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ABSTRACT

This paper introduces an intrinsic prior distribution for super-

vised classification of texture images. First, we introduce the

intrinsic prior distribution as the normal law on a Riemannian

manifold. Next, based on this definition, we derive the esti-

mation and classification schemes. Finally, we propose an ap-

plication for the classification of texture images. Experiments

on the VisTex texture database are conducted and demonstrate

the interest of the proposed intrinsic classification algorithm.

Index Terms— Information geometry, intrinsic prior, tex-

ture classification.

1. INTRODUCTION

In the framework of natural texture image processing, para-

metric stochastic models have been well studied. When para-

metric stochastic modeling is associated with scale-space rep-

resentation, very effective algorithms can be designed, obtain-

ing successful results for a large class of natural textures. Pro-

viding an unified view of model estimation, classification and

synthesis, multiscale scheme enables us to prototype stochas-

tic models which have a non-Gaussian distribution.

However, based on scale-space decomposition and stochas-

tic modeling, none of the existing works have addressed the

problem of the intra-class diversity characterization to in-

crease the classification performance. In this paper, we

employ the Bayesian framework to take into account the

intra-class diversity. From the concept of intrinsic prior, we

develop a new supervised parametric classification algorithm.

Parametric classification is closely linked with the theory

of statistical manifolds, which aims at providing a Rieman-

nian structure to the parameters space of probability density

functions (pdf). Many works have proposed extrinsic tools

by embedding the manifold in an Euclidean space [1]. Nev-

ertheless, to compare two observations in a parameter space,

the geometry of the Riemannian manifold should be consid-

ered which is the main objective of information geometry the-

ory [2]. In this context, the notion of intrinsic tools is the key

point. For example, in an estimation problem, the estimate

should be invariant under any reparametrization of the param-

eter space. This notion of intrinsic has hence been considered

in a wide range of disciplines such as in the definition of in-

trinsic loss function [3], intrinsic discrepancy in the context

of Bayesian estimation [4] and detection [5], and also in in-

trinsic version of Cramér-Rao bound [6]. In this paper, our

contributions are threefold. First, in the Bayesian framework,

we introduce the concept of intrinsic prior distribution as the

normal law on a Riemannian manifold when the Jeffrey di-

vergence is considered and derive an intrinsic estimation and

classification scheme. Second, based on the intrinsic prior,

we show that the optimal decision characterizing the classifi-

cation procedure leads to a decision directly on the parameter

space (Riemannian manifold). Third, we propose to validate

the proposed methodology in a texture based image retrieval

experiments.

The paper is structured as follows. Section 2 gives a state-

of-the-art about intrinsic distribution and introduces the pro-

posed intrinsic prior. Based on this definition, Section 3 de-

rives the estimation and classification scheme. Section 4 in-

troduces an application for the classification of texture im-

ages, and some experiments results are displayed on the Vis-

Tex database. Conclusions and future works are finally re-

ported in Section 5.

2. INTRINSIC PRIOR DISTRIBUTION

Let χ = (χ1, . . . , χK) be K independent sets of Ni indepen-

dent and identically distributed random variables (vectors) x

according to a parametric model p(x|θ). Let (θ̂1, . . . , θ̂K) ∈
Θ be the K maximum likelihood estimates computed on these

sets (χ1, . . . , χK). This collection of K parametric vectors

can be described by its first and second order characteristics:

the most central element (i.e. the centroid θ̄) and the standard

deviation σ around this central point. Based on the defini-

tion of the entropic prior and the normal law on a Riemannian

manifold, we introduce the notion of intrinsic prior distribu-

tion p(θ|θ̄, σ).

2.1. Entropic prior

Given a parametric model p(·|θ), the entropic prior on θ is

given by [7, 8]:

p (θ|θ0, α) ∝
1

|G(θ)|− 1

2

exp {−αI(p(·|θ0), p(·|θ))} (1)

where α is a positive scalar parameter, |G(θ)| is the deter-

minant of the Fisher information matrix computed at point θ



and I(p(·|θ0), p(·|θ)) is a divergence between the probability

measures p(·|θ0) and p(·|θ).
As observed, this entropic prior is invariant under any

change of coordinate in the parameter space. This prior is

hence intrinsic and assigns to θ a probability which decreases

exponentially with the divergence. In (1), the parameter α

controls the sensitivity to changes in distance. Note that

when α tends toward 0, the entropic prior reduces to the

non-informative Jeffrey prior.

2.2. Normal law on a manifold

In [9], Pennec introduces the concept of normal law on a Rie-

mannian manifold M knowing the mean value θ̄ and covari-

ance matrix Σ as:

p(θ|θ̄,Γ) = k exp

(

−
−→̄
θθTΓ

−→̄
θθ

2

)

(2)

where k is the normalizing constant and Γ the concentration

matrix linked to the covariance matrix by:

Σ = k

∫

M

−→̄
θθ

−→̄
θθT exp

(

−
−→̄
θθTΓ

−→̄
θθ

2

)

dM(θ) (3)

The model defined in (2) approximates the normal model by

the usual Gaussian distribution in the tangent space Tθ̄M at

the mean value θ̄. In this definition, the projection from the

Riemannian manifold to the tangent space is given by the ex-

ponential map. Here, the geodesic distance (GD) induced by

the Riemannian metric, derived from the Fisher information

matrix is considered to compute the proximity between two

observations, i.e. GD(p(·|θ̄), p(·|θ)) = ‖
−→̄
θθ‖.

This model has notably been considered in [10] for the

segmentation of magnetic resonance images.

2.3. Intrinsic prior

Inspired from the definitions of the entropic prior (1) and the

normal law on a Riemannian manifold (2), we introduce the

definition of the intrinsic prior as the normal law on a mani-

fold when the Jeffrey divergence is considered instead of the

Riemannian metric as:

p
(

θ|θ̄, σ
)

=
1

(2π)d/2σd|G(θ)|− 1

2

exp

{

− 1

2σ2
J(p(·|θ), p(·|θ̄))

}

,

(4)

where d is the dimension of the parameter space Θ and

J(p(·|θ), p(·|θ̄)) is the Jeffrey divergence computed between

the parametric models p(·|θ) and p(·|θ̄).
3. INTRINSIC ESTIMATION AND CLASSIFICATION

3.1. Intrinsic estimation

By considering the notation introduced in Section 2, the max-

imum likelihood estimators of the centroid θ̄ and standard de-

viation σ are obtained as solution of:

λ̂ = arg max
λ

p(χ|λ), (5)

where λ = {θ̄, σ} is the set of hyperparameters, and

p(χ|λ) =
K
∏

i=1

p(χi|λ) =
K
∏

i=1

∫

Θ

p(χi|θi) p(θi|λ) dM(θi),

(6)

where dM(θi) = |G(θi)|
1

2 dθi is the volume element on a

Riemannian manifold. In (6), the main difficulty relies on the

computation of the integral. Many works have been dedicated

to this problem including Monte Carlo integration, variational

based approaches or Laplace approximation [11, 12]. This

latter has been successfully validated by many authors in ap-

plied mathematics (see [13] for instance). Next, after devel-

opping p(χi|θi) as
Ni
∏

j=1

p(xj |θi) and introducing the Laplace

approximation and the expression of the proposed intrinsic

prior (4) in (6), one can derive the maximum likelihood esti-

mates of the centroid ˆ̄θ and standard deviation σ̂. After some

cumbersome computations and removing the terms indepen-

dent of θ̄ and σ, it yields:

ˆ̄θ = arg min
θ̄

1

K

K
∑

i=1

J(p(·|θ̂i), p(·|θ̄)) (7)

σ̂2 =
1

dK

K
∑

i=1

J(p(·|θ̂i), p(·| ˆ̄θ)) (8)

First, it can be noticed that the maximum likelihood es-

timators of θ̄ and σ do not depend on the set χ. They are

directly expressed as a function of the maximum likelihood

estimators θ̂i. Note also that, equations (7) and (8) coin-

cide with the maximum likelihood estimators of p(θ|λ) where

θ = {θ̂1, . . . , θ̂K}.

To estimate ˆ̄θ from (7), a stochastic gradient descent algo-

rithm can be considered [2, 14, 15]. ˆ̄θ is obtained as the fixed

point solution of

θt+1 = θt − ηtC(θt)∇l(θt) (9)

where ηt is the step size which may depend on iteration t,

C(θt) is a positive definite matrix and ∇l(θt) is the gradi-

ent of the cost function defined in (7). When C(θt) is equal

to G−1(θt), the inverse of the Fisher information matrix, (9)

corresponds to the natural gradient descent. This latter is in-

trinsic since it does not depend on the chosen parametrization

θ of the pdf [2, 14, 15].

3.2. Classification

Let χt be a set of Nt independent and identically distributed

random vectors x. Let θ̂t be the maximum likelihood esti-

mate computed on χt. Let λ̂1, . . . , λ̂C be a collection of C

hyperparameters, corresponding to C classes, estimated ac-

cording to (7) and (8). The sample χt is classified to the class



c maximizing the likelihood p(χt|λc), i.e.

ĉ = arg max
c

p(χt|λ̂c) (10)

By following the same procedure as described in Section. 3.1

for the estimation process, one can rewrite the expression of

the decision rule (10) as:

ĉ = arg min
c

d ln σ̂c +
1

2σ̂2
c

J(p(·|θ̂t), p(·| ˆ̄θc)) (11)

Under the homoscedasticity assumption, ∀{i ∈ 1, . . . , c}, σ̂i =
σ̂, (11) reduces to the decision rule

ĉ = arg min
c

J(p(·|θ̂t), p(·| ˆ̄θ)). (12)

Equations (12) and (11) can respectively be interpreted as lin-

ear (resp. quadratic) discriminant analysis on a Riemannian

manifold. Note that those decision rules are decisions on the

parameter space Θ (not on the original space χ), hence reduc-

ing the computational complexity.

In the next section, we propose an application of this in-

trinsic classification scheme for the recognition of texture im-

ages.

4. INTRINSIC TEXTURE CLASSIFICATION

4.1. Context

Many works in texture image recognition have shown that the

wavelet representation is a well-adapted domain to character-

ize the texture, yielding to a multiscale analysis scheme which

consists in modeling each wavelet subband. Let I be a texture

image. Let No and Ns be respectively the number of orien-

tation and scale of a multi-scale decomposition. I is hence

decomposed into No × Ns sub-bands. Let us consider the

parametric vector θs,o of the pdf associated to each sub-band.

The collection TI of those parametric vectors will represent

the texture image I .

TI = {θs,o|s = 1, . . . , Ns, o = 1, . . . , No} . (13)

4.2. Intrinsic texture estimation

Let (Tc,1, . . . , Tc,NTr
) be NTr training samples from the

same class c. From this collection of samples, the class c

is represented by a collection of centroids θ̄c,s,o and stan-

dard deviation σc,s,o computed on each subband, since the

subbands of the wavelet decomposition are assumed to be in-

dependent. Here, the subscripts c, s, o refer respectively to

the texture class c, the scale s and the orientation o of the

wavelet subband. Hence, for each wavelet subband, one cen-

troid θ̄c,s,o and standard deviation σc,s,o are estimated ac-

cording to the intrinsic estimation scheme developed in Sec-

tion 3.1, see equations (7) and (8). As observed in Fig. 1, the

natural intra-class diversity of texture images is captured by

the proposed normal law on a Riemannian manifold (intrinsic

prior).

Fig. 1. Representation of the intra-class diversity modeled

by the proposed intrinsic prior distribution.

In this paper, we propose an application to texture image

recognition based on a multivariate modeling context. The

wavelet coefficients located around the neighborhood p × q

of the current spatial position are clustered in the random

vector x. The realizations of vector x characterize the spa-

tial dependency of wavelet coefficients. Spherically Invari-

ant Random Vectors are a class of stochastic models which

have shown promising results for modeling the spatial de-

pendency of wavelet coefficients [16]. Hence, we propose

to model those observations based on the SIRV representa-

tion. Let x be a pq−dimensional vector following a SIRV

distribution, it yields that x admits the stochastic represen-

tation x =
√
τg where τ is a scalar random variable called

multiplier (τ ∈ R
+) and g a real Gaussian vector with zero

mean and covariance matrix Σ = E{ggT }. By exploiting

the independence of the processes τ and g and by working

on the joint vector y = (τ,g), the Jeffrey divergence of the

joint model can be expressed as the sum of the Jeffrey diver-

gence for the multivariate Gaussian process and the Jeffrey

divergence for the multiplier part. Note that both terms admit

a closed-form expression recalled in [17]. It yields that the

centroid for a SIRV model y is composed by two centroids:

one for the Gaussian part and one for the multiplier part. For

more information dealing with the implementation of those

centroids estimators, the interested reader is referred to [17].

4.3. Texture classification

Let Tt be a test image. According to the classification rule

presented in Section 3.2, this image is labeled to the class

ĉ, corresponding to the class maximizing the likelihood

p(Tt|λĉ). Since the subbands of the wavelet decomposition

are independent, one can consider the chain rule principle to

obtain the pdf of p(Tt) as the product of the pdf computed for

each subbands. After some computations, the decision rule is

simply the sum of the decision rules (11) computed on each

subband. It yields

ĉ = arg min
c

∑

s,o

d ln σ̂c,s,o +
1

2σ̂2
c,s,o

J(p(·|θ̂t), p(·| ˆ̄θc,s,o)).

(14)



When considering the multivariate SIRV model with Weibull

distributed multiplier, the dimension d of the parameter space

Θ is equal to
(pq+1)pq

2 + 1 since one covariance matrix of

dimension pq×pq and one shape parameter for the multiplier

τ should be estimated. When a univariate model is consider

to represent the wavelet coefficients such as the 2-parameters

generalized Gaussian distribution (GGD), d is equal to 2.

Similarly, when the homoscedasticity assumption holds,

the decision rule reduces to a nearest neighbor classifier ac-

cording to the Jeffrey divergence.

ĉ = arg min
c

∑

s,o

J(p(·|θ̂t), p(·| ˆ̄θc,s,o)). (15)

Note that to the best of our knowledge, even if this last deci-

sion rule has been previously proposed in [18, 19, 20], no pre-

vious works had been fully formalized in the Bayesian frame-

work.

4.4. Results and discussion

To evaluate the performance of the proposed supervised

classification algorithm, the database is split into a training

database and a disjoint testing database. From a practical

point of view, NTr training samples are randomly selected

for each texture class, the remaining samples are taken as test-

ing samples. In the following, 100 Monte Carlo runs are used

to evaluate the performance of the proposed classifiers. Per-

formances are evaluated in terms of kappa index. The kappa

index refers to the proportion of consistent classifications

observed beyond that expected by chance alone [21, 22].

This experiment is carried out on the MIT Vision texture

(VisTex) [23]. This database is composed of 40 classes and

64 images per class of size 64× 64 pixels. All texture images

are normalized in intensity to have zero mean and unit stan-

dard deviation. This normalization gives invariance to affine

transformations in the illumination intensity. Here, the sta-

tionary wavelet decomposition with 2 scales and Daubechies’

filter db4 have been used and a 3× 3 neighborhood has been

considered to model the spatial dependency of the wavelet

coefficients.

Fig. 2 draws the evolution of the average kappa index as

a function of the number of training samples on the VisTex

database. Results for both univariate (GGD) and multivari-

ate (SIRV) models are respectively displayed in red and blue.

Moreover, experiments are carried out to evaluate the influ-

ence of the standard deviation σ in the decision rule. The

solid and dashed lines correspond to the classification results

when the standard deviation is considered (14) and when the

homoscedasticity assumption holds (15). As observed, a gain

of about 3 points is observed when a multivariate model (such

as the SIRV) is used to take into account the spatial depen-

dency compared to an univariate model (such as the univariate

GGD). Note also that the proposed classifier (dash lines) has

a significant gain of 5 points compared to the decision rule

when the homoscedasticity assumption is considered (solid

lines).

Fig. 2. Evolution of the average kappa index as a function

of the number of training samples on the VisTex database for

the univariate GGD and the SIRV models.

5. CONCLUSION

This paper has addressed the problem of classification based

on an intrinsic prior. After introducing the proposed intrinsic

prior distribution as the normal law on a Riemannian manifold

when the Jeffrey divergence is considered, we have derived

an intrinsic estimation and classification scheme. Next an ap-

plication to supervised classification texture images has been

proposed. Classification results on the VisTex database have

shown a gain compared to other conventional approaches.

Further works will deal with the extension of the proposed

work to an intrinsic multi-barycentric classification algorithm

in order to handle the intra-class diversity of natural texture

images.
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