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ABSTRACT
This paper aims at handling high dimensional uncertainty

propagation problems by proposing a tensor product approxi-

mation method based on regression techniques. The underlying

assumption is that the model output functional can be well rep-

resented in a separated form, as a sum of elementary tensors in

the stochastic tensor product space. The proposed method con-

sists in constructing a tensor basis with a greedy algorithm and

then in computing an approximation in the generated approxi-

mation space using regression with sparse regularization. Using

appropriate regularization techniques, the regression problems

are well posed for only few sample evaluations and they provide

accurate approximations of model outputs.

1 INTRODUCTION
Uncertainty quantification has emerged as a crucial field of

investigation for various branches of science and engineering.

Over the last decade, considerable efforts have been made in

the development of new methodologies based on a functional

point of view in probability, where random outputs of simula-

tion codes are approximated with suitable functional expansions.

Typically, when considering a function u(ξ ) of input random pa-

rameters ξ = (ξ1 . . .ξd), an approximation is searched under the

∗Address all correspondence to this author.

form u(ξ ) ≈ ∑
N
i=1 uiφi(ξ ) where the φi(ξ ) constitute a suitable

basis of multiparametric functions (e.g. polynomial chaos basis).

Several methods have been proposed for the evaluation of

functional expansions [1,2]. Non intrusive techniques as L2 pro-

jection or regression methods allow the estimation of expansion

coefficients by using evaluations of the numerical model at cer-

tain sample points, thus allowing the simple use of existing de-

terministic simulation codes. However the dimension N of clas-

sical approximation spaces has an exponential (or factorial) in-

crease with dimension d and hence the computational cost be-

comes prohibitively high as one needs to evaluate the model for

a large number of samples Q ≈ N. The question is: can we con-

struct a representation of the high dimensional object u, given the

fact that we have only limited information on it ? We are partic-

ularly interested in the case where the dimension d is large but

the “effective dimensionality” of the underlying function is fairly

small.

In order to handle high-dimensional models, we here pro-

pose a regression-based tensor approximation method, which ex-

ploits the tensor structure of the stochastic function spaces. The

underlying assumption is that the model output functional can

be well represented in a low dimensional basis composed of el-

ementary tensors (rank-one functions). Tensor approximation

methods have recently been applied to many areas of scientific

computing for representing elements in high dimensional tensor
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product spaces [3]. In the context of uncertainty quantification,

for problems involving very high stochastic dimension, instead

of evaluating the coefficients of an expansion in a given approxi-

mation basis (e.g. polynomial chaos), function u is approximated

in suitable low-dimensional tensor subsets (e.g. rank m tensors)

which are low-dimensional manifolds of the underlying tensor

space. The dimensionality of these manifolds typically grows

linearly with dimension d and therefore, it addresses the curse of

dimensionality. Note that a regression-based method has already

been proposed in [4] for the construction of tensor approxima-

tions of multivariate functionals. Here, we propose an alternative

construction of tensor approximations using greedy algorithms

and sparse regularization techniques.

The proposed method consists in approximating the model

with a m-term representation um(ξ ) = ∑
m
i=1 αiwi(ξ ) where the wi

are selected in a suitable low-dimensional tensor subset M (typ-

ically rank-one elements) and where the αi are real coefficients.

Sparse regularization techniques are used in order to retain only

the most significant basis functions, which results in an improve-

ment of robustness of the regression-based tensor approximation

method when dealing with a limited number of samples. As a re-

sult, the proposed technique allows to approximate the response

of models with a large number of random inputs even with a lim-

ited number of model evaluations.

The outline of the paper is as follows. In section 2, we in-

troduce some basic concepts about functional approaches in un-

certainty propagation. We also detail several methods based on

regression for the computation of approximate functional expan-

sions. In section 3, we introduce the proposed tensor approxima-

tion method based on regularized regression. Finally the ability

of the proposed method to handle high dimensional uncertainty

propagation problems is illustrated on numerical applications in

section 4.

2 FUNCTIONAL REPRESENTATION AND REGRES-
SION METHODS

2.1 Stochastic Function Spaces and Their Tensor
Structure

We here introduce the definitions of stochastic functions

spaces and their approximations. Let (Ξk,Bk,Pξk
) denote the

probability space associated with a random variable ξk, with

Ξk ⊂ R and Pξk
the probability measure of ξk. We suppose that

these random variables are mutually independent. Therefore,

the probability space (Ξ,B,Pξ ) associated with ξ = (ξ1, . . . ,ξd)

has the following product structure: Ξ = ×d
k=1Ξk, B =

⊗d
k=1Bk, Pξ =⊗d

k=1Pξk
. We denote by L2

Pξ
(Ξ) the Hilbert space

of second order random variables defined on (Ξ,B,Pξ ), which

is a tensor Hilbert space with the following tensor structure:

L2
Pξ

(Ξ) = L2
Pξ1

(Ξ1)⊗ . . .⊗L2
Pξd

(Ξd)

We now introduce approximation spaces S k
nk

⊂ L2
Pξk

(Ξk), such

that

S k
nk

= span
{

φ
(k)
j

}nk

j=1
=

{

v(k)(yk) =
nk

∑
j=1

vk
jφ

(k)
j (yk);vk

j ∈ R

}

with {φ
(k)
j }nk

j=1 forming an orthonormal basis. An approximation

space Sn ⊂ L2
Pξ

(Ξ) is then obtained by tensorization

Sn = S 1
n1
⊗ . . .⊗S d

nd

=

{

v =
n1

∑
i1=1

. . .
nd

∑
id=1

vi1,...,id φ
(1)
i1

⊗ . . .⊗φ
(d)
id

; vi1,...,id ∈ R

}

where
(

φ
(1)
i1

⊗ . . .⊗φ
(d)
id

)

(y1, . . . ,yd) = φ
(1)
i1

(y1) . . .φ
(d)
id

(yd). An

element v ∈ Sn can be identified with the algebraic tensor v =
(vi1,...,id ), thus yielding the identification Sn ≃ R

n1 ⊗ . . .⊗R
nd .

Approximation space Sn has a dimension ∏
d
k=1 nk which grows

exponentially with the dimension d, thus making impossible the

numerical representation of an element v ∈ Sn for high dimen-

sional applications. Approximation subspaces SN ⊂Sn are typ-

ically constructed by suitable tensorization rules

SN =

{

v = ∑
i∈IN

vi1,...,id φ
(1)
i1

⊗ . . .⊗φ
(d)
id

;vi1,...,id ∈ R

}

where IN ⊂ In = ×d
k=1{1, . . . ,nk} is an index set which can be

chosen a priori. A typical construction consists in taking for S k
nk

the space of degree p polynomials Pp(Ξk), and for IN = {i ∈
In;∑

d
k=1(ik −1)≤ p}. Thus, SN appears to be the so called poly-

nomial chaos composed of multidimensional polynomials with

total degree less than p.

We here suppose that approximation space Sn is given and

sufficiently rich to allow accurate representations of a large class

of functions (e.g. by choosing polynomial spaces with very high

degree). Then, the aim of the present strategy will be to approxi-

mate these representations for high dimensional applications.

2.2 Regression Methods

We here consider the case of a real-valued model output

u : Ξ → R. We denote by {yq}Q
q=1 ⊂ Ξ a set of Q samples of

ξ , and by {u(yq)}Q
q=1 ⊂ R the corresponding model evaluations.

We suppose that an approximation space SN = span{φi}N
i=1 is

given. Classical least-square regression for the construction of
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an approximation uN ∈ SN then consists in solving the follow-

ing problem

‖u−uN‖2
Q = min

v∈SN

‖u− v‖2
Q with ‖u‖2

Q =
Q

∑
q=1

u(yq)2 (1)

Remark 1. For the case of a function u : Ξ → V with V = R
n,

we could introduce ‖u‖2
Q = ∑

Q
q=1 ‖u(yq)‖2

V , with ‖ · ‖V a norm

on V .

Note that ‖ · ‖Q only defines a semi-norm on L2
Pξ

(Ξ) but it

may define a norm on the finite dimensional subspace SN if we

have a sufficient number Q of model evaluations. A necessary

condition is Q ≥ N. However, this condition may be unreachable

in practice for high dimensional stochastic problems and usual a

priori (non adapted) construction of approximation spaces SN .

Moreover, classical regression may yield bad results because of

ill-conditioning (solution very sensitive to sampling points). A

way to circumvent these issues is to introduce a regularized re-

gression functional

J λ (v) = ‖u− v‖2
Q +λR(v) (2)

where λ is a regularization parameter and R a regularization

functional. The regularized regression problem then consists in

solving

J λ (uλ
N) = min

v∈SN

J λ (v) (3)

Denoting by v = (v1, . . . ,vN)T ∈ R
N the coefficients of an ele-

ment v = ∑
N
i=1 viφi ∈ SN , we can write

‖u− v‖2
Q = ‖z−Φv‖2

2 (4)

with z = (u(y1), . . . ,u(yq))T ∈ R
Q the vector of random eval-

uations of u(ξ ) and Φ ∈ R
Q×N the matrix with components

(Φ)q,i = φi(y
q). We can then introduce a function R : R

N → R

such that R(∑i viφi) = R(v), and a function Jλ : R
N → R such

that J λ (∑i viφi) = Jλ (v) = ‖z−Φv‖2
2 + λR(v). An algebraic

version of regression problem (3) can then be written as follows:

min
v∈RN

‖z−Φv‖2
2 +λR(v) (5)

Regularization introduces additional information such as

smoothness, bounds on norms, sparsity. . . Under some assump-

tions on the regularization functional R, problem (3) may have a

unique solution. However, the choice of regularization strongly

influences the quality of the obtained approximation.

2.3 Sparse Regularization

Over the last decade, methods based on sparse regulariza-

tion have been rediscovered under the umbrella of compressed

sensing that aims at recovering sparse signals from a few

linear measurements [5–7]. A sparse function is one that

can be represented using few terms when expanded on a

suitable basis. In the context of uncertainty quantification,

if a stochastic function is known to be sparse on a particular

function basis, e.g. polynomial chaos (or tensor basis), sparse

regularization methods can be used for quasi optimal recovery

with only a few sample evaluations. In general, a successful

reconstruction of sparse solution vector depends on sufficient

sparsity of the coefficient vector and on additional technical

properties (e.g. incoherence). This strategy has been found to

be effective for non-adapted sparse approximation of PDEs [8,9].

An approximation uN(ξ ) = ∑
N
i=1 uiφi(ξ ) of a function u(ξ )

is considered as sparse on a particular basis {φi(ξ )}N
i=1 if only

a small fraction of coefficients u = (u1, . . . ,uN)T are significant.

Under certain conditions, the significant coefficients can be com-

puted accurately using only Q ≪ N random samples of u(ξ )
via sparse regularization. Given the random samples z ∈ R

Q of

the model output u(ξ ), sparse regularization aims at finding the

nearly sparsest coefficient u by solving an optimization problem

of the form:

min
v∈RN

‖Φv− z‖2
2 +λ‖v‖s

where ‖v‖s is a measure of the sparsity of v. Let us briefly ex-

plain the construction of such a regression problem. We assume

that the solution u is approximately sparse, such that for a given

precision δ , the set {v ∈ R
N ;‖Φv− z‖2 ≤ δ} is non empty. The

sparsest approximation in this set can be ideally obtained by solv-

ing a problem of type

min
v∈RN

‖v‖0 subject to ‖Φv− z‖2 ≤ δ (Pδ
0 )

where ‖v‖0 = #{i ∈ {1, . . . ,N} : vi 6= 0} is the number of non

zero components of v. In general, this problem is not computa-

tionally tractable as it is NP hard to compute. Under certain as-

sumptions, problem (Pδ
0 ) can be reasonably well approximated

by the following minimization problem:

min
v∈RN

‖v‖1 subject to ‖Φv− z‖2 ≤ δ (Pδ
1 )

where ‖v‖1 = ∑
N
i=1 |vi| is the 1-norm of v. Since the 1-norm ‖v‖1

is strictly convex, the optimization problem (Pδ
1 ) admits a unique
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solution. An equivalent form of (Pδ
1 ) can be written

min
v∈RN

‖Φv− z‖2
2 +λ‖v‖1 (Pλ

1 )

where λ > 0 is some regularization parameter which is related to

tolerance δ . Several optimization algorithms have been proposed

for solving (Pλ
1 ), such as interior point methods [10].

Of course, in order to successfully recover the coefficients u

of function uN ∈ SN with sparse regularization, the function uN

must be sparse relatively to the basis which is used. The question

is now: how to select a basis in which the approximation uN is

sparse ?

3 TENSOR APPROXIMATIONS BASED ON NON IN-
TRUSIVE REGRESSION

3.1 Canonical Tensor Subsets
We now introduce some basic definitions of tensor subsets

of the finite dimensional tensor space Sn = S 1
n1
⊗ . . .⊗S d

nd
in

which approximations of stochastic functions will be searched.

We first introduce the set of elementary tensors R1 ⊂ Sn (or

rank-one tensors) defined by

R1 =

{

v(y) =
(

⊗d
k=1v(k)

)

(y) =
d

∏
k=1

v(k)(yk) ; v(k) ∈ S k
nk

}

R1 is a (nonlinear) submanifold of Sn with a dimension

(∑d
k=1 nk −1) which grows only linearly with dimension d.

Remark 2. Denoting by v(k) = (vk
j)

nk
j=1 ∈ R

nk the vector of co-

efficients of an element v(k) ∈ S k
nk

, an element v ∈ R1 can be

identified with an algebraic rank-one element v = ⊗d
k=1v(k) in

R
n1 ⊗ . . .⊗R

nd . In the following, we will omit this identification

for clarity, although it is crucial for practical implementation.

We also introduce the set of rank-m (canonical) tensors Rm de-

fined by

Rm =

{

v =
m

∑
i=1

vi ; vi = ⊗d
k=1v

(k)
i ∈ R1

}

= Rm−1 +R1

Note that we have the property that Sn = span(R1), such that

each element in Sn can be represented as a sum of elementary

tensors. In the following, we will propose algorithms for the

construction of approximations in tensor subsets R1 and Rm,

which are low-dimensional subsets of the approximation space

Sn, but which are not linear spaces nor convex sets, thus making

more difficult the analysis and practical resolution of optimiza-

tion problems in these sets.

Remark 3. Other tensor subsets have been introduced which

have better approximation properties, such as Tucker tensor sets

or Hierarchical tensor sets (see [11]). These tensor formats are

not considered here.

3.2 Updated Greedy Construction of a Canonical Ten-

sor Decomposition

We here present an algorithm for the construction of a rank-

m approximation um ∈ Rm of u of the form

um =
m

∑
i=1

αiwi, wi = ⊗d
k=1w

(k)
i ∈ R1 (6)

We use an updated greedy procedure which is as follows. We

start by setting u0 = 0. Then, knowing an approximation um−1 of

u, we proceed as follows.

Correction step. We first compute a correction wm ∈ R1 of

um−1 which is based on the following regression problem:

wm ∈ arg min
w∈R1

‖u−um−1 −w‖2
Q (7)

Note that the nonlinearity of this regression problem comes from

the fact that the set R1 is not a linear vector space. In practice,

minimization problem (7) is solved using an alternating mini-

mization algorithm. Denoting w = ⊗d
k=1w(k), it consists in suc-

cessively solving regression problems min
w( j)∈S

j
n j

‖u− um−1 −

⊗d
k=1w(k)‖2

Q for fixed values of functions {w(k)}k 6= j.

Updating step. The correction step provides an approximation

um−1 +wm. Then, the next approximation um = ∑
m
i=1 αiwi is com-

puted using regularized regression:

um = arg min
v∈Sm

‖u− v‖2
Q +λR(v) (8)

where Sm = span{wi}m
i=1 is the linear space generated by the

previously computed elementary tensors. This algorithm can be

interpreted as an updated greedy procedure for the construction

of a small dimensional linear approximation space Sm in which

an approximation um is computed using a suitable regularized

regression technique. Regularizations which are adapted to the

present context are discussed in the following section.

Remark 4. A pure greedy construction would consist in letting

um = um−1 +wm. This pure greedy construction yields to a rather

bad behavior of the sequence of approximations {um}m≥1. A
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remedy could be to introduce a regularized version of the correc-

tion

wm ∈ arg min
w∈R1

‖u−um−1 −w‖2
Q +λR(um−1 +w)

If the functional R is chosen as a strictly convex function, then it

can be proved (following [12]), that the sequence um = um−1 +
wm converges towards the unique solution uλ

n of the regularized

regression problem minv∈Sn
J λ (v), with J λ defined in (2).

However, the difficulty is to find a pertinent regularization func-

tional R yielding a good approximation uλ and such that it is

compatible with the tensor framework.

3.3 Regularized Regression in Reduced Bases of El-
ementary Tensors

Here, we detail the definition of the updating step (8) for

computing the approximation um = ∑
m
i=1 αiwi. Denoting by

z ∈ R
Q the vector of samples of u(ξ ), by α = (α1, · · · ,αm)T the

vector of coefficients and by W ∈ R
Q×m the matrix whose com-

ponents ar (W )q,i = wi(y
q), problem (8) can be reformulated as

the following optimization problem:

min
α∈Rm

‖Wα − z‖2
2 +λR(α);

In fact, the set of functions {wi}m
i=1 of um can be interpreted as

the first m elements of a stochastic basis in which the solution u

is approximately sparse.

Choice of the Regularization. A first natural choice consists

in taking

R(α) = ‖α‖2
2

As illustrated in numerical examples, we will observe that this

choice of ℓ2 regularization yields a deterioration with m of the

approximation um.

Depending on the way of generating the elements, the vector of

coefficients α ∈R
m may also be searched as a sparse vector. It is

usually the case when we use sub-optimal greedy constructions,

yielding to high values of rank m for reaching a given precision,

much higher than optimal rank representation of the solution.

Therefore, we propose to introduce sparse ℓ1-regularization in

the definition of the updating step, by choosing

R(α) = ‖α‖1

In practice, it is observed that this sparse regularization allows a

pertinent selection of significant terms in the canonical decompo-

sition and allows to avoid a deterioration with m of the sequence

um. Note that when some αi are found to be negligible, it yields

an approximation um = ∑
m
i=1 αiwi ∈ Rm with a lower effective

rank representation.

The influence of the choice of regression functional in the updat-

ing step will be analyzed on numerical examples.

Selection of Regularization Parameter. An optimal parame-

ter λ can be selected using suitable error criteria, e.g. based on

cross validation.

Remark 5. Let us note that the proposed algorithm not only

generates an approximation of the model output but a sequence

of model approximations {um}m≥1. Therefore, error criteria

based on cross validation can also be used in order to select the

best model among these generated models.

4 APPLICATION EXAMPLES
In this section, we report the performance of the pro-

posed tensor-based regression method on two high dimensional

stochastic partial differential equations.

4.1 Example 1: Diffusion equation with multiple in-
clusions

We consider a stationary diffusion problem defined on a two

dimensional domain Ω = (0.1)× (0.1) (see Fig. 1):

−∇·(κ∇u) = ID(x) on Ω (9)

u = 0 on ∂Ω

where D ⊂ Ω is a square domain in the middle and ID is the

indicator function of D. The diffusion coefficient is defined by

κ =

{

ξk on Ck, 1 ≤ k ≤ 8

1 on Ω\(∪8
k=1Ck)

where the Ck, 1 ≤ k ≤ 8, are circular domains (see Fig. 1) and

where the ξk ∈U(0.9,1.1) are independent uniform random vari-

ables. We define the quantity of interest

I(u)(ξ ) =
∫

D
u(x,ξ )dx

We introduce approximation spaces S k
p+1 = Pp(0.9,1.1),

with polynomial degree p = 10. An accurate approximation of

the reference solution is evaluated by the Proper Generalized De-

composition method(see [13]).

We obtain the tensor basis by greedy procedure and update

the coefficients α after each successive rank one correction. In
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FIGURE 1. Diffusion problem with multiple inclusions.

FIGURE 2. Cross validation obtained by ℓ1 regularized update for

different sample sizes.

FIGURE 3. Cross validation error of ℓ1 and ℓ2 regularized update for

sample size Q = 56

order to derive reliable conclusions, we compare the performance

of ℓ2 and ℓ1 regularization by performing a sample independence

study. We take 11 sample sets of size Q = {32,56,100,1000}
and plot median value of the quantities together with quartiles

and outliers, if any. As shown in Fig. 2, when using ℓ1 regular-

ization, the cross validation error reduces with sample size Q, as

long as the influence of the sample. In other words, when using

ℓ1 regularization, the obtained tensor approximations seems to

converge with Q towards a deterministic approximation. Fig. 3

and Fig. 4 show cross validation error v/s number of tensor basis

functions for Q = 56 and 1000 samples respectively. We note

that for few samples i.e. Q = 56, ℓ2 regularization deteriorates

for high rank approximation whereas ℓ1 regularization yields a

FIGURE 4. Cross validation error of ℓ1 and ℓ2 regularized update for

sample size Q = 1000

FIGURE 5. Domain and finite element mesh.

stabilization of the cross validation error. For Q = 1000, the ap-

proximation obtained using ℓ1 regularization is convergent for

high dimensional tensor basis and gives better approximation of

the solution. It can also be noted that for Q as low as 56, we

obtain second order accurate solutions for almost all sample sets.

We therefore draw the following conclusions:

• The number of model evaluations sufficient to obtain a

very accurate approximation is very small compared to

the dimension of the underlying approximation space N =
dim(Sn) = (p + 1)8 = 118 but also to the dimension of the

full polynomial chaos with total degree less than or equal to

p (i.e N = (8+p)!
p!8!

= 43758).

• ℓ1 regularization is able to recover sparse solution vector α
on stochastic tensor basis and hence is an effective update

strategy.

• Tensor approximations with update strategy based on ℓ1 reg-

ularization appears to converge with respect to the number

of samples towards a deterministic approximation. In other

words, beyond a sample size threshold, the obtained tensor

approximations are nearly sample independent.

4.2 Stationary Advection Diffusion Reaction Equa-
tion with Random Field

In this example, we consider a stationary advection diffusion

reaction equation on a spatial domain Ω = (0,1)2 (Fig. 5) where

the source of uncertainty comes from the diffusion coefficient

6



FIGURE 6. Spatial modes {µk(x)}40
k=1 of the decomposition of ran-

dom field µ(x,ξ ).

which is a random field. The problem is:

−∇·(µ(x,ξ )∇u)+ c·∇u+κu = f on Ω

u = 0 on ∂Ω

where κ = 10 is a deterministic reaction coefficient and c =
250(x − 1

2
, 1

2
− y) is a deterministic advection velocity. The

source term is deterministic and is defined by f = 100IΩ1
, where

Ω1 = (0.7,0.8)× (0.7,0.8) ⊂ Ω and where IΩ1
is the indicator

function of Ω1. µ(x,ξ ) is a random field defined by

µ(x,ξ ) = µ0 +
100

∑
k=1

√
σkµk(x)ξk (10)

where µ0 = 1 is the mean value of µ , where the ξk ∈U(−1,1) are

mutually independent uniform random variables and where the

µk are a set of L2(Ω)-orthonormal spatial functions. The couples

(µk,σk)∈L2(Ω)×R
+ are chosen as the 100 dominant eigenpairs

of eigenproblem T (µk) = σkµk, where T is the kernel operator

T : v ∈ L2(Ω) 7→
∫

Ω
α(x,y)v(y)dy ∈ L2(Ω)

with α(x,y) = 0.22exp(− ‖x−y‖2

l2
c

) with lc the correlation length.

The equation (10) then corresponds to a truncated version of

a homogeneous random field with mean 1, standard deviation
0.2√

3
and exponential square covariance function with correlation

length lc. The first 40 spatial functions are plotted in Fig. 6.

The d = 100 random parameters ξ = (ξk)
d
k=1 define a prob-

ability space (Ξ,B,Pξ ), with Ξ = (−1,1)d and Pξ the uni-

form probability measure. We introduce approximation spaces

S k
p+1 = Pp(−1,1) which are spaces of polynomials with degree

p = 3.

FIGURE 7. Cross validation obtained by ℓ1 regularized update for

different sample sizes.

FIGURE 8. Cross validation error of ℓ1 and ℓ2 regularized update for

sample size Q = 100

We compare the performance of ℓ2 and ℓ1 regularizations

by performing a sample independence study. We took 11 sam-

ple sets of size Q = {100,200,1000} and plot median value

of the quantities together with quartiles and outliers, if any.

Fig. 7 shows cross validation error v/s tensor basis dimension

for Q = 100 samples. We note that for this sample size ℓ1 regu-

larization keeps the tensor basis with minimum cross validation

error. However, in this example, rank one approximation is very

accurate and we observe no improvement in solution even for

Q = 1000.

From this example, several conclusions can be drawn:

• The proposed regression technique is very effective in very

high dimensional stochastic problems. The number of

model evaluations Q required to obtain very accurate so-

lution is very small. This is orders of magnitude less than

a classical Polynomial Chaos approximation (which would

require N = (p + d)!/(p!d!) = 176851 model evaluations,

when p = 3). Note that the efficiency of the proposed tensor

approximation methods on this particular example is due to

the effective low rank of the solution.

• The cross validation error reduces with the sample size Q.
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Tensor approximations seem to converge with Q towards a

deterministic tensor approximation.

• ℓ1 regularization keeps the tensor approximation with mini-

mum cross validation error.

5 CONCLUSION

A non-intrusive regression technique based on tensor prod-

uct approximation has been proposed for propagation of uncer-

tainty in high dimensional stochastic problems. It involves for-

mulating a minimization problem in stochastic tensor product

space and using tensor product approximation strategies to build

a sequence of approximations with increasing rank. The rank-

one tensors obtained by successive corrections can then be cho-

sen as reduced bases on which coefficients can be updated by

ℓ1 regularization such that a few significant terms are retained

in the final solution. Cross validation model selection technique

has been used to evaluate the best approximation of the quantity

of interest among the different generated approximations. The

ability of the proposed method to handle high dimensional un-

certainty quantification problem was illustrated on two stochastic

partial differential equations and first results are quite promising.

Future work will be dedicated to evaluate the capabilities of this

method in approximating stochastic functions with discontinu-

ities. Other updating strategies based on sparse regularization

and hybrid methods will also be studied for better exploiting the

generated information.
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