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Abstract. We consider an elastic brittle damage model in which a degradation front is propagating
based on a criteria depending both on the energy along the front and the curvature of the front. This
model was introduced about 20 years ago but to our knowledge was not yet exploited numerically.
The contribution of this paper is to solve this model using a level set technique coupled to the
eXtended Finite Element Method (X-FEM).
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1 Introduction

About 20 years ago a paper was published describing a brittle damage model in
which a degradation front propagates in a media [1]. The damage is called brittle
because a virgin zone (in which the damage is d = 0) is seperated by a front from a
totally damaged zone in which d = 1.

The model incorporates a Griffith type criteria. The front is growing provided the
energy released is equal to a critical energy plus a term involving the front curvature.
The presence of the curvature is essential for the model to avoid spurious localiza-
tion.

To our knowledge this model has not been tackled numerically. We propose here
an algorithm to solve it using a level set technique coupled to the eXtended Finite
Element Method.

The fact that some areas in the domain are completely damaged and no longer
provide any stiffnesses is taken care of by the eXtended Finite Element Method.
Basically a zone with no stiffness behaves as a hole and is treated using the work
presented in [2].

Finally, note that in the case of fatigue loading, a level set algorithm was already
proposed in [3] to propagate a brittle damage front. In this paper the front speed is
only curvature driven.

B.D. Reddy (ed.), IUTAM Symposium on Theoretical, Modelling and Computational Aspects
of Inelastic Media, 89–96.
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Fig. 1 Model problem showing a fully damaged zone progressing in an undamaged zone.

2 Description of the Mechanical Model

The model considered is the one introduced in [1]. We consider an elastic domain
� submitted to imposed loads T d(x, λ) and displacements ud(x, λ) on the part of
the boundary ST and Su, respectively. The parameter λ is the loading parameter
and we assume that the imposed loads and displacements depend linearly on λ, i.e.
T d(x, λ) = λT 0(x) and ud(x, λ) = λu0(x). Note that a single loading parameter is
considered. The extension of the level set update detailed below for multiple loading
parameters needs more thinking.

The space of admissible displacement field is denoted as U and the space of
admissible displacement field to zero is denoted as U0.

The complementary part of the boundary delimiting the completely damaged and
virgin material is denoted �. The potential energy in the system is given by

E(�,u, λ) =
∫

�

ed� −
∫

ST

λT 0 · udS

with e = 1

2
ε(u) : E : ε(u) and u = λu0 on Su (1)

where E is Hooke’s tensor. The displacement field u ∈ U is obtained through the
stationarity of the functional
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∫
�

ε(u) : E : ε(u∗)d� =
∫

ST

λT 0 · u∗dS ∀u∗ ∈ U0 (2)

The solution of which depends on the current degradation front location and load
factor:

u = u(�, λ) (3)

The free energy of the system at equilibrium is denoted W

W(�, λ) = E(�,u(�, λ), λ) (4)

Assuming a normal velocity qn modifying the location of the front, the free en-
ergy will be altered. Assuming the front is regular, the directional derivative of the
free energy with respect to the velocity qn is

DW [qn] = −
∫

�

eqn dS (5)

The dual quantity to qn on the front is the energy release rate e. The brittle propaga-
tion law is given by

• If e < Yc + γc/ρ, the propagation is impossible.
• If e = Yc + γc/ρ, the propagation is possible.

The above may be rewritten as

qn ≥ 0 f = e −
(

Yc + γc

ρ

)
≤ 0 f qn = 0 (6)

These relations are very similar to the ones appearing in plasticity (taking qn as the
plastic strain rate and e as for instance the von Mises stress). The degradation front
will move forward if the elastic energy on the front is superior to a critical energy Yc

plus a critical surface energy times the front curvature. The second term is essential
to avoid spurious localization. The motivation to use the model is that it does not
require a specific transition from damage to fracture.

Note that the presentation above is based on the paper by Nguyen et al. [1].
The only difference is that we have considered the curvature term to be part of the
propagation law whereas in [1] it is part of the free energy through a surface energy
term.

In order to give a geometrical interpretation to the dissipation process, consider a
recently created damaged zone in grey in Figure 2. The free energy lost is given by

D12 = YcA + γc(L2 − L1) (7)

To give more insight in the dissipation process, we consider in Figure 3 a velocity
qn on the front. This velocity will yield a change in length of the front, L̇, a change
in area of the damaged zone, Ȧ, and a dissipation D:
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L1 L2

A

Fig. 2 The grey zone is the new damaged zone. The energy lost in the domain is given by YcA +
γc(L2 − L1) where A is the newly created area and L2 − L1 is the change in front length.

qn

Fig. 3 A virtual velocity qn on the front.

Ȧ =
∫

�

qndS (8)

L̇ =
∫

�

qn

ρ
dS (9)

D =
∫

�

Ycqn + γc

qn

ρ
dS (10)

3 Description of the Algorithm

In order to solve the mechanical model, we store the current location of the damaged
front by the iso-zero of a level denoted ls. We solve only the elasticity equations in
the positive part of the level set. The mesh used does not necessarily have to conform
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Fig. 4 The converged front (solid line) at time tn. The damaged zone is located by the negative
part of the level set. The front advance at time tn+1 is given by the dashed line. The dashed line
must lay in the positive zone of the level set because the degradation front may not go backward in
between one time step and the next one.

to the location of the damaged front because we use the extended finite element
method to solve for the elasticity problem (see [2]). We consider in Figure 4 the
location of the front �n at time tn, we look for the new location of the front �n+1 at
time tn+1 and the corresponding loading factor λn+1. The new location of the front
must fulfill the following relations

ls(�n+1) ≥ 0 fn+1 = en+1 − (Yc + γc

ρn+1
) ≤ 0 ls(�n+1)fn+1 = 0 (11)

en+1 = λ2
n+1en+1 (12)

in which en+1 is the front energy for a unit loading parameter.
Note that we do not consider the loading factor as given since the dissipation

evolves in the domain, this factor may not evolve monotonically to maintain a
stable solution. We monitor the problem using dissipation. We use a dissipation
control algorithm generalizing the so-called crack-length control introduced in [4].
The amount of dissipated energy in the system is indeed a monotonically increasing
function.

In order to solve the above equations (11–12), we iterate from an initial guess �0,
illustrated in Figure 5. The initial guess is obtained through a predictor step which
will be described in a forthcoming paper. The correction step iterates on the front
location until equations (11–12) are met. During the iterations, we make sure that
the energy in the system is held fixed. In other words, it is the initial guess by its
area and length changes which defines the energy lost over the time step [tn, tn+1].
At iteration i, the front velocity is computed on each point of the front using the
following equations
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Fig. 5 The converged front (solid line) at time tn. The initial guess �0 to find the front at tn+1 as
well as an illustration of the first iterate �1.

If ls(�i) > 0 qi = ei − (Yc + γc

ρi
) (13)

If ls(�i) = 0 qi = < ei − (Yc + γc

ρi
) >+ (14)

ei = (λi)2ei (15)∫
�i

qi(Yc + γc

ρi
)dS = 0 (16)

The iterations stop when the velocity is zero everywehere on the front. In practice,
we compute the L2 norm and prescribe some tolerance. Equation (14) ensures that
the current front will never be inside the previous converged front at time tn. Equa-
tion (16) ensures that the dissipation is zero through the iterations. Note that the
system above provides also the corresponding loading factor.

The velocity on the front qi is used to update the level set location using standard
level set procedures.

4 Basic Numerical Experiments

In Figure 6 we consider a plate with a notch under tension (tractions are imposed).
We consider only the growth over one time step. The initial guess is circular and we
“optimize” its shape through iterations using the equations of the preceding section.
The converged shape is shown in Figure 7. In this example, the ratio lc = γc/Yc = 1.

The second example, depicted in Figure 8 aims at modeling the branching of
a transverse crack in a composite. The notch is located in the soft area. The ini-
tial guess is again circular. The final shape is given for lc = γc/Yc = 1 and for
lc = γc/Yc = 0.1. In both cases, the damage zone tends to depart from a straight
propagation. We also note that the smaller lc yields a more abrupt departure.
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Fig. 6 A notched plate under tension (left) and the initial guess (dashed line on the right) for the
degradation front.

Fig. 7 The initial guess for the damage front location (circle) and the converged front location.

5 Conclusions

This paper develops some preliminary work on the resolution of a brittle damage
model using a level set formulation. A Griffith type model is considered and solved
using an iterative strategy. It is coupled to the extended finite element method allow-
ing one to manage the mesh quite independently of the degradation front location.
The interesting feature of the model for the future is to incorporate complex crack-
ing patterns (since a single level set is used to locate the damaged zone). Further
studies are also needed to analyze the influence of the parameter lc ratio between
surface and volumetric cracking energies.
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Fig. 8 A notched plate under tension composed of two materials (left). The initial guess is circular.
The outer contour is the converged solution for lc = 1 and the inner contour is the converged
solution for lc = 0.1 (right).
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