 3: Simulation of the extension of a viscoelastic bar with yield stress. Black shading indicates regions deforming at yield. Embedded marker points which follow the material deformation are indicated by a,b,c. Taken from Moresi et al (2001).

Figure 4a ,

 4a Figure4a, is a plot of the stress at each of the sample points in the material as a function of time for a fixed end velocity. The yield stress of the material was set at 3 × 10 5 . Stress increased within the sample at the same rate for all the sample points until the yield stress was reached. At this stage the material deformed uniformly at the yield stress. Once localization had occurred, however, points outside the necking area begin to unload, and the stress dropped dramatically. The rate at which stress drops from yield back to zero is governed by the viscous part of the rheology, and the presence of a low viscosity background material. The unloading path is clearer in plots of the displacement of the sample points through time in Figure4b. Before yielding, the displacement of each sample point increases monotonically. Once yielding occurs, and the deformation localizes, the sample points on the left of the break (a,b), under the action of stored elastic stresses, rapidly retreat towards their original locations. The sample point on the right of the break (c) moves rapidly to the right as the elastic deformation relaxes. It is worth discussing at this point a consequence of the fact that the yield criterion only applies to the deviatoric stress. During the separation of the layer, the pressure becomes enormous at the constriction, which obviously could not occur in a real material. To model this situation in a more realistic manner we would need to complement the yield criterion on the deviatoric stress with a suitable tension cutoff condition.
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 4 Figure 4: Stress, and displacement at sample points a,b,c as a function of time for the extension experiment of figure 3.Taken from[START_REF] Moresi | Mantle convection modeling with viscoelastic/brittle lithosphere: Numerical methodology and plate tectonic modeling[END_REF].