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A particle-in-cell formulation for large deformation in Cosserat continua

F. Dufour, H.-B. Mühlhaus, L. Moresi
CSIRO Exploration and Mining, Perth, 6009, AUSTRALIA

ABSTRACT: We present a new approach to modeling of granular flows using a combination of Cosserat theory
for granular material and a particle-in-cell finite element method capable of handle extremely large material
deformation. Benchmarking against analytical solutions highlights the strengths and weaknesses of the method.
We demonstrate one application of the method in modeling the discharge of granular material from a silo.

1 INTRODUCTION
The mechanics of granular materials has intrigued
physicists and engineers for well over two centuries.
At low strain rates, particulates such as sand or ce-
reals behave like solids, but at high strain rates, the
behaviour is fluid or gas like.

A granular flow can be modeled by the Discrete
Element Method (DEM) with a microscopic descrip-
tion of the particulate’s behaviour (e.g. Sakaguchi et
al. 1997). Unfortunately this method is not adapted
to problems on the large scale or over long times.
Numerous problems like this occur in the mining
field where it is necessary to model the long-term be-
haviour (several years) of mine slopes which can be
tens of meters high.

It is also possible to use a continuous approach with
a parameter describing the microstructure of the ma-
terial (internal length). The Cosserat theory (Cosserat
1909) is one of these. By adding rotational kine-
matic variables independant of linear variables we can
model internal rotation of the material as well as cou-
ple stresses. This micropolar method can be used for
every application which involves the need to describe
the heterogenous microstructure of the material such
as granular materials (e.g. Mühlhaus et al. 1991), lay-
ered materials (e.g. Adhikary et al. 1999) or crystals
(e.g. Forest et al. 1997).

This class of methods can be implemented in the
context of a classical finite element method (FEM).
However, very large deformations are difficult to han-
dle elegantly within the FEM because mesh distortion
and remeshing can quickly present severe difficulties.
The Particle-In-Cell (PIC) scheme is a hybrid numeri-
cal method which falls somewhere between the Finite
Element Method (FEM) and a purely Lagrangian par-
ticle method such as DEM. The PIC scheme attempts

to combine the versatility of the continuum FEM with
the geometrical flexibility of DEM. A summary of
this method as applied to fluid deformation with in-
ternal boundaries is given elsewhere in this volume
by Moresi et al (2000).

In PIC we use Lagranian particles and an Eule-
rian mesh. The mesh is used to solve nodal point un-
knowns using almost exactly the same formulation as
the standard FEM, however, the mesh is not required
to track material deformation which avoids the prob-
lem of distortion. Our formulation is derived from
fluid flow applications in which fluid velocities are
solved on the mesh, and material strains are recorded
by the Lagrangian particles. For this reason, our ini-
tial Cosserat implementation is a viscous formulation
which should be seen as the first step towards a large-
deformation viscoplastic formulation.

As with any new application of a numerical
method, extensive benchmarking is needed to under-
stand the characteristics of the algorithm including,
for example, stability, convergence rates, and accu-
racy for a range of boundary conditions, material pa-
rameters, and internal interface geometries. We use a
number of simple, analytic solutions to characterize
the behaviour of the numerical scheme.

2 MATHEMATICAL FORMULATION
2.1 Cosserat deformation measures
We assume that deformation quantities are infinites-
imal and assign a local rigid cross to every material
point (x1; x2; x3) of the body in a Cartesian coordi-
nate system (X1; X2; X3). In the process of deforma-
tion, the material points (rigid crosses) rotate at a rate
!c
i about the axis i in addition to the conventional lin-

ear velocity vector u. The angular velocity !c
i is con-

sidered to be independent of u and differs from the
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classical rigid body angular velocity !i,

!i = ��ijkWjk (1)

where

Wjk =
1

2
(uj;k � uk;j) (2)

In (1) �ijk designates the permutation symbol, and in
(2) (:);k � @(:)=@xk are partial derivatives.
In the classical theory the stretching tensor is given
by :

Dij =
1

2
(ui;j � uj;i) (3)

In the Cosserat theory, as a rotational parameter has
been added, in addition to the classical strain rate ten-
sor D, there is an additional rate measure,

!rel
i = !i � !c

i (4)

which represents the relative angular velocity be-
tween the material element and the associated rigid
coordinate cross. In this case, the rate of the deforma-
tion tensor can be expressed by the rate of the distor-
tion tensor, ,

ij = ui;j �W c
ij (5)

where

W c
ij = ��kij!

c
k (6)

and by the tensor representing the measure of rela-
tive angular velocity between the neighbouring rigid
crosses,

�ij = !c
i;j (7)

The conventional strain rate tensor can be expressed
as the symmetrical part of the rate of the distortion
tensor,

Dij =
1

2
(ij + ji) (8)

and the relative angular velocity as the antisymmetri-
cal part

W rel
ij =

1

2
(ij � ji) (9)

We have 2 deformation rate measures i.e.  and �.
Both measures are objective. In a rotating observer
frame  and � are obtained as QQT and Q�QT

where QQT = 1 describes the rotation of the mov-
ing -with respect to the fixed-observer frame.

2.2 Constitutive relationships for granular materi-
als

As we want to model large deformation problems
for visco-plastic Cosserat media, we have first imple-
mented the Cosserat theory for a viscous fluid. In a 2D
conventional continuum an isotropic material is char-
acterised by a bulk viscosity B and a shear viscosity
�, for a Cosserat continuum we also have a Cosserat
shear viscosity �c and a bending viscosityM . In other
words, the relation between normal stresses and nor-
mal gradient of deformations remains the same as
for conventional viscous medium whereas the relation
between shear components is modified by �c and, in
addition, the couple stress is related to Cosserat rota-
tional velocity through the bending stiffness. The con-
stitutive relation for a generalised Newtonian fluid can
be written in the usual pseudo-vector form:

� = �D (10)

where the stress vector components are:

�T = f�xx; �yy; �xy; �yx; �zx; �zyg (11)

the deformation vector components are:

DT = fxx; yy; xy; yx; �zx; �zyg (12)

and the matrix � is expressed as:8>>>>><
>>>>>:

B + � B � � 0 0 0 0
B + � 0 0 0 0

� + �c � � �c 0 0
� + �c 0 0

symm: M 0
M

9>>>>>=
>>>>>;

(13)

The aim of this paper is the veryfication and
demonstration of the Cosserat continuum implemen-
tation in the finite element code ELLIPSIS. For this
purpose we use the simplest possible realisation of a
granular, viscous medium. In the granular-elasticity
model of (Choi and Mühlhaus 1991) we replace the
contact stiffnesses Kn and Km and relative displace-
ments by contact dashpots �n and �m and relative ve-
locities and relative rotation rates and obtain the rela-
tionships

� =
1� n

4�
k(�n + �m) (14)

�c =
1� n

2�
k�m (15)

B =
1� n

2�
k�n (16)

M = 2�cR2 (17)



3 ANALYTICAL SOLUTIONS
3.1 Infinite shear Layer
We extend the analytic solution of Choi & Mühlhaus
for flow in an infinite plane layer of Cosserat mate-
rial subject to shearing top and bottom. To test the
numerical stability of the code, we test all combina-
tions of boundary conditions: (
; V ), (
; �), (�; V )
and (�; �).

The numerical solution is found using a rectangular
2D mesh (Fig. 1) with periodic boundary conditions –
an additional test of the accuracy of the code is the de-
gree to which it reproduces a 1D solution throughout
the mesh.

x

y
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-h/2

h/2

h

Figure 1: Geometry of the infinite shear layer

The governing equations are reduced as follows
considering a 2D model as well as the independence
of all variables on the x-direction.

�xy;y = 0 (18)

and

�zy;y + �xy � �yx = 0 (19)

By appling the constitutive relationships between
stresses and velocity gradients we get:

(� + �c)
@2ux
@y2

� 2�c
@!c

z

@y
= 0 (20)

and

M
@2!z

@y2
� 2�c

@ux
@y

� 4�c!c
z = 0 (21)

Equations (20) and (21) are only coupled through
�c; when �c is zero, then the linear velocity reverts to
the classical one. By integrating (20) and (21) with
respect to y we obtain the analytical solution for the
linear velocity:

ux =�
2�c�

� + �c
(b sinh

y

Æ
+ c cosh

y

Æ
)

+
a

�
y + d

(22)

and the angular velocity:

!z = �
a

2�
+ b sinh

y

Æ
+ c cosh

y

Æ
(23)

where a,b,c and d are integration constant and

Æ2 =
M

4
(
1

�C
+

1

�
) =

R2

2
(1 +

�c

�
) (24)

Due to the symmetry of the model, c = d = 0 —
other constants are computed according to the bound-
ary conditions listed in Figure 2.

3.2 Gravity driven flow
A second analytic solution is required to ensure that
flow driven by body forces can be computed accu-
rately. We specify zero rotation and velocity on top
and bottom, which models a non-frictional boundary
(v = 0) and a rough surface (w = 0) (Tejchman
1992). As a driving force we apply a body force, g,
positive in the x-direction. In this particular model
the linear velocity is symmetric about the mid-line
whereas the Cosserat rotation is antisymmetric then
(18) becomes:

�xy;y = �g (25)

The same procedure as previously described yields to
the analytical expression for linear velocity:

u = �g
y2

2�
�

2�c

� + �c
bÆ cosh

y

Æ
+ c (26)

where a and c are integration constants and for rota-
tional velocity:

! = �
�gy

2�
+B sinh

y

Æ
(27)

with

B =
�gh

4� sinh h
2Æ

(28)

and

C =
2�c

� + �c
BÆ cosh

h

2Æ
� �g

h2

8�
(29)



B.C. type Value of a Value of b
ux(

h
2
) = �ux(�

h
2
) = V

!z(
h
2
) = !z(�

h
2
) = 


2�(b cosh
h

2Æ
� 
)

V + 
h

h cosh h
2Æ
� 2Æ �c

�+�c
sinh h

2Æ

ux(
h
2
) = �ux(�

h
2
) = V

�zy(
h
2
) = �zy(�

h
2
) = �

2�

h
(V + 2bÆ

�c

� + �c
sinh

h

2Æ
)

�Æ

M sinh h
2Æ

�xy(
h
2
) = ��xy(�

h
2
) = �

!z(
h
2
) = !z(�

h
2
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�
�

2� cosh h
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h
2
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h
2
) = �
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h
2
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h
2
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Figure 2: Table of parameters.

4 BENCHMARKING
The equation solver in our code is a multigrid-based
iterative scheme. This requires the specification of an
error tolerance which we choose to be smaller than the
expected discretization error — in this case a value
of 10�6 was felt to be sufficient. If not specified the
integration over an element is a 2�2 scheme of evenly
distributed and weighted particles. In post-processing,
error is computed on a nodal field � as follows:

Err(�) =

nnoP
i=1

j�anali � �numi j

nnoP
i=1

j�numi j
(30)

where nno is the number of nodal points in the mesh.
Numerical values for material parameters used in (14)
are:

Kn =Km = 105 MPa k =4;

R =0:3 m n =0

with this set of parameters � = �c which means
that the rotational part is fully coupled with the lin-
ear part and the internal length is about 1=3 the layer
thickness. All the following results are valid from the
first timestep (Fig. 3.a) to the one thousand timestep
(Fig. 3.d) which is indicative of the insensitivity of
the scheme to large deformations. In Figure 3.a and
3.b only one black band is in the sample cell of our
periodic model, while the deformation keep growing
the neighbour bands come into the cell from edges.
We then always have an odd number of bands and the
initial band remains in the middle of the cell.

4.1 F.E.M. convergence.
In order to demonstrate that in ELLIPSIS the numeri-
cal solution converges to the true solution as the num-
ber of elements becomes infinite, we plot against the

(a) (b)

(c) (d)

Figure 3: Snapshots of the model. (a) t = 0 sec., (b)
t = 7:1 104 sec., (c) t = 1:2 106 sec. and (d) t =
5:74 106 sec..

number of elements the ratio defined by the error on
the current grid over the error on the coarsest grid.
For that we use 5 different meshes in which the num-
ber of elements in the x-direction is successively 6,
12, 24, 48 and 96. The error is scaled to avoid any
dependency on other variables such as magnitude of
boundary conditions.

All the curves lie very close together and the con-
vegence rate is approximately the same magnitude for
linear velocity (Fig. 4) and angular velocity (Fig. 5).
For other computations we will use the 24 element
mesh.
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Figure 4: Ratio of the error on linear velocity for dif-
ferent driving boundary conditions.
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Figure 5: ratio of the error on rotation for different
driving forces.

4.2 Significance of non-standard boundary condi-
tions.

An unusual situation arises in this problem: Depend-
ing on the relative magnitude of the boundary condi-
tions on velocity compared to rotation, we can model
a true Cosserat medium or we can be in a domain
where we deal essentially with a classical continuum.
For instance, in the case where we prescribe linear
stress and angular velocity as boundary conditions, if
the magnitude of the rotational boundary condition is
exactly the same as the one resulting from the classi-
cal continuum theory then the solution is the classical
one. We present only the case of (!; �) (Fig. 6) and
(�; v) (Fig. 7) since the cases (�; �) and (
; V ) are
similar to (�; V ) and (
; �) respectively. In Figure 6
and 7, k and j represent dimensionless parameters de-
fined as:

j =
�

vMR2
and k = �

�

2�!
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Figure 6: Error on linear velocity (a) and angular ve-
locity (b), for (
,�) boundary condition case.
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Figure 7: Error on linear velocity (a) and angular ve-
locity (b), for (�,V) boundary condition case.

Figure 6 presents two distinct parts, one point where
the solution is ‘exact’ (error has same magnitude than
numerical accuracy), and two half-spaces where error
are quite small but not in the same magnitude. At this
particular point we have �xy = �2�!z which corre-
sponds to the constant rotation of the classical con-
tinuum. Bilinear elements are capable of reproduc-
ing the exact solution in this case. On the other hand
when !c 6= ! then the solution becomes less accurate.
We are confident that our implementation is accurate
for the Cosserat continuum since the results of Fig-
ure 6 show that the error for either velocity or rotation
never exceeds 0:12%. Figure 7 looks different but we
still can distinguish two distinct parts. One half-space
where we get the exact solution and one half-space
where the error on rotation can reach 0:2%. The latter
corresponds to a true Cosserat continuum whereas in
the first part the couple stress is tiny and then we can
consider in that domain the continuum as a non-polar



one.

4.3 Internal length effects
For the case where 
 and � are applied as boundary
conditions and the material is fully coupled (� = �c),
we plot (Fig. 8) the velocity on the top (maximum
value) against the internal length. In an elastic contin-
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Figure 8: Variation of the flow velocity Vs. the grain
size.

uum the displacement is maximum for R = 0 (classi-
cal continuum) and decreases to zero as R reaches the
characteristic size of the mesh (layer thickness). In a
viscous Cosserat medium the flow velocity is maxi-
mum for R = 0 and tends to half the maximum value
when R ! 1. The plot shows a clear difference
in the result depending whether R � h or R � h.
Rewriting (22) and taking into account the appropri-
ate integration constants gives

ux =
�h

2�

�
1�

R

h
tanh(

h

2R
)

�
(31)

We can easily demonstrate through the equivalence of
tanh in infinity that the outflow for a classical contin-
uum is twice faster than a outflow of a infinite inter-
nal length Cosserat continuum in the case of a fully
coupled material. We can explain this phenomenon
by the co-existence of two differrent modes of flow.
The first one is due to a relative displacement between
grains through a frictional contact. The second one is
only due to the grain viscosity itself. Then for R = 0
the flow is the fastest because it is governed by vicos-
ity of the grain as well as a relative rotation between
grains. The last effect becomes less effective as the
internal length increases, then the flow slows down.
Finally when R � h, the flow is minimum and does
not change anymore with the variation of the internal
length. The rearrangement effect between grains is no
longer possible because of the bending stiffness and
only the viscous flow is present.

Worth noting is the fact that with no elastic term
we can not expect the formation of an arch to stops
the flow for an internal length larger than the charac-
teristic size of the system.

5 APPLICATION
We now consider the discharge of a Cosserat ma-
terial from a model silo. In this case we are inter-
ested in the influence of the internal length parame-
ter on the velocity flow for a Cosserat fluid. Figure 9

(c) (e)(d)(b)(a)

Figure 9: Snapshots of the model. (a) Initial condi-
tions, (b) t = 4:75 10�4 sec., (c) t = 1:42 10�3 sec.,
(d) t = 2:85 10�3 sec. and (e) t = 3:8 10�3sec:.

shows the geometry of the model as well as differ-
ent snapshots along the computations. All the heavy
lines are free-slip boundaries and the flow is only due
to the downward gravity field. The grid drawn on the
flowing material is a “dye” to record deformation —
it does not affect the material properties. Corridors
along the edges provide space where upward flow
of the background material (similar to air) can take
place to equilibrate the pressure due to the downward
flow of the Cosserat viscous material. The mechani-
cal characteritics of each material are summarized in
Figure 10. In Figure 11 we plot the volume flowing

Granular material Background
Internal length R 0
Shear viscosity 1000 1
Bulk viscosity +1 +1

Density 106 0

Figure 10: Constant values.

out the reservoir versus time and for different values
of the ratio � = R=a. The flow rate is almost iden-
tical for all values of � larger than the aperture (1.0)
which corresponds, in the elastic case, to a situation in
which no flow can occur. Note that in purely viscous
materials static equilibrium states do not exist. Con-
sequently the flow arrest through arching for instance



can not be expected. For 0 � � � 1:0, the smaller the
internal length the faster the outflow. As for the elastic
case the internal length provides a bending stiffness
which slows down the flow.
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Figure 11: Outgoing volume for (a) �=0, (b) �=1/3,
(c) �=2/3, (d) �=5/3 and (e) �=10/3

6 CONCLUDING REMARKS
We have implemented a Cosserat viscous formulation
into a PIC code which allows us to reproduce quali-
tatively a 1-D granular flow in large deformation. Re-
sults on the silo discharged problem are well in accor-
dance to experimental tests.

REFERENCES
D.P. Adhikary, H.B. Mühlhaus and A.V. Dyskin
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