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A VISCOELASTIC FORMULATION FOR FINITE STRAINS: APPLICATION TO BRAIN SOFT TISSUE

A set of viscoelastic constitutive models for large strains was proposed in a previous work from the authors of this paper. This approach employs a strain-based set of internal variables and a multiplicative and spectral decomposition of the total strain into elastic and viscous components. Moreover, the framework allow to accommodate a wide set of specific models depending on the choice of constitutive potentials. In the present work, the proposed approach is reduced, for simplicity, to uniaxial expressions and it is applied to simulate the behavior of swine brain soft tissue submitted to compressive test. The experimental data was extracted from the literature, describing the stress/strain curves at different strain rates compatible with those found in surgical procedures. Different potential expressions with a variable number of material parameters are tested in order to verify their ability to match the experimental curves. Satisfactory results were obtained for the range of compressive strains given by the experimental data. However, quite different behaviors are found for strains outside of the experimental strain range, fact that emphasizes the need of a variety of experimental tests in order to obtain a reasonable characterization of the material.

INTRODUCTION

The objective of this work is to evaluate the ability of the viscoelastic constitutive formulation proposed in [START_REF] Fancello | A variational formulation of constitutive models and updates in nonlinear finite viscoelasticity[END_REF] to match the experimental curves obtained by [START_REF] Miller | Constitutive model of brain suitable for finite element analysis of surgical procedures[END_REF] in which a swine brain specimen is submitted to compressive finite strains at different strain rates. This material identification is a first step for a consistent simulation of a brain tissue when submitted to mechanical efforts coming from neurosurgical procedures.

Viscoelastic models for finite strains present a variety of approaches and it still source of investigation, mainly focused on polymer and biological tissues applications. Among a large list of references, it should be mentioned the works of [START_REF] Sidoroff | Un modèle viscoelástique non linèaire avec configuration intermédiaire[END_REF], [START_REF] Simo | On a fully three dimensional finite-strain viscoelastic damage model: formulation and computational aspects[END_REF], [START_REF] Lubliner | A model of rubber viscoelasticity[END_REF] , Le-Tallec et al. (1993), [START_REF] Holzapfel | On large viscoelasticity: continuum formulation and finite element applications to elastomeric structures[END_REF], Reese and Govindjee (1998), [START_REF] Bonet | Large viscoelastic constitutive models[END_REF].

The proposed formulation is contained in a wider approach for inelastic materials [START_REF] Ortiz | The variational formulation of viscoplastic constitutive updates[END_REF]Radovitzky and Ortiz,1999) with the characteristic of calculating the stress within each load increment as the derivative of a (pseudo) elastic potential, in a similar way at it is done with hyperelastic models. When particularized to isotropic behavior, this approach allows a simple and unified spectral representation for a wide set of particular models (Neo Hookean, Mooney-Rivlin, Ogden, etc.) depending on the expressions of the elastic and dissipative (pseudo) potentials.

The principles of the constitutive approach are shown in Section 2. Section 3 provides a particularization of the general equations to the case of a uniaxial stress state, suitable to simple implementation oriented to a material parameter identification process. The material models (potentials) chosen in this paper are shown in Section 4. The identification results are presented in Section 5 while a final discussion is left to the end of the article.

INCREMENTAL FORMULATION FOR A SET OF VISCO-HYPERELASTIC MODELS

Consider a body B occupying a domain Ω 0 submitted to the action of external loads. Denote x = x(x 0 , t) the motion of the body, F = ∇ 0 x the gradient of deformations, C = F T F is the Cauchy strain tensor and P the first Piola Kirchhoff stress tensor. The equilibrium problem can be stated by the variational equation in Lagrangian description:

Ω 0 P • ∇ 0 δx dΩ 0 -T F e (δx) = 0 ∀δx ∈ V(Ω 0 ) (1) 
where V(Ω 0 ) is the space of variations δx, and T F e (δx) is the virtual external work. For hyperelastic materials, the stress tensor P is directly obtained as the derivative of a free energy with respect to F, property that is not supported by path-dependent dissipative materials. However, it is shown in (Ortiz and Stainier,1999) and (Radovitzky and Ortiz,1999) that incremental potentials can be constructed in order to obtain hyperelastic type behavior within the interval of a load increment. This means that updates of stress can be obtained by the derivative of a incremental energy potential:

P n+1 = ∂Ψ(F n+1 ; E n ) ∂F n+1 = 2F n+1 ∂Ψ(C n+1 ; E n ) ∂C n+1 (2) 
µ µ e η v where E denotes a set of external and internal variables:

Maxwell branch

E = {F, F i , Q} F = F e F i (3) 
The tensor F is decomposed in elastic and inelastic parts F e and F i while the quantity Q contains all the remaining internal variables used to describe the process. The time interval is denoted by [t n , t n+1 ] and it is supposed that all quantities at time t n are known. A wide set of inelastic problems may be described with the aid of a potential Ψ(F n+1 ; E n ) having the form (see (Ortiz and Stainier,1999), [START_REF] Fancello | A variational formulation of constitutive models and updates in nonlinear finite viscoelasticity[END_REF] for a detailed construction):

Ψ(F n+1 ; E n ) = ∆tφ F, E n + min F i n+1 Q n+1 W (E n+1 ) -W (E n ) + ∆tψ Fi , Q; E n (4) 
W (E) = ω(F) + ϕ e (FF i-1 ) + ϕ i (F i , Q)
where

F (F n+1 , E n ) , Fi F i n+1 , E n and Q (Q n+1 , E n )
are appropriate incremental approximations of the rate quantities Ḟ, Ḟi and Q respectively. The potentials φ, ω, ϕ e , ϕ i , and ψ inside (4) take different expressions depending on the required material behavior. The minimization in (4) with respect to the internal variables F i n+1 and Q n+1 provides an evolution path of these variables within the time step and eliminates them from the potential Ψ letting it depending only on the gradient of deformation F n+1 .

This paper focuses the application of this expression to viscoelastic isotropic materials. Although isotropy is not a theoretical limitation of the present approach, it allows to obtain simple closed expressions that are conveniently explored. Consider the rheological model shown in Fig. 1, usually known as generalized Maxwell model: It is possible to distinguish two types of branches. The first one symbolizes an elastic behavior depending on the gradient of deformations and takes into account a separation of the elastic energy into isochoric and volumetric parts:

ω(F) = ϕ( Ĉ) + U (J) Ĉ = FT F F = 1 J 1/3 F J = det(F)
The isochoric part is an isotropic function of Ĉ depending on its eigenvalues:

ϕ( Ĉ) = ϕ(c 1 , c 2 , c 3 ) Ĉ = 3 j=1 c j E j (5) 
The volumetric part depends on the determinant of F through the bulk modulus K of the material:

U (J) = K 2 [ln J] 2 . ( 6 
)
The Maxwell branch, connected in parallel show a combined elastic/viscous behavior. The total isochoric gradient of deformation F is decomposed in elastic and inelastic (viscous) parts, both isochoric:

F = Fe F v =⇒ Fe = FF v-1 det F v = 1 (7) 
The viscous stretching D v is defined as

D v = sym(L v ) = L v = Ḟv F v-1 = 3 j=1 qv j M v j ( 8 
)
where qv j and M v j , j = 1, 2, 3, are eigenvalues and eigenprojections of D v . Scalars qv j define the amplitude of viscous (inelastic) stretching and they are chosen to be internal variables contained in the set Q. Equation ( 8) has a special meaning: it defines a flow rule for Ḟv and establishes a constraint between F v and q v j through the flow directions M v j . Due to this constraint, F v becomes a internal variable dependent of the (independent) internal variables {q v j , M v j }. An incremental approximation of D v is obtained by the exponential mapping [START_REF] Anand | Finite deformations constitutive equations and a time integration procedure for isotropic hyperelastic-viscoplastic solids[END_REF]:

∆F v = F v n+1 F v-1 n = exp[∆tD v ], (9) 
∆C v = (∆F v ) T ∆F v = F v-T n C v n+1 F v-1 n = exp[∆tD v ] 2 , (10) 
⇒ D v = 1 2∆t ln (∆C v ) = 3 j=1 ∆q v j ∆t M v j = 3 j=1 qv j M v j . (11) 
The elastic potential ϕ e and viscous potential ψ associated to this branch are assumed to be isotropic functions of the elastic deformation and viscous stretching depending only on their corresponding eigenvalues:

ϕ e ( Ĉe ) = ϕ e (c e 1 , c e 2 , c e 3 ), Ĉe = FeT Fe = 3 j=1 c e j E e j ( 12 
)
ψ(D v ) = ψ( qv , qv , qv ) (13) 
Potential ϕ i usually accounts for the hardening phenomenon which is not considered in the present model. Moreover, the potential φ in ( 4) is related to a dissipation contribution depending on the rate of the (total) gradient of deformation Ḟ also not included in the present model. Both potentials are, thus, set to zero. The internal variables are reduced to the spectral quantities ∆q v j and M v j that substitute the minimizing variables Q n+1 , F v n+1 in (4). The incremental potential Ψ is re-written as

Ψ(F n+1 ; E n ) = Ψ(C n+1 ; E n ) = ∆ϕ( Ĉn+1 ) + ∆U (J n+1 ) + min M v j ,∆q v j ∆ϕ e ( Ĉe n+1 ) + ∆tψ ∆q v j ∆t (14) 
∆ϕ( Ĉn+1 ) = ϕ( Ĉn+1 ) -ϕ( Ĉn ) (15 
)

∆ϕ e ( Ĉe n+1 ) = ϕ e ( Ĉe n+1 ) -ϕ e ( Ĉe n ) (16) ∆U (J n+1 ) = U (J n+1 ) -U (J n ) (17) 
The minimization operation is constrained by conditions that ensures the traceless form of D v as well as orthonormality properties of eigenprojections:

∆q v j ∈ K Q = {p j ∈ R 1 : p 1 + p 2 + p 3 = 0} (18) M v j ∈ K M = {N j ∈ Sym : N j • N j = 1, N i • N j = 0, i = j} (19)
It is shown in [START_REF] Fancello | A variational formulation of constitutive models and updates in nonlinear finite viscoelasticity[END_REF]) that

• the minimization in [START_REF] Reese | A theory for finite viscoelasticity and numerical aspects[END_REF] with respect to M v j provides the property of collinearity between Ĉe

n+1 , Ĉpr = F v-T n Ĉn+1 F v-1 n
and D v or, equivalently, between E pr j , E e j , and M v j ;

• the minimization with respect to ∆q v j provides a set of non-linear equations for ∆q v 1 , ∆q v 2 , ∆q v 3 :

∂ϕ e ∂ǫ e j - ∂ψ ∂ qv j + λ = 0, j = 1, 2, 3 (20) 
∆q v 1 + ∆q v 2 + ∆q v 3 = 0 ( 21 
)
where λ is a Lagrangian multiplier and ǫ e j = ln(c e j )/2 .

Due to its particular structure, the nonlinear system (20) and ( 21) can be easily solved by the Newton method with an analytical inverse of the Jacobian matrix (see details in [START_REF] Fancello | A variational formulation of constitutive models and updates in nonlinear finite viscoelasticity[END_REF]). These calculations are analogous to the classical radial returning mapping in elastoplastic problems.

Once the minimization is performed, the partial derivative of Ψ with respect to C n+1 (and consequently with respect to Ĉn+1 and J n+1 ) is calculated in order to obtain the Piola-Kirchhoff stress tensor:

P n+1 = 2F n+1 ∂Ψ(C n+1 ) ∂C n+1 (22) = F n+1 2J -2/3 n+1 DEV ∂ϕ ∂ Ĉn+1 + ∂ϕ e ∂ Ĉn+1 + ∂U ∂J n+1 J n+1 C -1 n+1 ( 23 
)
where DEV(A) = A -1 3 (A : C) C -1 . The corresponding derivatives are [START_REF] Fancello | A variational formulation of constitutive models and updates in nonlinear finite viscoelasticity[END_REF]:

∂ϕ ∂ Ĉn+1 = 3 j=1 ∂ϕ ∂c j E j (24) ∂ϕ e ∂ Ĉn+1 = F v-1 n 3 j=1 ∂ϕ e ∂ǫ e j 1 2c pr j E pr j F v-T n (25) ∂U ∂J n+1 = K ln J n+1 J n+1 (26) 

AXIAL STRESS PROBLEM

Consider an axial stress problem with a single Cauchy stress component σ 11 = σ. For simplicity reasons we assume perfect isochoric behavior fact that, in the present formulation, is accomplished with a conveniently high value of K. Therefore, the gradient of deformation and the strain tensors take the form

F =   λ 0 0 0 1 √ λ 0 0 0 1 √ λ   = F, J = 1 (27) C = B = Ĉ = B = F 2 (28) 
Due to perfect incompressibility the volumetric constitutive relationship is directly substituted by the pressure value:

p n+1 = ∂U ∂J n+1 = σ 3 (29) 
Substituting these expressions in (23) and considering that σ = J -1 PF T ,

σ n+1 = C n+1     2 DEV A ∂ϕ ∂ Ĉn+1 + ∂ϕ e ∂ Ĉn+1 + p n+1 C -1 n+1     (30) = 2 C n+1 A- 1 3 (A : C n+1 ) C -1 n+1 + p n+1 (31) = 2 dev C n+1 ∂ϕ ∂ Ĉn+1 + ∂ϕ e ∂ Ĉn+1 + p n+1 (32) 
Each term between parenthesis in (32) can be conveniently simplified. Considering spectral decomposition, Substituting these expressions in (32) we have

C n+1 ∂ϕ ∂ Ĉn+1 = 3 k=1 c k E k 3 j=1 ∂ϕ ∂c j E j = 3 j=1 ∂ϕ ∂c j c j E j = 3 j=1 1 2 ∂ϕ ∂ǫ j E j (33) 
C n+1 ∂ϕ e ∂ Ĉn+1 = F n+1 F v-1 n+1 3 
σ n+1 = dev 3 j=1 ∂ϕ ∂ǫ j E j + ∂ϕ e ∂ǫ e j E e j + p n+1 (35) 
which is a usual form of the small deformation model for the rheological system given in Fig. 1. This particularization was used to identify the material parameters in the axial compression problem given in section 5.

MATERIAL MODELS

Ogden Model

In the present approach expression (35) is independent of the particular expression for the (isotropic) potentials ϕ, ϕ e . Ogden-based potentials are an interesting option since they are capable of generalizing others models like neo-Hookean and Mooney-Rivlin. General expressions for the potentials are (the same symbol α p was used in all expressions for simplicity purpose, but it can be different for each function):

ϕ = 3 j=1 N p=1 µ p α p ([exp(ǫ j )] αp -1) (36) φ = 3 j=1 N p=1 η p α p ([exp(d j )] αp -1) (37 
)

ϕ e = 3 j=1 N p=1 µ e p α p exp(ǫ e j ) αp -1 (38) ψ = 3 j=1 N p=1 η v p α p exp(d v j ) αp -1 (39) 
Although general, propositions (36-37) have a significative number of independent parameters that may increase if more Maxwell branches are included in order to properly match the viscoelastic behavior of practical materials. A possible and usual way of reducing this is to relate the behavior of the Maxwell branch with that of the main elastic branch i.e., to use model (36) and to define

ϕ e (ǫ e ) = βϕ (ǫ e ) (40) ψ (d v ) = τ ϕ e (d v ) (41) 
The dimensionless parameter β = µ e p /µ p is a proportionality factor between the main and Maxwell springs. On the other side, the parameter τ = η v p /µ e p defines the relationship between the elastic and dissipative components of the Maxwell branch. If others Maxwell branch are added, corresponding new couples of parameters β, τ should be identified.

Mooney-Rivlin model

The quasi incompressible Mooney-Rivlin model is given by a isochoric potential of the first and second invariants of the isochoric Cauchy strain tensor:

ϕ = C 1 Î1 -3 + C 2 Î2 -3 Î1 = tr Ĉ Î2 = 1 2 ( Î1 ) 2 -tr ( Ĉ) 2 
Ogden model can also be reduced to Mooney-Rivlin by taking the following parameter equivalence:

N = 2, µ 1 = 2C 1 , µ 2 = -2C 2 , α 1 = -α 2 = 2
In this case, the equivalent shear coefficient for small strains is µ = 1 2 (C 1 + C 2 ) > 0.

PARAMETER IDENTIFICATION OF SOFT BRAIN TISSUE

In this section expression (36) combined with (40) and (41) the are tested in order to match the experimental stress-strain curves extracted from [START_REF] Miller | Constitutive model of brain suitable for finite element analysis of surgical procedures[END_REF], representing the compressive test of a swine brain specimen for strains up to 30% and strain rates between 0.64 × 10 -5 to 0.64 1/s. It was already pointed out that an appropriate choice of material parameters in Ogden model reproduces the Mooney-Rivlin and Neo-Hookean material models. In the present work this property was explored and six different cases were tested. The two first correspond to a Mooney-Rivlin material with one and two Maxwell branches respectively. The remaining four cases test the Ogden model with N = 1, 2 as well as one and two Maxwell branches. The parameter identification was performed by least square minimization with lateral constraints for all three curves simultaneously. The residual function r(p) is defined as

r(p) = N P j=1 (P ex (ǫ j ) -P (p; ǫ j )) 2
where P ex (ǫ j ) is the experimental engineering stress at strain ǫ j , N P the number of experimental points and p is the vector of material parameters submitted to lower and upper limits. A point still in discussion is which conditions should be enforced on material parameters in order to satisfy consistent physical properties of the free energy function. Simple polynomial forms like Neo-Hookean or Mooney-Rivlin materials are asked to satisfy the condition C 1 > 0, C 2 ≥ 0 to fulfill the requirement of a positive strain-energy [START_REF] Truesdell | The non-linear field theories of mechanics[END_REF]. The so-called polyconvexity property was proved to be a tractable sufficient condition to guarantee the existence of at least one minimizing deformation of the elastic free energy in a variational boundary value problem. However, high order expressions like Ogden model do not necessarily satisfy polyconvexity requirements in general and no clear constraints are available for the material parameters. A practical procedure consist on testing the model with different experimental data if available, coming form tensile, compressive and shear tests. Further discussion on this issues may be found in [START_REF] Ciarlet | Mathematical Elasticity, Volume I: Three-Dimensional Elasticity[END_REF], (Hartman, 2001), (Hartman and Neff, 2003), [START_REF] Dhondt | The Finite Element Method for Three-dimensional Thermomechanical Applications[END_REF] among others. For the present test, no negative parameters were allowed in the Mooney models. Moreover, non-negative values of β and τ are enforced in order to preserve the functional properties of the potential (36) in the other branches.

A last case was run in which the signal condition of the Mooney parameters is released, leading to an excellent behavior within the compressive range but with a non physical behavior for positive strains. The matching results of all cases are given in Table 1, where the optimal parameter values and residual are indicated.

Figure 2 show the curves of first Piola Kirchhoff (engineering) stress versus natural (logarithmic) strains for the experimental data and those models with a single Maxwell branch. The error of the models with respect to the experimental data is shown in Fig. 3. Figures 4 and5 display the same results for the models with two Maxwell branches.

For the present case, both Mooney models showed lack of enough flexibility to match the curvature of the compressive experimental data. It is possible to see that it was obtained a coefficient C 1 = 0.0 in both cases, value that was achieved for a minimization run considering 0 (zero) as a lower limit value.

If only one type o test value are available (in this case uniaxial compressive values), some care is needed when a general procedures like least-square procedure is used. Figure 6 show that if unconstrained search is performed, the set of identified parameters give a curve with an exceptional low error (see Residual in Table 1). However, Fig. 7 show the behavior of such curves for strains within the interval [-0.3, 0.3], resulting in unacceptable compression stresses for positive strains, contrasting with the expected results given by the constrained case (Figure 8). Figures 9 and 10 also show the other material models with positive but quite different tensile behaviors, none of them incorrect a-priori. This examples emphasize the need for different experimental tests in order to run appropriate identification procedures in models with an increasing number of material parameters ().

CONCLUDING REMARKS

This paper show a viscoelastic formulation based on a variational framework able to include different isotropic material models depending on the choice of elastic and dissipative potentials. Stress updates are obtained from a minimization procedure whose implementation is independent of the potential expressions. The material tensor is also computed from closed form expression which drives to numerical costs comparable to that of classic radial-return in elasto-plastic models. Mooney4 N = 2 :

C 1 = µ 1 = 0 C 2 = -µ 2 = 307.22 (α 1 = -α 2 = 2)
1 branch: In order to verify the performance of the shown formulation, the material parameter identification on a set of experimental curves of a brain specimen tested at a range of strain rates was studied by using different potential expressions.

β 1 = 4.1220 τ 1 = 17.258 59.001 Mooney6 N = 2 : C 1 = µ 1 = 0 C 2 = -µ 2 = 264.93 (α 1 = -α 2 = 2)
N = 2 : C 1 = µ 1 = -803.36 C 2 = -µ 2 = 827.48 (α 1 = -α 2 = 2) 2 
From the observed numerical results some remarks can be stated:

• The proposed formulation behaved with appropriate flexibility to match the experimental material behavior at a wide range of strains and strain rates. For the present case a satisfactory material representation was obtained even with a small number of parameters.

• The Ogden model showed, as expected, more flexibility than Mooney-Rivlin model to match experimental data even in cases with the same number of material parameters (compare the errors of Mooney4 and Ogden4 models, for example).

• Depending on the material model, the set of parameters that match correctly an specific mechanical test (e.g. traction, compression or shear) do not necessarily match the material curves at a different test or strain ranges, leading eventually to completely erroneous or non physical results. Constraints that provide mechanical consistency like policonvexity of hyperelastic potentials should be used if possible.

• Parameter identification using tensile and shear experimental tests (when available) would certainly improve the reliability of the results.
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 67 Figure 6: Experimental and Mooney6 unconstrained Stress/strain curve.
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	Model	Parameters		Residual
		Main elastic branch	Maxwell branches	r(p) 1×10 4
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