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Introduction

The most widely used time integration alg01ithms for finite-element systems , based on the Newmark family, are numerically stable only for linear models. To overcome that drawback: a new class of Energy lvlomentum Conserving Algmitluns or E:MCA, ve1ifying the conservation laws in the non-linear range, was initiated by Simo and Tamow [START_REF] Simo | The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics[END_REF].

These algmithms consist in a mid-point scheme with an adequate evaluation of the inter nal forces. This adequate evaluation was given for hyperelastic models by Gonzalez. The E:tvfCA was then extended to d yn amic finite deformation plasticity based on a hypere lastic model by lvieng and Laursen [START_REF] Meng | Energy consistent algorithms for dynamic fi nite deformation plasticity[END_REF], by A1mero [I], and to d yn amic finite deformation plasticity based on a hypoelastic model by the present authors [START_REF] Noels | Energy-momentum con.serving algorithm for non-linear hypoelastic constitutive models[END_REF][START_REF] Noels | On the use of large time steps with an energy momentum conserving algorithm for non-linear h yp oelastic constitutive models[END_REF][START_REF] Noels | Simulation of complex impact problems with implicit time algorithm. Application to a blade-loss problem[END_REF].

Recently, the authors [START_REF] Noels | An energy momentum conserving algorithm using the variational formulation of visco-plastic updates[END_REF] have proposed a general energy-momentum conserving algo-1itlllll for hyperelastic-based formulation, using the variational visco-plastic constitutive updates proposed by Ortiz and Stainier [START_REF] Noels | On the use of large time steps with an energy momentum conserving algorithm for non-linear h yp oelastic constitutive models[END_REF]. The main feature of this fonnulation is that the stress tensor always derives from an incremental potential, even if plastic deforma tions occur. Therefore, in such a framework we can use the formulation• based on the second Piola-Kirchhoff stress tensor as proposed by Gonzalez without any modification.

To avoid the lack of convergence due to the presence of high frequency modes, nu merical dissipation was introduced in the conserving algorithms by Annero and Romero for hyperelastic materials. An extension to numerical dissipation based on the use of the variational visco-plastic constitutive updates is proposed in the present work. This algorithm is sliown to be stable, robust and accurate.

Variational constitutive updates

Let us consider a time step increment bit = t n+it n . The purpose of this formalism is to define an incremental potential t:.n eff (xo, 6 (cp h , e e )) depending on the initial positions

x 0 and on the modified right-Cauchy deformation tensor 6 = 3 d!(�) C, which is written in terms of the classical Cauchy strain tensor, this last one depending on the defonnation mapping 'Ph, and of the volume variation e e in order to use the quasi incompressible formulation proposed by Simo and Ta ylor (14}. Similarly, the deviatoric strain tensor is defined by C = {j det�C ) C.

The deformation gradient F = p e l F P 1 is decomposed into the elastic part p el and the plastic part

F pl "+I ( [ p " + l p "] N ) p pl " = exp £ -£ (1) 
where tensor N is the plastic flow direction, and E' P is the equivalent plastic strain. where '11* is a dissipative potential that ensures convexity of b..D. It can be shown that the stationary point of t:.D with respect to c: P " + 1 and N constitutes the solution of the elasto-plastic problem [START_REF] Noels | On the use of large time steps with an energy momentum conserving algorithm for non-linear h yp oelastic constitutive models[END_REF][START_REF] Noels | An energy momentum conserving algorithm using the variational formulation of visco-plastic updates[END_REF]. Therefore the effective incremental potential flD eff can be defined as the value of the incremental potential at this stationary point. But in order to introduce numeiical dissipation, a dissipative volume potential \JJ� 1 and deviatoric potential \ll� e ,• are added, leading to the new incremental effective potential [START_REF] Meng | Energy consistent algorithms for dynamic fi nite deformation plasticity[END_REF] Since the minimization process is independent of o e , this effective incremental potential can be split into a volume pa.it b,.D eff ,,. 01 and a deviatoric pa1t b,.D e ff dev defined by with Details of this formulation can be found in [START_REF] Noels | A first order energy-dissipative momentum con serving scheme for elasto-plasticity using the variational updates formulation[END_REF].

3 The EDMC time integration algorithm

(8) ( 9 ) 
( 10 )

The ED1'vIC algorithm described by Armero and Romero [START_REF] Armero | On the formulation of high-frequency dissipative time-stepping algorithms for non-linear dynamics. Part I: Low-order methods for two model problems aud nonlinear elastodynamics[END_REF] can be stated in terms of the nodal position £{ and appropriate external/internal forces .f!.. 

-t n + ½ / lnt n + ½ a s _ -{n A t [ ,# n+l + ,#" d!. n + ½ ] -X + w.
. ( 13) [START_REF] Simo | Quasi-incompressible finite elasticity in plincipal stretches continuum basis and numerical algorithms[END_REF] In the context of Energy-Momentum Conserving Algorithm, Gonzalez [4] proposed a new expression of the internal forces. Given the incremental updates variational for mulation developed in the previous section, Gonzalez expression can be directly applied: leading to

(15)
where Sdev is the consistent deviatoric stress tensor, p* is the consistent pressure and d G is the modified differentiation of J by C. This last term is defined by Instead of using directly Eq. ( 9), the modified pressure is computed as Similarly, Eq. ( 10) becomes Since these last expressions are similar to the ones developed for elastic dynan1ics: the conserving prope1ties are demonstrated in a straightforward way, see [START_REF] Noels | A first order energy-dissipative momentum con serving scheme for elasto-plasticity using the variational updates formulation[END_REF] for details. 

K o = 130000 N-mm-2 G 0 = 43333 N-mm-2 lTom = 400 N-mm-2 h = Yo/c P o = lO0N-mm -2
Ta ble 1: :tviaterial prope1ties for the Taylor's impact test.

This simulation is solved with a time step D.t = 0.4 µs, and solutions obtained with the EDMC algodthm for different spectral radius are compared to the solutions obtained with the Newmark [START_REF] Newmark | A method of computation for structural dynamics[END_REF] and the Chung-Hulbe1t [3) time integration algorithms. Final deformations are illustrated m Fig. 1 b-f. All the simulations give the same solution within 5% error, except the modified EDlvIC one, which leads to a different solution. This demonstrates the accuracy of the ED:tvIC algorithms.

Conclusions

In this paper, a new Energy-Dissipative Ivlomeotum-Conserving time integration algo rithm, based on an incremental variational updates fonnulation of the elasto-plastic be havior, is proposed. Owing to this fommlation, an effective potential can always be defined, even when irreversible deformations occur. The main originality of this paper is to add a dissipative function to this incremental potential, which leads to a new definition of a potential for the system.

The resulting algodtlnn verifies the conservation of linear and angular momentum and ensures that the numedcal dissipation is always positive. An impact test also demon strates the accw•acy and robustness of the algorithm when large plastic deformations occw-.

  The free Helmhotz energy A is obtained from the sum of the volume part of the elastic potential <1>;� 1 , of the deviatoric part <I>� e v , and of the plastic sto1Ted energy <J>P 1 , leading to where it has been taken into account that the plastic deformation gradient F P 1 depends only on the deviatoric deformation. The incremental potential t:.D is defined on a time step as t:.D ( F ( cp,;+ l' o e n+l) ' c p n+l ' N) = q>�� I ( o en+l ) -<I.>� 1 ( o en ) + b. D dev (P, £ P , N ) , with( 3)b. D dev (P, £ P , N ) = <I>�t ( c e1 n+l (r+i, £ p n+1 , N ) )-il> d 1 e v ( (J e l n ) + i_pP I ( p p ln+l ( £ p n+l , N) , £ p n+ l) _ <J> P l ( p p ln , £ p n ) + b.t'll* ( t:.;;) , ( 4 )

  these definitions, the second Piola-Kirchhoff stress tensor can be deduced by explicit derivation sn+l = S d!l + pcn+l r+l ( cn+i ) -1 c -8b,.D eff vol . d p -80 ' an S de v = 2 J -� DEV ( (FP 1 ) -l

2 +

 2 Vdi.ss •• n +l •• n :..en x� +:ff. = X' +b,.t 2 and with the first order dis.5ipation• velocities where X is the control parameter.

(t = 80 µs) for the Taylor's impact using: b-d) ED1vIC scheme with a spectral radius evolving from P x = 0.9 to p ;;:,o = 0.65; e) second order Chung-Hulbert tin1e integration scheme; f) fu-st order Newmark time integration scheme.

4 Numerical example: Taylor's impact test

The purpose of this test is to demonstrate the accuracy of the scheme when large plastic deformations are involved. The bar descdbed in Fig. la in1pacts a rigid wall with an initial velocity of 22 7 m-s-1 . vVe consider rate-independent plasticity with linear hardening. Matelial prope1ties are repmted in Table 1 .