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ABSTRACT 

The modeling of dynamic contact forces between a tire tread and a road surface is an 
essential input for the prediction of absolute tire/road noise levels.  
Here, an original approach called the Two-scale Iterative Method (TIM) is presented for 
the analytical prediction of the contact force distribution between a rough road surface and 
a tire. It is based on an approximate relation between the normal contact force and the 
relative displacement at the tip of each punch, on which a contact law is known 
analytically or calculated numerically. The relation takes into account the interacting effect 
between the punches. Then pressure distribution on each individual punch can be 
calculated by traditional numerical methods at a local scale. The calculation is much faster 
than other existing methods, and real 3D contact patches with a large number of asperities 
can be calculated. 
An experimental validation is performed using a digital pressure sensing device 
(Tekscan©). Static contact pressure distributions are measured and simulated for a slick 
tire on eight different road surfaces. A fair agreement is obtained between measurements 
and calculation of contact area, mean pressure and pressure distribution in the contact 
patch. Thus, the use of this model for tire-road noise modeling is very encouraging. 
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1 INTRODUCTION 

The modeling of dynamic contact forces between a tire tread and a road surface is an 

essential input for the prediction of absolute tire/road noise levels. In this problem, the 

contact pressure at the interface between a rigid surface and a rubber half-space must be 

calculated. The classical approach is based on the derivation of an influence matrix that links 

the displacement at points on the surface to the pressure in the contact area. The problem is 

solved by an iterative inversion process until the equilibrium of pressures is achieved. This is 

described by Johnson [1] and will be referenced in this paper as a Matrix Inversion Method 

(MIM). This method has been widely used, especially in the context of tire-road noise by 

Wullens and Kropp [2], Klein et al. [3]. Its efficiency is limited to a reasonable number of 

punches. In this paper, a more efficient approach is proposed, leading to a simplified 

calculation scheme that makes possible the prediction of contact forces on larger areas or 

with a larger amount of asperities. It is called the Two-scale Iterative Method (TIM) as the 

pressure distribution in the contact area is calculated at two iterative scales. At macro-scale, 

the force on each punch is calculated from a local load-penetration approximation, and at 

micro-scale, the pressure distribution on each punch is calculated using a local MIM 

approach. The resulting calculation is time-efficient, even when the number of punches is 

large as in the case of tire-road contact.  

In the first part, the method is presented and examples of tire-road contact patches are 

given at a fine pressure scale. Then an experimental validation is performed using a digital 

pressure sensing device (Tekscan©). Correlations between measured and calculated pressures 

are discussed.  

 

2 THE MODELING APPROACH BY TWO-SCALE ITERATIVE METHOD (TIM) 

2.1 General hypothesis 

The tire tread is modeled by a perfectly flat three-dimensional elastic half-space with a 

Young’s modulus E and a Poisson’s ratio ν. The road surface is described by N perfectly 

rigid indenters with random shapes. The surfaces in contact are frictionless, which means that 

there is no tangential tractions and only the normal pressure is taken into account in the 

contact area. The contact problem is solved in statics along the driving path line for each 

space step Δx. The time-dependence of the contact forces can be obtained by a combination 

of the static results at each time step Δt = Δx/V, where V is the car velocity. 

2.2 Macro-scale: calculation of contact forces at each tip 

In many cases, the solution for single rigid punch acting on an elastic half-space can be 

described by an analytical relation between the total load on the punch P and the total depth 

of penetration at the tip of the punch δ. This is called the load-penetration function and can 

also be determined by numerical methods if the analytical solution is not available. These 

relations take the form:  

 

P = C E* δ γ (1) 

 

where C is a constant depending on the geometry and the size of the punch, γ is also a 

constant depending on the shape of the punch, and E* = E/(1-ν ²). For instance for a spherical 

punch of radius R, the Hertz’s theory gives C = R
3

4
  and δ = 

2

3
. 
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Figure 1: Contact between an elastic half-space and several rigid punches. 

 

 

In the case of a surface with many punches (Figure 1), the normal contact force Pk on the k
th

 

punch can be expressed for a global penetration δ: 
 

Pk = Ck E* [(δ - zk - uk)H(δ - zk - uk)]
γk (2) 

 

where H is the Heaviside’s function and uk is the normal displacement of the elastic half-

space at the tip of the k
th

 punch due to the other punches. This displacement can be expressed 

using the Boussinesq’s approximation: 

 

uk =    with   T∑
≠
=

N

kl
l

lkl PT

1

kl = 

( ) ( )22

1

lklk yyxx*E −+−π
 

(3) 

 

The combination of the last two equations leads to the resolution of a system of non linear 

equations with unknowns Pk that can be solved with the Newton-Raphson’s iterative scheme. 

 

2.3 Micro-scale: calculation of pressure distribution 

In some applications, the determination of the contact force Pk at the tip of each punch 

can be sufficient. However, it is also possible to calculate the pressure distribution on the 

contact surface by using a local MIM (noted LMIM) at the scale of an individual punch. The 

interface is discretized into square identical elements on which the pressure is assumed 

constant. The pressure distribution p
0
 is calculated from the forces Pk obtained at macro-

scale. The pressure vector is written: 

 

p
0
 = {p1

0
, … , pk

0
, … , pN

0
} (4) 

 

The sub-vector pk
0
 corresponding to the pressure distribution on the k

th
 punch is calculated by 

LMIM for a known loading force Pk: 
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 (5) 

where δk the local penetration and nk the number of elements on punch k. Ckij
 is the influence 

coefficient between element i and element j. In a first approximation, this vector p
0
 gives a 

good prediction of the pressure distribution in the contact zone. It can be improved by the 

introduction of an iterative process that will not be described here but can be found in [5]. 

2.4 Calculation of tire-road print contact area 

The TIM approach was successfully compared with other numerical methods (MIM, 

FEM) on small surfaces with spherical and flat-ended punches [5]. The convergence of the 

iterative scheme of the TIM is faster than the classical MIM by a factor of more than 10. This 

ratio is even higher when the number of punches increases (a factor of 70 was observed in the 

case of 24 punches). This makes the TIM an adapted tool for the prediction of contact forces 

between a tire and a rough road surface including a large amount of punches. To demonstrate 

the capacity of the method, calculations were performed at the scale of a real tire print on a 

road surface. The modeling principle is summarized in Figure 2.  
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Figure 2: Modeling principle of static tire-road contact. 

First, the 3D texture of the surface is measured by an optical device. An array of 955000 

coordinates distributed on a 200 mm by 191 mm rectangular surface with a spacing of 0.2 

mm gives the geometrical description of the surface. This data set is then pre-processed by a 

labeling procedure that identifies and numbers the punches. This procedure is based on an 

algorithm used in image processing for picture segmentation and shape identification. Then, 

for each identified punch, the load-penetration law is determined by a numerical approach, 

using a local MIM. Additional input parameters for the model such as the total load P applied 

on the wheel, or the Young’s modulus E of the tire material can be measured or estimated. 

For a better accuracy of the model, it is also possible to introduce the curved geometry of the 

tire, and the position (X0, Y0) of the point where the total load P is applied.  

Then the TIM is applied to give the force distribution on all the defined punches. Finally, 

in order to get the pressure distribution, the LMIM is applied locally on each punch. 
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An example of the calculation result in terms of pressure distribution is shown in Figure 3 

for two different surfaces. One is a model surface with spherical punches of 8, 10 and 12 mm 

diameter and randomly distributed. The second one is a real Dense Asphalt Concrete road 

surface with aggregate size of maximum 10 mm. A total load of 2950 N is applied on the 

surfaces by a slick tire of diameter 57 cm and width 186 mm. The Young’s modulus of the 

tire material is E=2.4 MPa. The first contact pattern was obtained in about 10 minutes and the 

second one in less than 1 hour on a standard computer. 
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Figure 3: Pressure distribution on a model surface with spherical punches (top) and on a Dense Asphalt 

Concrete 0/10 (bottom). Measured 3-D texture (left) and calculated pressure distribution (right). 

 

 

3 EXPERIMENTAL VALIDATION 

3.1 Pressure measuring device 

For the validation of the TIM model, a digital pressure sensing device developed by 

Tekscan© was used. The system is composed of a matrix-based sensor linked to an 

acquisition card and a P.C. (Figure 4). The data acquisition display and analysis is monitored 

by software. The contact pressure distribution between two bodies can be measured in real 

time, at a frequency step of 207 Hz. The sensor consists of two thin, flexible polyester sheets 

which have electrically conductive electrodes placed in a regular mesh. Between the sheets, a 

semi-conductive layer provides an electrical resistance that varies proportionally to the 

pressure applied. Thus, the sensor is an array of force sensitive cells measuring the pressure 

distribution between the two surfaces. The sensor used in the experiment (ref 3150) has an 

active area of 432 mm x 368 mm divided in an array of 2288 square cells of side Δx = 8.38 

mm. It is very thin (0.1 mm thickness) which minimizes the intrusion when placed between 

the two contacting bodies. 
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Tekscan 
handle

Sensitive cells

 
Figure 4: Measurement device. 

 

However the measurement system provides raw data between 0 and 255, and a calibration 

must be applied in order to link these data with pressure or force values. The sensor response 

is not linear. It depends on the sensitivity of the sensor, on the geometry of the surfaces and 

on the loading procedure. It is recommended by the manufacturer to calibrate the sensor for a 

loading condition similar to the one in the measured case. In practice, the total load applied 

on the tire, measured independently on a weighting device, is used as the calibration 

reference on each measurement. It is assumed that the relation between the pressure and the 

digital values is linear, within the studied range. 

 

3.2 Measurement procedure  

In a first validation step, static measurements of contact pressure between a rubber block 

and small samples with spherical indenters were performed. The results lead to a very good 

agreement. They were presented in [4]. Here the static contact between a real tire and 

pavement samples is studied for eight different road surfaces. 

 

     
 Smooth Epoxy Model Surface#1 Model Surface#2 Dense Asphalt 

    Concrete 0/10 

     
 Thin layer 0/10 Porous Asphalt Fine Surface Sand Asphalt 

  0/10 Dressing 

Figure 5: Description of the tested road surfaces. 

 

The model surface #1 is made of spheres of radius 10 mm with a periodic honeycomb 

distribution. The model surface #2 is made of spheres of radius 8, 10 and 12 mm with a 

random distribution. The other five surfaces are taken from real roads. Three are asphalt 

concretes with 10 mm maximum aggregate size. The last two surfaces are surface dressing 

with small size protruding aggregates. 

All surface samples are 0.4 m by 0.4 m. For all of them, texture measurements were 

performed as described previously. 
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The right rear wheel of a passenger car fitted with a slick tire is loaded on each surface 

sample. The tire load P=2950 N was measured previously. Each measurement is repeated 

four times. 

 

 

Sample of 

road surface 

Slick tire 

Sensor 

Figure 6: Description of the contact experiment. 

 

3.3 Measurement results and comparison with calculations  

For the comparison between measurements and calculation, additional information and 

processing is needed. First, an equivalent Young’s modulus of the tire material was estimated 

so that the calculated mean contact pressure is equal to the measured one on the smooth 

surface. The resulting value is E=2.4 MPa. Second, the spatial resolution of the calculated 

results is very fine (Δx=0.4 mm), whereas it is much wider for the measurement results 

(spacing of the sensor cell, i.e. Δx=8.38 mm). Thus the calculated results must be integrated 

on surfaces equivalent to the sensor cells. 

A comparison of measured and calculated pressure distribution is shown in figure 7 for 

the model surface#1, the Dense Asphalt Concrete and the Porous Asphalt Concrete. It can be 

seen that qualitatively the agreement between measured and calculated prints is good. The 

periodicity of the model surface leads to periodic results in both cases. On surfaces with 

random texture, the pressure distribution is irregular. On the porous surface, both experiment 

and calculation show more gaps in the pattern (cells with a zero pressure) and higher 

maximum pressure than on the dense asphalt surface. The predicted contact areas are similar 

to the measured ones. 

The predicted and measured contact areas and mean pressures are compared for the seven 

surfaces in figure 8. Each symbol corresponds to a road surface. The regression line is plain, 

the one-to-one line is dashed. The coefficients of the regression line are indicated together 

with the coefficient of correlation. The agreement between predicted and measured data is 

correct, especially when considering the accuracy of the measuring device (specified as 

±10%). The predicted contact area is slightly underestimated in the case of porous asphalt 

and thin layer asphalt, leading to an overestimation of the mean pressure for these two 

surfaces. It corresponds to the two roughest surfaces. 
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Figure 7: Calculated (top) and measured (bottom) tire/road pressure distributions for the Model Surface#1 (left), 

the Dense Asphalt Concrete (middle), and the Porous Asphalt (right) 
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Figure 8: Comparison between calculated and measured contact areas (left) and mean pressure (right) for all 

surfaces. 

 

Finally predicted pressure distributions are compared to measured ones, in each area 

corresponding to a sensor cell. The results for the model surface #1 with spherical punches, 

for the Dense Asphalt, and for the Porous Asphalt are displayed in Figure 9. Here again, the 

regression line is plain, with coefficients indicated at the top left, and the one-to-one line is 

dashed. The agreement is really encouraging, the slope of the regression line is close to one, 

and the regression coefficients are above 0.77. Comparisons for other surfaces are of the 

same order, except a slight overestimation of predicted results in the case of the last two 

surfaces at high pressure. These two surfaces (Fine Surface Dressing and Sand Asphalt) 

correspond to relatively smooth surfaces with very small (< 1.5 mm) protruding aggregates. 

The differences observed can be attributed to small spatial shifts between the experimental 

and the modeled mesh. In general for high pressure, the predicted results may be slightly 
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overestimated. This can be explained by the overload of the sensor for local pressures higher 

than 0.86 MPa. Furthermore, the approximation in the calculation of the pressure vector p
0
 at 

the local scale may be inaccurate when several adjacent punches are seen by the penetrating 

tire as one single punch. 
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Figure 9: Comparison between calculated and measured pressure distributions in each sensor cell, for the Model 

Surface#1 (left), the Dense Asphalt Concrete (middle), and the Porous Asphalt (right) 

4 CONCLUSIONS 

In this paper, an efficient predicting approach for the modeling of contact stresses 

between a tire and a rough surface was presented and implemented. This method called TIM 

is much faster than other traditional methods, and makes possible the prediction of contact 

forces and pressures distributions on a surface with a large amount of punches. An 

experimental validation was performed by measuring contact pressure distribution in statics 

between the slick tire of a vehicle and different samples of road surfaces. The comparison 

between measurements and calculation is encouraging. Future works will address the 

dynamic measurements of tire-road contact, and the relations with the rolling noise emitted 

on different road textures. 
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