
HAL Id: hal-01007825
https://hal.science/hal-01007825

Submitted on 27 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A variational framework for nonlinear viscoelastic and
viscoplastic models in finite deformation regime

Laurent Stainier, Eduardo Fancello, Jean-Philippe Ponthot

To cite this version:
Laurent Stainier, Eduardo Fancello, Jean-Philippe Ponthot. A variational framework for nonlinear
viscoelastic and viscoplastic models in finite deformation regime. Argentinian Congress on Computa-
tional Mechanics (MECOM VIII), 2005, Buenos Aires, Argentina. �hal-01007825�

https://hal.science/hal-01007825
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A VARIATIONAL FRAMEWORK FOR NONLINEAR VISCOELASTIC
AND VISCOPLASTIC MODELS IN FINITE DEFORMATION REGIME

Laurent Stainier ∗, Eduardo A. Fancello†, and Jean-Philippe Ponthot∗
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Abstract. The goal of this work is to provide a general framework for constitutive viscoelastic
and viscoplastic models based on the theoretical background proposed in Ortiz and Stainier,
Comput. Meth. App. Mech. Engng., Vol. 171, 419–444 (1999). Thus, the approach is qualified
as variational since the constitutive updates obey a minimum principle within each load incre-
ment. The set of internal variables is strain-based and thus employs, according to the specific
model chosen, multiplicative decomposition of strain in elastic and irreversible components.
Inserted in the same theoretical framework, the present approach for viscoelasticity shares the
same technical procedures used for analogous models of plasticity or viscoplasticity, say, the
solution of a minimization problem to identify inelastic updates and the use of exponential map-
ping for time integration. Spectral decomposition is explored in order to accommodate, into
analytically tractable expressions, a wide set of specific models. Moreover, it is shown that,
through appropriate choices of the constitutive potentials, the proposed formulation is able to
reproduce results obtained elsewhere in the literature. Finally, different numerical examples are
included to show the characteristics of the present approach and to compare results with others
found in literature when possible.
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1 INTRODUCTION

Many different models for viscoelastic materials in finite deformation regime are found in lit-
erature. However, in contrast with what we see in small deformation models, the choice of
convenient internal variables and evolution laws is not trivial nor unique, leading to different
formulations. From one side, we recall the the work of Simo1 in which an additive decompo-
sition of stresses in equilibrium and non equilibrium contributions is stated and, more relevant,
the evolution law is defined as a linear differential equation on the non-equilibrium stresses.
This approach was later followed, among many others, by Holzapfel and Simo,2 Holzapfel3

or, more recently, Holzapfel and Gasser,4 and Bonet.5 Multiplicative decomposition of strains
applied to viscoelastic constitutive equations goes back to the work of Sidoroff6 and later to
several others.7–9 In particular Reese and Govindjee10 discussed the ability of different models
to reproduce nonlinear viscous behavior and they proposed a model which is not restricted to
small perturbations away from thermodynamic equilibrium.

The goal of this work is to provide a general framework for constitutive viscoelastic models
based on the mathematical background proposed in Ortiz and Stainier,11 and Stainier.12 The
approach is qualified as variational since the constitutive updates obey a minimum principle
within each load increment. The set of internal variables is strain-based and thus employs,
according to the specific model chosen, multiplicative decomposition of strain in elastic and
viscous components.

Inserted in the same theoretical framework, this particularization and that for plasticity or
viscoplasticity, share the same technical procedures to deal with the local nonlinear constitutive
problem, i.e. the solution of a minimization problem to identify inelastic updates and the use of
exponential mapping for time integration.13,14 However, instead of using the classic decompo-
sition of inelastic strains into “size” and “direction”, we take profit of a spectral decomposition
that provides additional facilities to accommodate, into simple analytical expressions, a wide
set of viscous models. It is also possible to show that an appropriate choice of constitutive
potentials allows to retrieve other models in literature.

2 VARIATIONAL FORM OF CONSTITUTIVE EQUATIONS

Using conventional notation, let us callF = ∇0x the gradient of deformations, andC = FTF
the Cauchy strain tensor, respectively. These values may be decomposed in volumetric and
isochoric parts. The isochoric tensors are defined as follows:

F̂ =
1

J1/3
F, J = det(F), Ĉ = F̂T F̂ =

1

J2/3
FTF, (1)

We will work in the framework of irreversible thermodynamics, with internal variables. Thus,
we define a general setE = {F,Fi,Q} of external and internal variables, whereFi is the in-
elastic part of the (total) deformation, andQ contains all the remaining internal variables of the
model. In addition, a multiplicative decompositionF = FeFi of the gradient of deformations is
considered. We assume the existence of a free energy potentialW (E) and a dissipative potential
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φ(Ḟ; E), such that the Piola-Kirchhoff stress tensor, comprised of an equilibrium (elastic) and a
dissipative (viscous) components, is derived as follows:

P =
∂W

∂F
(E) +

∂φ

∂Ḟ
(Ḟ; E). (2)

In addition, another dissipative potentialψ(Ḟi, Q̇; E) is included to characterize the irreversible
behavior related to the inelastic tensorFi, such that

T = −∂W
∂Fi

(E) =
∂ψ

∂Ḟi
(Ḟi, Q̇; E), A = −∂W

∂Q
(E) =

∂ψ

∂Q̇i
(Ḟi, Q̇; E). (3)

It was shown11,12 that an incremental version of the above equations, constituting an incre-
mental update method for the material state, can be obtained from the following incremental
potential:

W(Fn+1; En) = ∆tφ
(
F̊, En

)
+ min

Fi
n+1

Qn+1

{
W (En+1)−W (En) + ∆tψ

(
F̊i, Q̊; En

)}
, (4)

whereF̊ (Fn+1, En) , F̊i
(
Fi

n+1, En

)
andQ̊ (Qn+1, En) are suitable incremental approximations

of the rate variableṡF, Ḟi andQ̇ respectively.

3 VISCOPLASTICITY MODELS

We start by recalling the variational formulation of visoplasticity, as proposed in previous
work.11,12 This will provide a background against which differences and similarities between
viscoplasticity and viscoelasticity can be contrasted.

Viscoplastic solids are characterized by the existence of a certain class of deformationsFp,
or plastic deformations, which leave the crystal lattice undistorted and unrotated, and, conse-
quently, induce no long-range stresses. In addition to the plastic deformationFp, some degree
of lattice distortionFe, or elasticdeformation, may also be expected in general. One therefore
has, locally,

F = FeFp (5)

This multiplicative elastic-plastic kinematics was first suggested by Lee,15 and further devel-
opped and used by many others.

We postulate the existence of a Helmholtz free energy density of the form

W = W (Fe,Fp,Q) = W (FFp−1,Fp,Q) ≡ W (F,Fp,Q) (6)

whereQ ∈ RN denotes some suitable collection of internal variables. The complete set of
internal variables is, therefore{Fp,Q}. Thelocal stateof the material is then described by the
variables{F,Fp,Q}. In materials such as metals, the elastic response is ostensibly independent
of the internal processes and the free energy (6) decomposes additively as

W = W e(FFp−1) +W p(Fp,Q) (7)
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The functionW e determines the elastic response of the metal, e. g., upon unloading, whereas
the functionW p describes the hardening of the material. Physically,W p represents the stored
energy due to the plastic working of the material. In the case where the state of hardening if
fully described by a single internal variable, i. e.,N = 1, Q = {ε̄p}, the material is said to
undergo isotropic hardening.

A possible extension of von Mises’ theory of plasticity to the finite deformation range is
obtained by postulating a flow rule of the form:

ḞpFp−1 = ˙̄εpM (8)

whereε̄p is the effective plastic strain and the symmetric matrixM is required to satisfy the
incompressibility constraint:

trace(M) = 0 (9)

and the normalization condition:

M ·M =
3

2
(10)

but is otherwise unspecified. The normalization condition (10) is chosen so that˙̄εp coincides
with the rate of axial stretching in the uniaxial test. The flow rule (8) is a constraint relating
the internal variablesFp and ε̄p, which must be accounted for in the minimization (4) (the
minimization is then also carried overM).

Plastic deformations are incrementally updated by the exponential mapping

Fp
n+1 = exp [∆ε̄pM]Fp

n (11)

The exponential mapping has the convenient property of preserving the isochoric character of
plastic deformations.13,14

4 A GROUP OF VISCO-HYPERELASTIC MODELS

4.1 General formulation

A quite general group of viscoelastic materials can be modelled within the present variational
framework. Due to the possibility of obtaining analytical or semi-analytical expression for the
constitutive updates, only isotropic models will be considered now. However, no theoretical
constraints to include more general behaviors are found. The rheological mechanism shown in
Figure 1 is taken as a basis to include different potentials expressions in (4). The model is based
on the following assumptions:

• The elastic part of the Kelvin branch is split in isochoric and volumetric energies. The
isochoric part is an isotropic function of̂C = F̂T F̂ :

ϕ(Ĉ) = ϕ(c1, c2, c3), (12)
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Figure 1: Generalized Kelvin-Maxwell model.

wherecj are the eigenvalues of̂C. The volumetric part may be defined using the usual ex-
pressionU(J) = K

2
[ln J ]2, The viscous part of the Kelvin branch is an isotropic function

of the symmetric part of the rate of deformation:

φ(D) = φ(d1, d2, d3) with D = dev
(

sym
(
ḞF

−1
))

, (13)

wheredj are the eigenvalues ofD.

• The Maxwell branch, connected in parallel, is based on a multiplicative split of strains in
an elastic and an isochoric inelastic (viscous) part:

F̂ = F̂eFv =⇒ F̂e = F̂F
v−1

, detFv = 1. (14)

A flow rule for the internal variableFv can be written as:

Ḟv = DvFv =
(
dv

jM
v
j

)
Fv, (15)

in which the spectral decomposition ofDv = sym(ḞvFv−1) in eigenvaluesdv
j and eigen-

projectionsMv
j , j = 1, 2, 3, was used. The scalarsdj are chosen to be the internal

variables contained in the setQ̇ = {d1, d2, d3}. In this case, it is important to note that
(15) is a constraint relating the internal variablesFv andQ . The elastic and viscous
potentials associated to this branch are assumed to be isotropic functions of the elastic
deformation and viscous stretching, and thus depend on their eigenvalues:

ϕe(Ĉe) = ϕe(ce1, c
e
2, c

e
3) and ψ(Dv) = ψ(dv

1, d
v
2, d

v
3), (16)

wherecej are the eigenvalues of̂Ce.

• Viscous deformations are incrementally updated by exponential mappings:

∆F̂ = F̂n+1F̂
−1
n = exp[∆tD] ⇒ D =

∆qj
∆t

Mj =
1

2∆t
ln

(
∆Ĉ

)
. (17)
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∆Fv = Fv
n+1F

v−1
n = exp[∆tDv] ⇒ Dv =

∆qv
j

∆t
Mv

j =
1

2∆t
ln (∆Cv) . (18)

Expressions (17) and (18) show thatD andDv are approximated by incremental expres-
sions of∆Ĉ and∆Cv respectively. The exponential mapping has the particular conve-
nient property of providing an isochoric tensor for any traceless argument.13,14

Taking into account (17) and (18), the minimizing variablesQn+1,F
v
n+1 in (4) are replaced

by the new incremental variables∆qv
j ,M

v
j .:

W(Fn+1; En) = W(Cn+1; En) = ∆ϕ(Ĉn+1) + ∆tφ
(

∆qv
j

∆t

)
+ ∆U(θn+1)

+ min
Mv

j ,∆qv
j

{
∆ϕe(Ĉe

n+1) + ∆tψ
(

∆qv
j

∆t

)}
, (19)

such that

∆qv
j ∈ KQ = {pj ∈ R : p1 + p2 + p3 = 0}, (20)

Mv
j ∈ KM = {Nj ∈ Sym : Nj ·Nj = 1, Ni ·Nj = 0, i 6= j}. (21)

The setKQ enforces the traceless form ofDv, while the setKM accounts for usual properties
of eigenprojections. Moreover, it is easy to verify that both sets are convex on their respective
variables. Given isotropic expressions for energy functions, the minimization in (19) can be
performed analytically. A simple extension to this model can be obtained by considering a set
of P Maxwell branches, as seen in Figure 1. More details on the practical implementation of this
formulation, including the derivation of a consistent tangent operator can be found elsewhere.16

4.2 Hencky and Ogden models

Hencky models are based on quadratic forms of logarithmic strain tensors:

ϕ = µ
3∑

j=1

(εj)
2 , φ = η

3∑
j=1

(dj)
2 , (22)

ϕe = µe
3∑

j=1

(
εej

)2
, ψ = ηv

3∑
j=1

(
dv

j

)2
. (23)

In this case, it is particularly convenient to obtain simple uncoupled linear expressions for the
minimizing argument∆qv

j . In spite of the facility offered by Hencky models in terms of an-
alytical treatment, it is well known that these type of hyperelastic potentials do not fit well
the behavior of rubber-like materials. For that case, a more adequate choice may be the Og-
den model which has also the capability of generalizing other models like neo-Hookean and
Mooney-Rivlin. Ogden models are based on the following potentials:

ϕ =
3∑

j=1

N∑
p=1

µp

αp

([exp(εj)]
αp − 1) , φ =

3∑
j=1

N∑
p=1

ηp

αp

([exp(dj)]
αp − 1) , (24)

ϕe =
3∑

j=1

N∑
p=1

µe
p

αp

([
exp(εej)

]αp − 1
)
, ψ =

3∑
j=1

N∑
p=1

ηv
p

αp

([
exp(dv

j )
]αp − 1

)
. (25)
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5 NUMERICAL EXAMPLES

5.1 Shear test

This example presents a pure shear tests of a single 3D element (Figure 2). Material parameters
and load characteristics were taken from an equivalent example in Reese and Govindjee,10 in
order to perform some useful comparisons. The lateral displacementux follows a sinusoidal law

Figure 2: Cyclic shear test

ux = U sinwt , wherew = 0.3 s−1. The material was assumed to be almost incompressible
through the choice of a high value for the bulk modulusK. Two different models forϕ were
used: Ogden model and Hencky model. In the case of Ogden, we used the following six-
parameter fitting:µ1 = 20, µ2 = −7, µ3 = 1.5, α1 = 1.8, α2 = −2, α3 = 7. For the Hencky
model, the valueµ =

∑
i

1
2
µiαi = 30.25 was used, which is the consistent equivalent shear

modulus for small deformations. The Maxwell branch uses Hencky model for both potentials
with µe = 77.77 and viscous coefficientηv such thatτ = ηv

µe = 17.5 .
The time evolution of Cauchy stressesσxy as a function of shear strainCxy, for different

shear amplitudes, is shown in Figure 3. In the case of small strains both models (Ogden or
Hencky main spring) give identical results, and match quite well equivalent results in the refer-
ence work.10 As expected, the behavior of the main spring is determinant on the behavior of the
whole system for deformations higher than unity. Comparing the results of the Ogden-based
model with those of Reese and Govindjee10 it is possible to see a close correlation of maximum
values of stress for all four cases. However, hysteresis loops clearly look “thinner” as the de-
formation grows along the cycle. This behavior is in agreement with the fact that the Hencky
model used in the Maxwell branch provides a contribution in stress much more lower than a
corresponding Ogden model for high deformations.

5.2 Viscoelastic support

This example simulates a viscoelastic cylindrical support clamped on its exterior surface and
with a rigid edge connected to a vibrating device (see Figure 4).
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Figure 3: Stress-strain curves in cyclic shear test

The harmonic vibrationu = U sinwt , with w = 10 s−1 occur along different directions.
The first one is a lateral translation with maximum displacementUx = 3

8
(Re−Ri). The second

one is composed by a axial translation (Uy = Ri) and rotation (θy = 45◦). Dimensions of
the viscoelastic support areRi = 15mm, Re = 30mm andL = 50mm. Figure 5(a) shows
the maximum amplitude of deformations for a lateral motion while Figure 6(a) illustrates the
case of axial (rotation plus translation) motion. The isochoric nature of the material shows up
in Figure 5(a) where the compressed and tractioned sides of the cylinder deform accordingly
to preserve this constraint. Two material models were run, both sharing the same constitutive
characteristics in the small strain regime.

• Case 1: Ogden model for both springs potentialsϕ andϕe (µe
i = 4µi) : µ1 = 3.5 ;µ2 =

0.011 ; µ3 = 0.0015 andα1 = 0.1 ; α2 = 2.0 ; α3 = 9 (µeq =
∑

i
1
2
µiαi = 0.19275 MPa).

The viscous potentialψ is of Hencky type withηv = 7.69 (τ = 0.4 s). Potentialφ is null.
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Figure 4: Support. Undeformed configuration.

• Case 2: All potentials of Hencky type:µ = 0.19275 MPa,µe = 4µ , ηv = τµe , τ = 0.4 s.
Potentialφ is null.

Figures 5(b) and 6(b) show the hysteretic loops in force/displacement for the lateral and axial
motions respectively. These graphics clearly show the model differences that are accentuated in
large strain regimes.
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Figure 5: (a) Deformed configuration for lateral edge motion. (b)Lateral forceFx versus displacementux.

6 CONCLUSION

We presented in this article a general set of viscoelastic constitutive models based on a vari-
ational framework which provides appropriate mathematical structure for further applications
like, for example, error estimation. The theoretical and numerical background is stated for gen-
eral isotropic constitutive functions depending on eigenvalues of strains and strain-rates. As a
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Figure 6: (a) Deformed configuration for axial edge motion. (b) Axial forceFy versus displacementuy.

consequence, most of the implementation effort, including stress updates and tangent matrix is
done at generic level with no relation to a specific isotropic law (potential).

In the numerical examples we compared the capacity of Hencky and Ogden-type models to
reproduce observed nonlinear viscous behaviour. As expected, Ogden models perform better
for the case of large strains and rubber-like materials, leading to non-elliptic hysteretic loops.
Moreover, this choice do not represent, in the present formulation, any additional complexity to
the numerical implementation or additional cost on computations.
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