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Heuristics (Part I)

Consider a general linear boundary value problem
L(u) = f with homogeneous boundary condition
u|∂Ω = 0 and Ω = [a, b]d.

We would to construct a solution step by step starting
with a starting map given in separation of variables
form:

u0 = u
(1)
0 (x1) · · · u

(d)
0 (xd) = u

(1)
0 ⊗ · · · ⊗ u

(d)
0

such that we would to minimize:

u
(1)
1 ⊗· · ·⊗u

(d)
1 ∈ arg min

u(1)⊗···⊗u(d)
‖f−L(u0+u(1)⊗· · ·⊗u(d))‖
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Heuristics (Part II)

Since L is a linear map, if we take the residual map

r0 = f − L(u
(1)
0 ⊗ · · · ⊗ u

(d)
0 )

the above minimization program can be written as:

u
(1)
1 ⊗ · · · ⊗ u

(d)
1 ∈ arg min

u(1)⊗···⊗u(d)
‖r0 − L(u(1) ⊗ · · · ⊗ u(d))‖

They expect that

‖r0 − L(u
(1)
1 ⊗ · · · ⊗ u

(d)
1 )‖ < ‖f − L(u

(1)
0 ⊗ · · · ⊗ u

(d)
0 )‖
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Heuristics (Part III)

Proceeding inductively, if we denote by

un =
n∑

k=0

u
(1)
k ⊗ · · · ⊗ u

(d)
k

and
‖f − L (un+1)‖ < ‖f − L (un)‖

follows for all n = 0, 1, 2, . . . ,

when
‖f − L (un)‖ < tol

we stop the process and take un ∼ u.
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Comments and Remarks

1. Is
arg min

u(1)⊗···⊗u(d)
‖f − L(u(1) ⊗ · · · ⊗ u(d))‖ 6= ∅?

Note that

M1 =
{

u : u = u(1) ⊗ · · · ⊗ u(d)
}

not is a linear space.

2. Is is true that

‖f − L (un+1)‖ < ‖f − L (un)‖?
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Greedy Approximations

Let X be a Banach space equiped with a norm ‖‖X . We
say that a set D ⊂ X is a dictionary if each g ∈ X has
norm one and the closure of spanD coincides with the
whole X.

Define G(f,D, X) = α(f)α(g), where α(f) ∈ R and
α(g) ∈ D satisfy (we assume existence):

min
α∈R,g∈D

‖f − αg‖ = ‖f −G(f,D, X)‖ (1)
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X-Greedy Algorithm

We define R0(f,D, X) := f, G0(f,D, X) := 0. Then for
each m ≥ 1 we inductively define

Rm(f,D, X) = Rm−1(f,D, X)−G(Rm−1(f,D, X))

Gm(f,D, X) = Gm−1(f,D, X) + G(Rm−1(f,D, X)).

Note that

Rm(f,D, X) = f −Gm(f,D, X) = f −
m∑

k=1

αk gk,

where αk ∈ R and gk ∈ D.

By using (1) it is possible to show that

‖Rm(f,D, X)‖ ≤ ‖Rm−1(f,D, X)‖.
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Bad (or Good ?) News

There are not general results on convergence of
X-Greedy Algorithms (V. N. Temlyakov).

In particular there are not results for the sequence
{Rm(f,D, X)} to be strictly decreasing.

Note that
D = {u ∈M1 : ‖u‖ = 1}

is a dictionary, and

M1 = {α u;α ∈ R and u ∈ D}.
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Some related problems

1. Consider that L = I and f ∈ L2(X × Y ), then we would
to find v1, . . . , vn ∈ L2(X) and w1, . . . , wn ∈ L2(Y ) such
that if

un =
n∑

k=1

vk ⊗ wk

then
‖f − un‖L2(X×Y ),

is a small as possible. It was solved by Jaromir Simsa
in 1992.
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Some related problems

2. Consider L = I and f ∈ R
d1×···×dk then we would to

construct a vector

ur =

r∑

j=1

v
(1)
j ⊗ · · · ⊗ v

(k)
j , v

(i)
j ∈ R

di

that minimizes
‖f − ur‖.

This problem is called the best low-rank approximation
problem.
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Best low-rank approximation problem

(a) For k = 2 the problem is solved by using the SVD
(Eckart-Young Theorem).

(b) It has no solution in general for
r = 2, . . . ,min{d1, d2, . . . , dk} and k ≥ 3 (V. de Silva and
L.H. Lim, 2008).

(c) The set of tensors that fail to have best low-rank
approximation has positive volume (V. de Silva and L.H.
Lim, 2008).
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Introducing some notation

Recall the set

M1 =
{

u ∈ H : u = u(1) ⊗ · · · ⊗ u(d), u(i) ∈ Hi

}

where H = H1 ⊗ · · · ⊗Hd and Hi is a separable Hilbert
space with norm given by

‖ · ‖H = ‖ · ‖1 · · · ‖ · ‖d.

Note that

1. αM1 =M1 for all α ∈ R \ {0} and

2. 0 ∈M1.
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The problem in abstract setting

Let

Mr =
︷ ︸︸ ︷

M1 + · · · +M1
r−times

and L : H → H be a given linear operator. Then the r-best
low-rank approximation problem for the initial problem can
be stated as follows: For a given f ∈ H and is

min
u∈Mr

‖f − L(u)‖

Unfortunately, for r ≥ 2 is ill-posed problem, becauseMr is
not a closed set.
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A main result

Theorem 1 If L : H −→ H, is bounded and has a bounded
inverse then

arg min
u∈M1

‖f − L(u)‖ 6= ∅.

Lemma 2 The setM1 is closed in H.

Proof. Let xn ∈M1 → x in H, then xn ∈M1 ⇀ x weakly,
Since xn = λnu1

n ⊗ · · · ⊗ ud
n where λn = ‖xn‖H , then

λn → λ = ‖x‖. Since ui
n belongs to the unit ball in Hi, then

there exists a subsequence ui
nk

⇀ ui weakly. In
consequence xnk

= λnk
u1

nk
⊗ · · · ⊗ ud

nk
⇀ λu1 ⊗ · · · ⊗ ud

weakly, and x = λu1 ⊗ · · · ⊗ ud ∈M1.
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Proof of Theorem

Note that the map Φ(u) = ‖f − L(u)‖ is bounded below and
continuous fromM1 to R. Let α = infu∈M1

Φ(u). Then, there
exists un ∈M1 be such that

α +
1

n
≥ Φ(un) ≥ α in R.

Thus, wn = f − L(un) is a bounded sequence in H, thus
there exists a subsequence wnk

⇀ w∗ weakly. Then, since
L−1 exists and it is bounded unk

⇀ L−1(f − w∗) = u∗ ∈M1.

In consequence Φ(unk
)→ Φ(u∗) = α, and

u∗ ∈ arg min
u∈M1

‖f − L(u)‖.
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The main result

Theorem 3 Assume that L : H −→ H, is bounded and and
has a bounded inverse. Then there exists a sequence
{un}

∞
n=0 ⊂ H such that u0 = 0, and un+1 ∈Mn+1 for each

n ≥ 0 satisfy the following optimal condition:

‖f − L(un+1)‖ = min
x∈M1

‖f − L(x + un)‖. (2)

Moreover, if for some n ∈ N it follows that

‖f − L(un)‖ = ‖f − L(un−1)‖ (3)

then f = L(un−1).

A GREEDY ALGORITHM FOR NUMERICAL METHODS IN HIGH DIMENSION – p. 17



Proof of main result I

Let u0 = 0, then by using Theorem 1 inductively (2) follows.
In order to prove the second part of theorem, we start with
the case n = 1. Thus, assume that it follows

‖f − L(u1)‖ = ‖f‖ = inf
x∈M1

‖f − L(x)‖.

If xi ∈ Hi for i = 1, 2, . . . , d, then

λx1 ⊗ x2 ⊗ · · · ⊗ xd ∈M1

for all λ ∈ R. Consequently, we have

‖f − L(λx1 ⊗ x2 ⊗ · · · ⊗ xd)‖ ≥ ‖f‖ (4)

for every λ ∈ R.
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Proof of main result II

This implies that f and L(x1 ⊗ x2 ⊗ · · · ⊗ xd) are orthogonal.
Since the vectors xi ∈ Hi for i = 1, 2, . . . , d, are arbitrary and
L has zero null space, this means that f = 0, which proves
the second part of the theorem for n = 1. To prove it with
n > 1, suppose that

‖f − L(un)‖ = inf
x∈M1

‖f − L(un−1)− L(x)‖ = ‖f − L(un−1)‖

which implies, by using a similar argument as above, that
f − L(un−1) = 0.
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A Greedy Algorithm

1: procedure (‖f − L(u)‖ < ε : u ∈Mrank_max)
2: r0 = f

3: u = 0
4: for i = 0, 1, 2, . . . ,rank_max do
5: x = procedure (minx∈M1

‖ri − L(x)‖)
6: ri+1 = ri − L(x)
7: u← u + x

8: if ‖ri+1‖ < ε or |‖ri+1‖ − ‖ri‖| < tol then goto
13

9: end if
10: end for
11: return u and ‖rrank_max‖.
12: break
13: return u and ‖ri+1‖
14: end procedure
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Some remarks

Note that in 6:

‖ri+1‖ = ‖ri − L(x)‖ ≤ ‖ri − L(y)‖

for all y ∈M1, since 0 ∈M1

‖ri+1‖ = ‖ri − L(x)‖ ≤ ‖ri‖

Theorem 2 implies that either ‖ri‖ = 0 or

‖ri+1‖ < ‖ri‖
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A numerical example

we compute for a given vector f ∈ R
14×14×14 its

aproximation by a vector
∑n

j=1 f
1
j ⊗K f

2
j ⊗K f

3
j , Here ⊗K

denotes the Kronecker product. To this end we consider

L = I

where I is the identity matrix. Then for a randomly choosed
vector f and for the parameter values iter_max = 10.
rank_max = 1000 and ε = 0.001, we compute the sequence
‖rn‖ = ‖f − Azn‖. As can see in Figure 23 it is a strictly
decreasing sequence. The algorithm stopped at n = 580
after 46.13 seconds with a relative error equal to
3.31590880125612e− 05

A GREEDY ALGORITHM FOR NUMERICAL METHODS IN HIGH DIMENSION – p. 22



Figure
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