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A 3D MACRO ELEMENT FOR SOIL STRUCTURE INTERACTION 
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ABSTRACT 
 
This paper presents a 3D non linear interface element able to compute Soil Structure Interaction (SSI). 
Several approaches exist to take this phenomenon into account: the following work is based on the 
“macro element” concept and is inspired on the work of (Crémer, 2001). The particularity of the 
macro element lies in the fact that the movement of the foundation is entirely described by a system of 
generalised variables (forces and displacements) defined in the foundation centre. The non linear 
behaviour of the soil is reproduced using the classical theory of plasticity. The failure surface is 
defined using an adequate overturning mechanism according to the work of (Pecker, 1997). 
The element is able to simulate the 3D behaviour of a circular rigid shallow foundation under cyclic 
and dynamic loading considering rocking. It is implemented into FedeasLab, a finite element Matlab 
toolbox. Comparisons with experimental results under monotonic static (Gottardi et al., 1999), cyclic 
(TRISEE, 1998), and dynamic conditions (Combescure et al., 2000, CAFEEL-ECOEST/ICONS, 
2001) show the good performance of the approach. 
 
Keywords: soil structure interaction, macro-element, foundation, plasticity, uplift, rocking. 
 
 

INTRODUCTION 
 
In structural engineering, Soil Structure Interaction (SSI) is an important phenomenon that has to be 
taken into account. Experimental results on the CAMUS IV structure (Combescure et al., 2000, 
CAFEEL-ECOEST/ICONS, 2001) showed that non linearities at the soil level (plasticity) and between 
the soil and the foundation (rocking and uplift of the foundation) result often to an isolation of the 
structure and thus to a reduction of the forces and the moments developed at its base during an 
earthquake. Maximum values of stresses are limited because of larger energy dissipation but more 
important displacements are generated at the top. 
 
In order to study the SSI, several methods exist: the macro element approach consists in condensing 
all non linearities into a finite domain and works with generalised variables (forces and displacements) 
that allow simulating in a simplified way the behavior of shallow foundations. Several 2D macro 
elements exist in the literature: (Nova et al., 1991), (Cassidy et al., 2002), (Crémer, 2001), (Crémer et 
al., 2001), (Crémer et al., 2002), (Di Prisco et al., 2006). The 2D macro element developed by Crémer 
can be used for static/cyclic but also dynamic loading (i.e. earthquake) applied in the horizontal 
direction, considering the plasticity of the soil and the rocking and uplift of the foundation. 
 
Inspired on her work, a new 3D macro element is developed hereafter. The goal is to compute the 3D 
behavior of a circular shallow and rigid foundation lying on an infinite space submitted to a static or a 
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dynamic loading. In the current version the macro element takes into account the plasticity of the soil 
and the rocking of the structure. It is implemented into FedeasLab, a finite element Matlab toolbox 
developed by Pr. F. Filippou and his co-workers in UC Berkeley (Filippou et al., 2004). 
 
After the mathematical description of the macro element, numerical results compared with 
experimental tests under monotonic static (Gottardi et al., 1999), cyclic (TRISEE, 1998) and dynamic 
(Combescure et al., 2000, CAFEEL-ECOEST/ICONS, 2001) loadings are provided to show the good 
performance of the approach. 
 
 

SHAPE OF THE FOUNDATION AND ASSOCIATED KINEMATIC VARIABLES 
 
In order to simplify the problem, the foundation studied hereafter is considered circular (Figure 1). 
Because of the symmetry of revolution, the horizontal loads in the directions x and y are computed in a 
similar way. Furthermore, it is easier to reproduce the interaction between horizontal forces and 
moments. Being a macro element, the foundation is supposed infinitely rigid and all non linearties are 
condensed in a representative point: its centre. Within that framework it is appropriate to work with 
generalized (global) variables: the vertical force V, horizontal forces Hx, Hy, and moments Mx, My but 
also the corresponding displacements: vertical settlement uz, horizontal displacements ux, uy, and 
rotations θx, θy. Torque moment (Mz) is not taken into account by the model. 
 
 

(a) (b) 

x Hx

Hy

V 

 
Figure 1. Shape of the foundation and generalized variables: (a) forces and (b) displacements 

 
 

TWO NON LINEAR MECHANISMS: PLASTICITY AND UPLIFT 
 

Decomposition of the non linear mechanisms 
For the general case three different mechanisms must be taken into account when using a 3D SSI 
macro element: elasticity, plasticity of the soil and uplift of the foundation. The total displacement 
must thus be decomposed as a sum of the elastic, plastic and uplift part. Plasticity and uplift are 
coupled, as it is clearly shown hereafter. 
 
Definition of the uplift of the foundation 
Uplift is the result of rocking, i.e. the fact that the foundation rotates according to θx or θy (a part of the 
foundation looses contact with the soil), and a negative vertical displacement of the centre of the 
foundation (Figure 2). In order to compute uplift, the simple plasticity of the soil is not sufficient and a 
new non linear mechanism must be introduced to the macro element. 
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Figure 2. Rocking and uplift 

 
In its current version the 3D macro element is able to take into account the elasticity, the plasticity of 
the soil and the rocking of the foundation. The negative vertical displacement of the centre of the 
foundation can not be calculated. The part of the foundation having no contact with the soil is assumed 
without stresses.    
 
The plasticity mechanism developed in the soil is strongly influenced by the rocking (and the uplift) of 
the foundation. As it is shown in Figure 3, rocking leads to a non-symmetrical plasticity: when the 
foundation undergoes a loading in the right direction (  - with (.) the sign of the derivative with 
respect to time), it is considered that only the soil under the right part of the foundation is plastified, no 
stresses are developed under the left part. When the sign of the loading is reversed ( ), only the 
soil under the left part of the foundation is plastified. Under the right part, the soil remains in the same 
plastic state reached during the previous phase. If a third loading is applied at the right direction 
( 0 ), the soil under the right part of the foundation is again plastified, starting from the plastic 
state (and with the same slope) obtained during the first phase. 

0<M&

0>M&

<M&

 

 
Figure 3. Influence of the rocking (and the uplift) on the plasticity mechanism 

 
 

MATHEMATICAL DESCRIPTION OF THE 3D MACRO ELEMENT 
 
Elastic behavior 
The constitutive law can be written as: ( )plel uuKF rrr

−=  where the displacement and force vectors are 
dimensionless: 
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Where D is the diameter and qmax the ultimate bearing capacity of the foundation. 
 
Thanks to the circular shape of the foundation, the stiffnesses corresponding to both horizontal 
displacements are the same. The same stands for the rotations. Using the dimensionless notation 
presented previously, the following dimensionless stiffness matrix is found (S being the surface of the 
foundation): 
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The elastic stiffness matrix is calculated using the real part of the static impedances of the foundation 
(Gazetas, 1991). 
 
Plastic behavior 
 
Failure criterion 
The failure criterion is defined for an overturning mechanism with uplift. It comes from the works of 
(Pecker, 1997) and it has been used already in the 2D macro element of (Crémer, 2001). This criterion 
was initially developed for a shallow strip and rigid foundation in 2D lying on a half space of 
homogeneous cohesion. However, (Gottardi et al., 1999) showed that the shapes of the load and 
failure surfaces for a circular footing are very similar. 
 
Thanks to the symmetry of revolution, the adaptation in 3D is very simple and consists in adding 2 
terms in relation with the horizontal force and the moment  to obtain a 5D surface: xH ' yM '
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With the coefficients: 
• a, b defining the size of the surface in the planes ( 'H - 'M ) 
• c, d, e and f defining the parabolic shape of the surface in the planes ( -'V 'M ) and ( -'V 'H ) 
 
Theses parameters can be fitted to different experimental results found in the literature (see for 
example the numerical simulations presented hereafter). 
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The denominators for the horizontal forces (the moments) are the same. Therefore the interactions 
between the two horizontal forces (moments) are described by circles. 
 
Loading surface 
The loading surface used was initially developed in the work of (Crémer, 2001) to describe the 
behavior of a 2D shallow foundation. The adaptation for the 3D macro element is again simple, 
because of the circular shape of the footing. It consists in adding 2 terms in relation with the horizontal 
force and the moment . One finally obtains the following 5D surface: xH ' yM '
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Where ( )ηδβατ ,,,=

r  is the kinematic hardening vector composed of the 4 kinematics hardening 
variables and ρ  the isotropic hardening variable. The variable γ  is chosen to parameterize the second 
intersection point of the loading surface with the  axis (the other point is the origin of the space) and 
its evolution in the V’ axis. This hardening variable gives the maximum vertical load that the structure 
supported throughout the whole history of the loading (most of the time it is equal to the weight of the 
structure). 

'V

 
Kinematic hardening rule 
The kinematic variables ηδβα ,,,  permit to determine the centre of the ellipse in the hyper plane 
( , ). The evolution of theses variables has been obtained by studying the 
experimental and numerical behaviour of a foundation under a monotonic static loading. More 
specifically, (Gottardi et al., 1999) provide the relations for a circular footing and for different kinds of 
soils (obtained from experimental tests) and (Crémer, 2001) uses similar curves (obtained with FEM 
simulations) to fit her model. Figure 4 shows for example the relation between the moment 

xH ' yM ' , yH ' , xM '

'M  and the 
rotation 'θ , coming from numerical simulations using the finite element code Dynaflow (Crémer, 
2001). According to this diagram, the Exponential relation proposed is independent of . 'V
 

 
Figure 4. Relationship between moment and rocking angle using numerical simulations with the 

finite element code Dynaflow (Crémer, 2001) 

FEM simulations 

Exponential relation

 
Assuming the classical partition of the total displacement ur into an elastic part  and a plastic part 

 ( ), and considering that

elur

plur plel uuu rrr
+= eleluKF &r&r = , it is easy to link the increment of the forces with 
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the increment of the associated plastic displacements. For example, for the case of the moment one has 
the following equation: 
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Where is the limit of the curve ∞

yM ' ( )yyM '' θ  when y'θ  tends to infinity. 

The kinematic hardening variable β  associated to this moment, is given by the following differential 
equation: 
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Where is the limit of the curve ∞*

yM ( )pl
y'θβ &  when tends to infinity. The evolutions of the other 

kinematic hardening variables are driven by similar relations. 

pl
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As the behavior is different for and , two families of kinematic hardening laws and 
variables are used to describe the evolution of each force. 8 relations and variables are therefore used 
in the model for the 8 forces >0, <0, >0, <0, >0, <0, >0, <0. For 
example for a radial loading, each kinematic hardening variable has the following expression (only the 
case of 

0>F& 0<F&

xH '& xH '& yH '& yH '& xM '& xM '& yM '& yM '&

β  is presented below for simplicity): 
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The first equation of the system (Equation 7) is activated when  while the second equation 
when . The sign of  is identical to the sign of

0≥β&

0≤β& β& ββ −lim . The tangency rule defined in (Grange 
et al., 2006) and (Grange et al., 2007) provides βlim, whereas β  is calculated during the previous step. 

In order to use Equation 7 the value of is also needed. It is evaluated as follows: ∞*
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Isotropic hardening rule 
The independence of the directions (for and ) is taken into account using the specific 
kinematic hardening laws described in the previous paragraphs. However, one can also link the 
isotropic with the kinematical hardening laws (Crémer, 2001). Indeed, when a plastic state is reached 
during a new cycle, the plastic behavior is recovered at the same state (and with the same slope) as 
before (Figure 3). The evolution of the loading surfaces describing this property is given in Figure 5. 

0>M& 0<M&
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Figure 5. Evolution of the loading surfaces considering a radial loading (Crémer, 2001) 

 
This property is translated into the following mathematical relation: 
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Evolution of γ 
Its evolution is closely dependant on the evolution of the vertical force . During the initialization 
phase, where the foundation is submitted only to the weight of the structure, γ= . After this first 
phase, the evolution of γ is driven by the empirical relationship linking the vertical force and the 
vertical displacement given by (Nova et al., 1991). Nevertheless, the other plastic displacements 
(horizontal displacements and rotations) can also increase the size of the loading surfaces in the 
direction of . Consequently, the evolution of γ depends also on them according to the following 
expression: 
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Where a1, a2, a3, a4 and a5 are parameters which permit to adjust the influence of each component of 
the plastic displacement array. 
 
Flow rule 

The normality rule is defined as: 
F
gu pl r&&r
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= λ  where g is the flow rule and the plastic multiplier 
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A non associative flow rule is necessary (Crémer, 2001). The flow rule g used is defined by the 
following expression: 
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The representation of g in a plane ( 'M , ) is given by the Figure 6. A similar figure is valid in planes 
( '

'V
H , ). 'V

 

 
Figure 6. Representation of the computed flow rule g, the loading surface fc and the 

corresponding normal vectors for a given loading point F in plane ( - ) 'M 'V
 
The horizontal tangent of the flow rule can be adjusted using the 2 parameters ξ  and κ  in order to 
modify the evolutions of the plastic displacements in the hyper plane ( ,xu' y'θ , ,yu' x'θ ). 
 
 

NUMERICAL SIMULATIONS 
 
The 3D macro element is implemented into FedeasLab, a finite element Matlab toolbox (Filippou et 
al., 2004). The return mapping algorithm (Simo et al., 1998) is used for the plasticity mechanism. 
Three different simulations are provided hereafter: 
 
• To see whether the macro element is able to give good results under a static loading, numerical 

simulations are compared to experimental results coming from the works of (Gottardi et al., 
1999).  

• The performance of the macro element under a cyclic loading is then tested using the 
experimental results coming from the European program (TRISEE, 1998).  

• Finally, the macro element is tested using the experimental results of the CAMUS IV structure 
submitted to a dynamic loading (Combescure et al., 2000), (CAFEEL-ECOEST/ICONS, 2001). 

 
Monotonic static behavior 
Detailed presentation of the tests is presented in (Gottardi et al., 1999). They concern a circular footing 
of diameter 2R=D=0.1m lying on a sand of a known density. 
 
At the beginning, a vertical displacement is applied at the foundation until a given vertical force is 
reached. Then, the vertical displacement is kept constant while another displacement (horizontal 
displacement or rotation or a combined displacement) starts increasing.  The test is thus completely 
displacement controlled. The response of the foundation is represented in the space of forces. The 
curve described in the space ( , , , ) is an approximation of the yield surface (that’s the 
reason why the test is called “swipe test”). 

xH ' yM ' yH ' xM '

 
For the GG03 test presented hereafter, an initial vertical force V=1600N is applied followed by an 
increasing horizontal displacement. For the GG07 test, once a vertical force V=1600N is reached, it is 
reduced to V=200N. Finally, an increasing horizontal displacement is again applied. 
 
Figure 7 and figure 8 show that the 3D macro element reproduces correctly this behavior. It is 
interesting to notice that the load path follows particularly well the failure criterion. 
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Figure 7. Experimental results for the swipe tests GG03 and GG07 in planes Hx-ux and Hx-V 

 

 
Figure 8. Numerical results for the swipe tests GG03 and GG07 in planes Hx-ux and Hx-V 

 

 
Figure 9. Numerical simulations of 3D swipe test: representation of the load path (curve in red) 

(a) in planes My/2R- Mx/2R, (b) My/2R-V, (c) in space My/2R- Mx/2R-V 

(a) (b) 

(c) 
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In order to show the behavior of the macro element under a 3D loading, the following numerical 3D 
swipe test is performed. Figure 9 shows the load path in the (Mx/2R-My/2R-V) space. At the beginning, 
a vertical displacement is imposed till a constant value. After that, the foundation is driven with an 
increasing rotation y'θ  until the moment  reaches a given value. Finally, yM ' y'θ  is kept constant and a 
new increasing rotation x'θ  is applied to the foundation. Moments in the 2 directions are clearly 
developed and at the end the load path is very close to the failure surface. 
 
Cyclic static behavior 
Within the European program TRISEE, experimental tests are performed on a shallow 1m x 1m 
rectangular foundation lying on “Low density” sand (TRISEE, 1998). Sine-shaped horizontal 
displacement cycles of increasing amplitude are applied at the top of a vertical beam embedded on the 
foundation. By imposing 0=ρ&  - in other words by cancelling the isotropic hardening -, it is possible 
to simulate this kind of behavior where no rocking is present (representative of a foundation lying on a 
low density soil or on a soil with low mechanical characteristics). 
 

 
Figure 10. TRISEE: Comparison between (a) Experimental results and (b) Numerical results. 

Moment vs. rocking angle 

(a) (b) 

 

 
Figure 11. TRISEE: Comparison between (a) Experimental results and (b) Numerical results. 

Vertical settlement vs. time 

(a) (b) 

 
Figure 10 shows the relationship between the moment and the rocking angle. Results are again very 
satisfactory. The main difference between the experimental and the numerical results is that for the 
macro element the moment reaches the asymptote (Mlim=40kNm) more quickly. Figure 11 presents the 
vertical settlement of the structure. The different plateaus of the experimental curves are well 
simulated by the model, thanks to the good description of the plastic displacements provided by the 
flow rule. Nevertheless, experimental results show that the centre of the foundation rises from time to 
time slightly. Of course, the macro element cannot reproduce this behavior as it can not - in its current 
version - simulate uplift. 
 
Dynamic behavior 
The simulation of the CAMUS IV experiment (Combescure et al., 2000) performed on the seismic 
table of CEA Saclay is presented hereafter in order to evaluate the efficiency of the macro element to 
predict the behavior of a slender structure submitted to a dynamic loading. CAMUS IV is an 
experiment in the line of a series carried out within the framework of the European research projects 
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ICONS-TMR, ECOEST II (CAFEEL-ECOEST/ICONS, 2001). The mock-up represents a 5 storey 
building on a 1/3 scale. 
 
In the following graphs, the red dotted lines correspond to the experimental and the blue continuous 
ones to the numerical results. The structure is submitted to the earthquake motion Nice 0,33g. 
 

Figure 12. CAMUS IV - Evolution of (a) moment and (b) rocking angle vs. time 

(a) (b) 

 
The main trends of the behaviour of the structure are quite well predicted (Figure 12): experimental 
and numerical curves are relatively in phase and the values of the moment as well as the rotation at the 
base are well respected. Nevertheless, some differences exist. This is possible due to the fact that uplift 
is not taken into account by the macro element (the specimen developed a high uplift component 
during the experiment). Moreover, numerical simulations considered a constant elastic stiffness. In 
reality, the elastic stiffness is not constant but depends on the frequency of the waves in the soil 
(Gazetas, 1991). It is interesting also to notice that the macro element reproduces correctly the global 
behaviour of the CAMUS IV specimen with a very small computational cost (only a couple of minutes 
are needed) and with very simple finite element mesh (21 degrees of freedom, 2D elastic beam 
elements are used to mesh the structure). Comparisons with the original 2D model and for the same 
calculations can be found in (Crémer, 2001) and (Grange, 2005).  

 
 

CONCLUSION AND WAY FORWARD 
 
The 3D macro element developed within this work gives satisfactory results for simulating the non 
linear behaviour of a circular swallow rigid foundation lying on an infinite space submitted to a 
monotonic static, cyclic or dynamic loading. Using global variables it presents the advantage of 
inducing low computational costs. It is implemented in the Matlab toolbox FedeasLab.  
Possible improvements may deal with the fitting of the parameters (stiffness, shape of the loading 
surface) and the different rules (flow rule, tangency rule). The difficulty to develop a macro element in 
3D lies in the fact that it has to be capable of simulating a non radial loading. In 3D indeed, forces and 
moments in the 2 horizontal directions x and y are coupled with a non linear relation (whereas the 2D 
original version of the macro element was developed by considering linearity between the horizontal 
force and the moment ). The tangency rule, function that manages the evolution of the load 
surface is thus complicate and need to be improved. Uplift behavior is also an important component 
that has to be introduced in the formulation of the element. 

xH ' yM '
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