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Abstract 

As an approach towards a better modelling of solidification problems, we present the basic 
assumptions and implementation of a thermo-mechanical two-phase model that considers the 
solidifying alloy as a binary mixture made of a liquid and a solid phase. Macroscopic mass and 
momentum balances are obtained considering that, at the microscopic level, the liquid is 
Newtonian whereas the solid is a power law fluid. Assuming local thermal equilibrium, a single 
equation for the conservation of the mixture energy is then written. The numerical 
implementation in a 2D finite element code is then detailed. Lastly, some examples of 
isothermal simulations of academic tests and application examples are discussed. They 
particularly enlighten the ability of the formulation to describe the mixture evolution over the 
whole solidification interval. 

Introduction 

The macrosegregation of chemical species is a central problem in solidification engineering, 
because it strongly influences the further processibility of the cast products and the final 
properties of the parts produced. In most cases, macrosegregation is the result of slow 
interdendritic flow, driven by thermo-solutal convection. Generally, the influence of the solid 
motion on the fluid flow is assumed of minor importance and, as a matter of fact, most casting 
numerical simulations neglect this phenomenon. 
However, as demonstrated by Flemings [1], in some cases, the macrosegregation of chemical 
species highly depends of the deformation of the solid skeleton forming in the mushy zone. 
This is especially the case in continuous casting (but not exclusively…) where there exists a 
large mushy zone, which is deformed together with the solid shell because of the bulging 
phenomenon between the supporting rolls of the caster. The proposed work can be seen as a 
first step to model and understand these complex phenomena. 
The mushy zone is considered here as an effective two-phase continuum. On the one hand, the 
solid material is considered as an incompressible viscoplastic material, obeying a constitutive 
equation of power-law type. Invoking homogeneization results, its macroscopic flow rule is 
viscoplastic, including compressibility, so that the solid continuum can be seen as a deformable 
compressible porous medium. On the other hand, the liquid phase is intrinsically Newtonian. At 
the macroscopic scale, its momentum interaction with the solid skeleton is of Darcy type. 
A two-dimensional numerical implementation of the corresponding mass, momentum and 
energy conservation equations has been carried out in a finite element software. The space and 
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time discretization of equations, as well as the resolution strategy, is presented. Finally, the 
validation of the formulation is achieved by comparison with an analytical solution and a 
simple application case is illustrated. 
 

1 Macroscopic two-phase model 
 
General Macroscopic Balance Equations 
At the microscopic scale, inside each phase, the thermo-mechanical evolution is assumed to be 
governed by the usual mass, momentum and energy balances. In this work, the balance 
equations of the mixture, at the scale of an elementary representative volume (macroscopic 
scale), are obtained using the spatial averaging method on a fixed control volume V0. This 
method is classical and will not be detailed here; see for example references [2], [3], [4], [5] for 
further details on its basic principles. The notations used in this paper can be summarized as 
follows. Denoting χk the characteristic function of phase k (=1 in phase k and 0 elsewhere) for 
any function ψ, we define: 
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The solidifying alloy in the mushy state is considered as a saturated two-phase medium, that is 
to say that both phases volume fractions always satisfy the following relationship: 

1=+ ls gg  (2) 
Applying the spatial averaging process to microscopic balance equations in each phase k (k = s, 
l), and using the notations introduced previously, one obtains the following set of macroscopic 
equations. 
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where ρ denotes the density, v the velocity field, σ  the stress tensor, g the gravity vector, h the 
enthalpy per unit of mass, q the heat flow vector. The terms Γ, M and Q are associated with the 
exchanges of mass, momentum and energy, respectively, between the two phases. 
 
Mass conservation 
The local mass balance at the interface between phases ensures that ensures that 0=Γ+Γ ls  
[5]. Then summing equations (3a) for the liquid and solid phase, and assuming that the densities 
of the two phases remain constant (but different), we get: 
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or, dividing by ρl, 
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where lsl
tr ρρρε )( −=∆  denotes the relative change of volume associated with solidification 

(negative in general). 
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Momentum Conservation 
The spatial averaging method used in this paper is efficient to obtain in a simple way the 
macroscopic governing equations of the semi-solid alloy but does not enable to go further in the 
specifications of the macroscopic model. Reliable constitutive equations would require more 
sophisticated approaches such as homogenization [6], [7] associated with numerical simulation 
at the microscopic scale, but this is not in the scope of this work. The full definition of the two-
phase model will simply be based on further constitutive assumptions. 
 
Macroscopic constitutive equation for the fluid phase 
At the microscopic scale, we assume that the liquid metal behaves as an incompressible 
Newtonian fluid. The incompressibility hypothesis is valid as long as the temperature range of 
the solidification interval remains narrow enough. We therefore can write: 

Isσ p−=    with   )(2 vεs &lµ=  (6) 
where p denotes the hydrostatic pressure, s the deviatoric part of , µl the viscosity of the 
liquid, and  the strain rate tensor. As suggested by Ganesan & Poirier [8] and Rappaz et al. 
[5], we adopt the following model for the macroscopic deviatoric stress tensor: 

( ))(dev2 lll
ll g vεsΣ &µ==  (7) 

where dev denotes the deviatoric part. 
 
Macroscopic constitutive equation for the solid phase 
Experimental studies on the behavior of metallic alloys at high temperature show that the 
behavior of the solid phase is well described by constitutive equations of the Norton-Hoff type: 

Isσ p−=    with   )()3(2 1 vεs &&
−= m

eqK ε  (8) 

where K and m denote the consistency and the strain rate sensitivity and eqε&  the von Mises 
equivalent strain rate. The behavior is then defined by the relation between the equivalent stress 
(in the von Mises sense) and the equivalent strain rate: 

m
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m
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For solid fractions above the coherency fraction, using the analysis of Geindreau and Auriault 
[7], we get that the effective stress tensor IIsΣ lsss

s pgp +−=  is a degree m homogeneous 
function with respect to the strain rate tensor )( ss vεε && = . This property shows that the solid 
phase can be modelled as a compressible power law fluid. We therefore adopt a compressible 
viscoplastic formalism [9], [10]. Constitutive equations are the ones described by (9), but with 
equivalents defined as 
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Those equations require two rheological functions A and B that depend on the solid volume 
fraction and for which several models can be found [9], [10]. The constitutive equations of the 
solid phase at the macroscopic scale therefore read 
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This model is simple and pemits a first introduction of the compressibility of the solid skeleton 
in the mechanical behavior of a muhy zone. The interested reader can refer to the recent work 
of Ludwig et al. [11], who suggest to complement the previous model by introducing a state 
variable representing the cohesion of the skeleton. An evolution law of this variable is also 
proposed in order to represent the resistance of the inter-granular liquid films and solid bridges 
to tension. These modifications permit a better response of the model for small deformations, 
such as those encountered in continuous casting. 
For lower solid fractions, the solid phase will be supposed to be stress free. 
 
Exchange of Momentum 
According to the work of Ni & Beckermann [3], Mk can be partitioned as: 

p
k

d
kk MMM +=  (12) 

the first part being the contribution of deviatoric stresses and the second one the contribution of 
the isotropic part, and it can easily be shown that 

0=+ d
s

d
l MM    and   0=+ p

s
p
l MM  (13) 

The liquid being a Newtonian incompressible fluid with a very low viscosity, we will assume 
that the pressure equilibrium in the liquid phase is almost instantaneous. Subsequently, the 
interfacial pressures in both phases (*

kp ) equal the intrinsic average value of liquid pressure, 
that is its microscopic value: 

lsl ppp == **  (14) 
p
kM  can therefore be expressed as follows [3]: 

slll
p
l

p
s gpgp ∇=∇−=−= MM  (15) 

Depending on the solid fraction, the dissipative terms d
kM  are generally interpreted either as the 

drag force exerted by the liquid on the isolated solid grains [3] or the filtration force exerted by 
the liquid flowing through the solid, considered as a rigid porous medium [7], [5]. In both 
cases, d

kM  can be modelled by a law of the generic type: 

( ) ( )slll
d
l

d
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where the factor C may be defined through the usual permeability factor Κ  as: 

Κ
= ll µg

C  (17) 

 
Energy Conservation 
At the microscopic level, the Fourier law is used. Given λ the thermal conductivity, we have: 

T∇−= λq  (18) 
Our approach is based on the local thermal equilibrium assumption, which is valid because the 
liquid and the solid do not exhibit too different thermal properties nor strong thermal interfacial 
barriers. Therefore, at the macroscopic scale, their average temperature is the same: 

TTT ls ==  (19) 
The enthalpies of both phases can then be written as a function of the temperature T. Assuming 
for simplicity a constant specific heat cp, and a constant latent heat per unit of mass L, we have: 

Lhhdch sl
T

T ps +== ∫ and)(
0

ττ  (20) 

Because of the thermal equilibrium hypothesis, the energy conservation is written as a single 
equation which is the sum of the energy balance on both phases: 

4



0=⋅∇+⋅∇+
∂
∂

qvhh
t

ρρ  (21) 

where 

ssslll
sl hghghhh ρρρρρ +=+= )()(  

ssssllll
sl hghghhh vvvvv ρρρρρ +=+= )()(  

TTgg llssls ∇−=∇+−=+= λλλ )(qqq  

(22) 

After elementary calculations, we obtain: 
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Final Equation Set Adopted 
The set of equations (24) sums up the adopted equations set for this two-phase formulation. 
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2 Numerical Implementation 

 
This formulation was implemented in the two-dimensional code R2SOL, finite element code 
using linear triangles and based on the P1+/P1 mixed formulation [12], [13]. Up to now, the 
two-phase approach has been validated for isothermal situations only, so only the 
implementation of the isothermal mechanical problem will be discussed here. 
In what follows, vs will be denoted u, vl will be denoted v, and pl will be denoted p. The 
boundary conditions of the mechanical problem are: 

simp
l

imps
ss

uimp

pg Ω∂==−=

Ω∂==

on  ,)(

on  

TnσTnIΣnσ

Vvu
 (25) 

If V is the space of “kinematically admissible” velocity fields and V0 is the space of “zero 
kinematically admissible” velocity fields. The virtual power principle states that the solution of 
the problem ( ) ( )Ω×∈ 2,, LVpvu  must fulfil: 
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It is a mixed velocity-pressure formulation involving two velocity fields that requires 
interpolation functions satisfying the Brezzi-Babuska conditions. Using the previous 
formulation developed in the one-phase case, we adopt a “(P1+)²/P1” formulation. On each 
finite element, the velocity fields u and v are approximated as follows: 
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A and B are the additional bubble degrees of freedom located at the center of each element. The 
bubble interpolation function Nb is linear on each sub-triangle, and is constructed such as Nb=0 
on the edges of the element and Nb=1 at the center of the triangle. The interstitial pressure p is 
approximated by a classical linear interpolation. Test functions u*, v* and p* are approximated 
in the same way. Thanks to the particular shape of the bubble functions, the additional degrees 
of freedom A and B can be eliminated from the discrete system at the elements level. This is 
obtained by the same process as the one described in [12] and [13] for a one-phase problem, 
except that the size of the local system to solve is double, due to the two velocity fields. The 
resulting non linear discretized system is then solved by the means of a Newton-Raphson 
iterative method. 
 

3 Application tests 
 
Validation: comparison with an exact solution 
The two-phase mechanical solver was first validated with respect to an analytical solution. The 
latter was calculated from homogeneous simple compression problem depicted in Figure 1. In 
this test, both the liquid and the solid phases behavior are assumed linear and compressible. For 
calculation convenience, we take: 

( )ss
s

s K εIεΣ && βα += tr  (28) 

( )ll
l

l baK εIεΣ && += tr  (29) 

gl is assumed constant over the whole domain. This produces a simple compression like 
kinematics for both phases with an imposed strain rate hVimp /=ε& . The normal stress on each 
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phase is supposed to be null on the right face. The resolution leads to the following expressions 
for the phases velocity and pressure fields: 

 
Figure 1. Two-phase simple compression test geometry. 
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Results exposed in Figure 2 correspond to a test performed at Vimp = -1 m.s-1 on a sample with  
L = 5 m, h = 1 m, and: gs = 0.8, Ks = 100 Pa.s, Kl = 0.1 Pa.s, α = 0.189, β = 0.1, a = -0.667, b = 
2, C = 20. 
As visible from Figure 2, numerical results perfectly match the analytical solution both in terms 
of relative velocity sl vv −  and of interstitial pressure. Such results were obtained for several 
sets of rheological parameters and remain valid for any value of the interaction coefficient C. 
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Figure 2. Relative velocity and interstitial pressure along the x direction, numerical vs 
analytical, 1D test case. 
 
Application to Liquid Segregation 
This test aims at simulating a situation frequently encountered in continuous casting problems. 
It consists in imposing a deformation at the surface of a partially solidified alloy on a small part 
of its surface (Figure 3). It thus simulates the action of a roll. Symmetry conditions are imposed 
on all the boundaries except on the upper face, which is a free surface. We perform here again 
an isothermal calculation, but imposing an initial distribution of liquid fraction along y 
described in Figure 3. Here, the solid phase rheology is still somewhat arbitrary, but it is now 
non-linear, with a strain rate sensitivity of 0.2. The interaction coefficient is modelled by a 
classical Carman-Kozeny law and reaches very high value in the solidified zone. 

 
Figure 3. Redistribution of the liquid inside a semi-solid domain with an initial fraction 
distribution. 
 
Black arrows plotted in the zoom of Figure 3 show the relative average velocity vectors 

sl
l g vv − . Results show that the applied pressure leads to a redistribution of the liquid with 

respect to the solid. In the zone where the solid in under pressure (left side), it undergoes 
densification and the liquid is rejected to the right side of the sample. 
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Conclusion 
 
In this paper, the macroscopic conservation equations for a two-phase continuum have been 
briefly discussed and summarized. A two-dimensional finite element resolution has been 
proposed and validated on an analytical test. The ability of the formulation to represent the 
deformation of a saturated solid skeleton, using a “sponge”-like model has been demonstrated. 
In the future, the model will be extended to solidification, involving mass exchange between 
the two phases and transport of chemical species, which is of great importance in some casting 
processes. 
 

Acknowledgements 
 
The authors would like to acknowledge the financial support of ARCELOR (represented by one 
of its research centers, IRSID), ASCOMETAL (from LUCCHINI group) and the French 
Ministère de l’Economie, des Finances et de l’Industrie, in the frame of the OSC-Continuous 
Casting project. Victor D. Fachinotti is also granted by the Argentine Council for Scientific and 
Technical Research (CONICET). 
 

References 
 
1. Flemings M.C., Our understanding of macrosegregation: past and present, ISIJ International 40, 833-841 (2000) 

2. Hassanizadeh M., and Gray W.G., General conservation equations for multi-phase systems: 1. Averaging procedure, Adv. 
in Water Resources, vol. 2, 131-144 (1979) 

3. Ni J., and Beckermann C., A volume-averaged two-phase model for transport phenomena during solidification, Metall. 
Trans. B, vol. 22, 349-361 (1991) 

4. Wang C.Y., Beckermann C., Equiaxed dendritic solidification with convection: Part 1. Multiscale/multiphase modeling, 
Metall. and Mat. Trans. A 27, 2754-2764 (1996) 

5. Rappaz M., and Bellet M., and Deville M., Numerical modelling in materials science and engineering, New-York, 
Springer Verlag (2003) 

6. J.-L. Auriault, E. Sanchez-Palencia, Etude du comportement macroscopique d’un milieu poreux saturé déformable, J. de 
Mécanique 16, 575-603 (1977) 

7. Geindreau C., Auriault J.-L., Investigation of the viscoplastic behaviour of alloys in the semi-solid state by 
homogenization, Mechanics of Materials 31, 535-551 (1999) 

8. Ganesan S. and Poirier D.R., Conservation of mass and momentum for the flow of interdendritic liquid during 
solidification, Metall. Trans. B 21, 173-181 (1990) 

9. Nguyen T. G., Favier D., Suery M., Theoretical and experimental study of the isothermal mechanical behaviour of alloys 
in the semi-solid state, Int. J. Plasticity 10, 663-693 (1994) 

10. Abouaf M., Chenot J.-L., Raisson G., Bauduin P., Finite element simulation of hot isostatic pressing of metal powders, Int. 
J. Numer. Methods Engrg 25, 191-212 (1988) 

11. Ludwig O., Commet B., Drezet J.M., Martin C.L., Suéry M., Rheological behavior of partially solidified Al-Cu alloys : 
experimental and numerical study, Proc. MCWASP X, 10th Int. Conf. on Modeling of Casting, Welding and Advanced 
Solidification Processes, Destin (Florida, USA), May 25-30, 2003, D.M. Stefanescu, J.A. Warren, M.R. Jolly & M.J.M. 
Krane (eds.), The Minerals, Metals & Materials Society, Warrendale, Pennsylvania, USA, 183-190, 2003. 

12. Perchat E., Fourment L., Coupez T., Mixed formulation and iterative solver for the parallelisation of a forging simulation 
software by mesh partitioning, 3rd Euro Conf. On Parallel and Distriduted Computing for Computational Mechanics, 
Weimar, Germany, B.H.V. Topping (ed.), Developments in Computational Mechanics with High Performance Computing, 
Civil-Comp Press, Edimburgh, 67-72 (1999) 

13. A. Heinrich, Modélisation thermomécanique de la coulée continue d’acier en deux dimensions (Two-dimensional 
thermomechanical modelling of steel continuous casting), Thèse de Doctorat en Sciences et Génie des Matériaux (in 
french), Ecole des Mines de Paris (2003) 

View publication statsView publication stats

9




