A GREEDY ALGORITHM FOR NUMERICAL METHODS IN HIGH DIMENSION

Amine Ammar, Francisco "Paco" Chinesta and Antonio Falcó

Motivation

 A. Ammar. B. Mokdad, F. Chinesta and R. Keunings. A new family of solvers for some classes of multidimensional partial differential equations encountered in Kinetic Theory modelling Complex Fluids, Journal of Non–Newtonian Fluid Mechamics, 139, (2006), pp. 153-176.

A. Ammar. B. Mokdad, F. Chinesta and R. Keunings. A new family of solvers for some classes of multidimensional partial differential equations encountered in Kinetic Theory modelling Complex Fluids. Part II: Trasient Simulations using Space-Time Separated Representations Journal of Non-Newtonian Fluid Mechanics, 144, (2007), pp. 98-121

Heuristics (Part I)

- Consider a general linear boundary value problem L(u) = f with homogeneous boundary condition $u|_{\partial\Omega} = 0$ and $\Omega = [a, b]^d$.
- We would to construct a solution step by step starting with a starting map given in separation of variables form:

$$u_0 = u_0^{(1)}(x_1) \cdots u_0^{(d)}(x_d) = u_0^{(1)} \otimes \cdots \otimes u_0^{(d)}$$

such that we would to minimize:

 $u_1^{(1)} \otimes \cdots \otimes u_1^{(d)} \in \arg\min_{u^{(1)} \otimes \cdots \otimes u^{(d)}} \|f - L(u_0 + u^{(1)} \otimes \cdots \otimes u^{(d)})\|$

Heuristics (Part II)

Since L is a linear map, if we take the residual map

$$r_0 = f - L(u_0^{(1)} \otimes \cdots \otimes u_0^{(d)})$$

the above minimization program can be written as:

$$u_1^{(1)} \otimes \cdots \otimes u_1^{(d)} \in \arg\min_{u^{(1)} \otimes \cdots \otimes u^{(d)}} \|r_0 - L(u^{(1)} \otimes \cdots \otimes u^{(d)})\|$$

They expect that

$$||r_0 - L(u_1^{(1)} \otimes \cdots \otimes u_1^{(d)})|| < ||f - L(u_0^{(1)} \otimes \cdots \otimes u_0^{(d)})||$$

Heuristics (Part III)

Proceeding inductively, if we denote by

$$u_n = \sum_{k=0}^n u_k^{(1)} \otimes \dots \otimes u_k^{(d)}$$

and

$$||f - L(u_{n+1})|| < ||f - L(u_n)||$$

follows for all n = 0, 1, 2, ...,

when

$$\left\|f - L\left(u_n\right)\right\| < \texttt{tol}$$

we stop the process and take $u_n \sim u$.

Comments and Remarks

1. Is

$$\arg\min_{u^{(1)}\otimes\cdots\otimes u^{(d)}} \|f - L(u^{(1)}\otimes\cdots\otimes u^{(d)})\| \neq \emptyset?$$

Note that

$$\mathcal{M}_1 = \left\{ u : u = u^{(1)} \otimes \cdots \otimes u^{(d)} \right\}$$

not is a linear space.

2. Is is true that

$$||f - L(u_{n+1})|| < ||f - L(u_n)||?$$

Greedy Approximations

- Let *X* be a Banach space equiped with a norm $|||_X$. We say that a set $\mathcal{D} \subset X$ is a *dictionary* if each $g \in X$ has norm one and the closure of span \mathcal{D} coincides with the whole *X*.
- Define $G(f, D, X) = \alpha(f)\alpha(g)$, where $\alpha(f) \in \mathbb{R}$ and $\alpha(g) \in D$ satisfy (we assume existence):

$$\min_{\alpha \in \mathbb{R}, g \in \mathcal{D}} \|f - \alpha g\| = \|f - G(f, \mathcal{D}, X)\|$$
(1)

X-Greedy Algorithm

• We define $R_0(f, \mathcal{D}, X) := f, G_0(f, \mathcal{D}, X) := 0$. Then for each $m \ge 1$ we inductively define

$$R_m(f, \mathcal{D}, X) = R_{m-1}(f, \mathcal{D}, X) - G(R_{m-1}(f, \mathcal{D}, X))$$

$$G_m(f, \mathcal{D}, X) = G_{m-1}(f, \mathcal{D}, X) + G(R_{m-1}(f, \mathcal{D}, X)).$$

Note that

$$R_m(f, \mathcal{D}, X) = f - G_m(f, \mathcal{D}, X) = f - \sum_{k=1}^m \alpha_k g_k,$$

where $\alpha_k \in \mathbb{R}$ and $g_k \in \mathcal{D}$.

By using (1) it is possible to show that

 $||R_m(f, \mathcal{D}, X)|| \le ||R_{m-1}(f, \mathcal{D}, X)||.$

Bad (or Good ?) News

- There are not general results on convergence of X-Greedy Algorithms (V. N. Temlyakov).
- In particular there are not results for the sequence $\{R_m(f, \mathcal{D}, X)\}$ to be strictly decreasing.
- Note that

$$\mathcal{D} = \{ u \in \mathcal{M}_1 : \|u\| = 1 \}$$

is a dictionary, and

$$\mathcal{M}_1 = \{ \alpha \, u; \alpha \in \mathbb{R} \text{ and } u \in \mathcal{D} \}.$$

Some related problems

1. Consider that L = I and $f \in L_2(X \times Y)$, then we would to find $v_1, \ldots, v_n \in L_2(X)$ and $w_1, \ldots, w_n \in L_2(Y)$ such that if

$$u_n = \sum_{k=1}^n v_k \otimes w_k$$

then

$$\|f-u_n\|_{L_2(X\times Y)},$$

is a small as possible. It was solved by Jaromir Simsa in 1992.

Some related problems

2. Consider L = I and $\mathbf{f} \in \mathbb{R}^{d_1 \times \cdots \times d_k}$ then we would to construct a vector

$$\mathbf{u}_r = \sum_{j=1}^r \mathbf{v}_j^{(1)} \otimes \cdots \otimes \mathbf{v}_j^{(k)}, \ \mathbf{v}_j^{(i)} \in \mathbb{R}^{d_i}$$

that minimizes

$$\|\mathbf{f}-\mathbf{u}_r\|.$$

This problem is called the *best low-rank approximation problem*.

Best low-rank approximation problem

- (a) For k = 2 the problem is solved by using the SVD (Eckart-Young Theorem).
- (b) It has no solution in general for $r = 2, \ldots, \min\{d_1, d_2, \ldots, d_k\}$ and $k \ge 3$ (V. de Silva and L.H. Lim, 2008).
- (c) The set of tensors that fail to have best low-rank approximation has positive volume (V. de Silva and L.H. Lim, 2008).

Introducing some notation

Recall the set

$$\mathcal{M}_1 = \left\{ u \in H : u = u^{(1)} \otimes \cdots \otimes u^{(d)}, \ u^{(i)} \in H_i \right\}$$

where $H = H_1 \otimes \cdots \otimes H_d$ and H_i is a separable Hilbert space with norm given by

$$\|\cdot\|_H = \|\cdot\|_1 \cdots \|\cdot\|_d.$$

Note that

1.
$$\alpha \mathcal{M}_1 = \mathcal{M}_1$$
 for all $\alpha \in \mathbb{R} \setminus \{0\}$ and
2. $0 \in \mathcal{M}_1$.

The problem in abstract setting

Let

$$\mathcal{M}_r = \overbrace{\mathcal{M}_1 + \dots + \mathcal{M}_1}_{r-\text{times}}$$

and $L: H \rightarrow H$ be a given linear operator. Then the *r*-best low-rank approximation problem for the initial problem can be stated as follows: For a given $f \in H$ and is

$$\min_{u \in \mathcal{M}_r} \|f - L(u)\|$$

Unfortunately, for $r \ge 2$ is ill-posed problem, because \mathcal{M}_r is not a closed set.

A main result

Theorem 1 If $L: H \longrightarrow H$, is bounded and has a bounded inverse then

$$\arg\min_{u\in\mathcal{M}_1}\|f-L(u)\|\neq\emptyset.$$

Lemma 2 The set \mathcal{M}_1 is closed in H. **Proof.** Let $x_n \in \mathcal{M}_1 \to x$ in H, then $x_n \in \mathcal{M}_1 \to x$ weakly, Since $x_n = \lambda_n u_n^1 \otimes \cdots \otimes u_n^d$ where $\lambda_n = ||x_n||_H$, then $\lambda_n \to \lambda = ||x||$. Since u_n^i belongs to the unit ball in H_i , then there exists a subsequence $u_{n_k}^i \rightharpoonup u^i$ weakly. In consequence $x_{n_k} = \lambda_{n_k} u_{n_k}^1 \otimes \cdots \otimes u_{n_k}^d \rightharpoonup \lambda u^1 \otimes \cdots \otimes u^d$ weakly, and $x = \lambda u^1 \otimes \cdots \otimes u^d \in \mathcal{M}_1$.

Proof of Theorem

Note that the map $\Phi(u) = ||f - L(u)||$ is bounded below and continuous from \mathcal{M}_1 to \mathbb{R} . Let $\alpha = \inf_{u \in \mathcal{M}_1} \Phi(u)$. Then, there exists $u_n \in \mathcal{M}_1$ be such that

$$\alpha + \frac{1}{n} \ge \Phi(u_n) \ge \alpha \text{ in } \mathbb{R}.$$

Thus, $w_n = f - L(u_n)$ is a bounded sequence in H, thus there exists a subsequence $w_{n_k} \rightharpoonup w^*$ weakly. Then, since L^{-1} exists and it is bounded $u_{n_k} \rightharpoonup L^{-1}(f - w^*) = u^* \in \mathcal{M}_1$. In consequence $\Phi(u_{n_k}) \rightarrow \Phi(u^*) = \alpha$, and

$$u^* \in \arg\min_{u \in \mathcal{M}_1} \|f - L(u)\|.$$

The main result

Theorem 3 Assume that $L : H \longrightarrow H$, is bounded and and has a bounded inverse. Then there exists a sequence $\{u_n\}_{n=0}^{\infty} \subset H$ such that $u_0 = 0$, and $u_{n+1} \in \mathcal{M}_{n+1}$ for each $n \ge 0$ satisfy the following optimal condition:

$$\|f - L(u_{n+1})\| = \min_{x \in \mathcal{M}_1} \|f - L(x + u_n)\|.$$
 (2)

Moreover, if for some $n \in \mathbb{N}$ it follows that

$$\|f - L(u_n)\| = \|f - L(u_{n-1})\|$$
(3)

then $f = L(u_{n-1})$.

Proof of main result I

Let $u_0 = 0$, then by using Theorem 1 inductively (2) follows. In order to prove the second part of theorem, we start with the case n = 1. Thus, assume that it follows

$$||f - L(u_1)|| = ||f|| = \inf_{x \in \mathcal{M}_1} ||f - L(x)||.$$

If $x_i \in H_i$ for $i = 1, 2, \ldots, d$, then

 $\lambda x_1 \otimes x_2 \otimes \cdots \otimes x_d \in \mathcal{M}_1$

for all $\lambda \in \mathbb{R}$. Consequently, we have

$$\|f - L(\lambda x_1 \otimes x_2 \otimes \cdots \otimes x_d)\| \ge \|f\|$$
(4)

for every $\lambda \in \mathbb{R}$.

Proof of main result II

This implies that f and $L(x_1 \otimes x_2 \otimes \cdots \otimes x_d)$ are orthogonal. Since the vectors $x_i \in H_i$ for i = 1, 2, ..., d, are arbitrary and L has zero null space, this means that f = 0, which proves the second part of the theorem for n = 1. To prove it with n > 1, suppose that

$$||f - L(u_n)|| = \inf_{x \in \mathcal{M}_1} ||f - L(u_{n-1}) - L(x)|| = ||f - L(u_{n-1})||$$

which implies, by using a similar argument as above, that $f - L(u_{n-1}) = 0$.

A Greedy Algorithm

1: procedure
$$(||f - L(u)|| < \varepsilon : u \in \mathcal{M}_{rank_max})$$

2: $r_0 = f$
3: $u = 0$
4: for $i = 0, 1, 2, ..., rank_max do$
5: $x = procedure (\min_{x \in \mathcal{M}_1} ||r_i - L(x)||)$
6: $r_{i+1} = r_i - L(x)$
7: $u \leftarrow u + x$
8: if $||r_{i+1}|| < \varepsilon$ or $|||r_{i+1}|| - ||r_i||| < tol then goto$
13
9: end if
10: end for
11: return u and $||r_{rank_max}||$.
12: break
13: return u and $||r_{i+1}||$

4: end procedure

Some remarks

Note that in 6:

$$||r_{i+1}|| = ||r_i - L(x)|| \le ||r_i - L(y)||$$

for all $y \in \mathcal{M}_1$, since $0 \in \mathcal{M}_1$

$$||r_{i+1}|| = ||r_i - L(x)|| \le ||r_i||$$

Theorem 2 implies that either $||r_i|| = 0$ or

 $||r_{i+1}|| < ||r_i||$

A numerical example

we compute for a given vector $\mathbf{f} \in \mathbb{R}^{14 \times 14 \times 14}$ its aproximation by a vector $\sum_{j=1}^{n} \mathbf{f}_{j}^{1} \otimes_{K} \mathbf{f}_{j}^{2} \otimes_{K} \mathbf{f}_{j}^{3}$, Here \otimes_{K} denotes the Kronecker product. To this end we consider

$$L = I$$

where *I* is the identity matrix. Then for a randomly choosed vector **f** and for the parameter values iter_max = 10. rank_max = 1000 and $\varepsilon = 0.001$, we compute the sequence $\|\mathbf{r}^n\| = \|\mathbf{f} - A\mathbf{z}_n\|$. As can see in Figure 23 it is a strictly decreasing sequence. The algorithm stopped at n = 580 after 46.13 seconds with a relative error equal to 3.31590880125612e - 05

Figure

