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The Soliton-Ricci Flow with variable volume

forms

NEFTON PALI
June 16, 2014

Abstract

We introduce a flow of Riemannian metrics and positive volume forms
over compact oriented manifolds whose formal limit is a shrinking Ricci
soliton. The case of a fixed volume form has been considered in our previ-
ous work. We still call this new flow the Soliton-Ricci flow. It corresponds
to a forward Ricci type flow up to a gauge transformation generated by the
gradient of the density of the volumes. The new Soliton-Ricci flow exist for
all times and represents the gradient flow of Perelman’s W functional with
respect to a pseudo-Riemannian structure over the space of metrics and
normalized positive volume forms. We obtain an expression of the Hes-
sian of the W functional with respect to such structure. Our expression
shows the elliptic nature of this operator in directions orthogonal to the
orbits obtained by the action of the group of diffeomorphism. In the case
the initial data is K&hler then the Soliton-Ricci flow preserves the Kéhler
structure and the symplectic form. The space of tamed complex structures
embeds naturally to the space of metrics and normalized positive volume
forms via the Chern-Ricci map. Over such space the pseudo-Riemannian
structure restricts to a Riemannian one. We perform a study of the sign
of the restriction of the Hessian of the W functional over such space. This
allows us to obtain a finite dimensional reduction, and thus the solution,
of the well known problem of the stability of K&hler-Ricci solitons.
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1 Introduction and statement of the main result

This is the first of a serie of papers whose purpose is the study the following
problem.

Let (X, Jy) be a Fano manifold. We remind that the first Chern class
c1(X,[Jo]) € H3(X,R) depends only on X and the coboundary class [Jy] of
the complex structure J.

Let also w € 2mwei(X,[Jp]) be an arbitrary Jp-invariant Kéhler form over
X. We want to find under which conditions on Jy and w there exists a smooth
complex structure J € [Jy] and a smooth volume form €2 > 0 over X such that

w = Ricy(Q),

Ory., (wtdlog %) =0,

i.e. the Riemannian metric g := —wJ, is a J-invariant Kahler-Ricci soliton.

This set up represents a particular case of the Hamilton-Tian conjecture
with a stronger conclusion, namely we avoid the singularities in the solution of
the Kahler-Ricci soliton equation.

Proofs of the Hamilton-Tian conjecture have been posted on the arXiv server
in (2013) by Tian-Zhang [Ti-Zha] in complex dimension 3 and quite recently by
Chen-Wang [Ch-Wa] in arbitrary dimensions.

Our starting point of view is Perelman’s twice contracted second Bianchi
type identity introduced in [Per].

We remind first what this is about. Let €2 > 0 be a smooth volume form over
an oriented compact and connected Riemannian manifold (X, g). We remind
that the Q-Bakry-Emery-Ricci tensor of ¢ is defined by the formula

Ricy(2) := Ric(g) + nglog%.



A Riemannian metric g is called a 2-Shrinking Ricci soliton if g = Ricy(€2). We
define the following fundamental objects

h = hgo:=Ric,(Q) —g,
2H = 2H,q:=—-A}f+Trgh+2f,
dv,
f = log ?g.

We equip the set of smooth Riemannian metrics M with the scalar product
(o) [ (o), 0, (1)
X

for all u,v € H := L*(X, S;T%). Let P; be the formal adjoint of some operator
P with respect to a metric g. We observe that the operator

Py = eng* (e_fO) ,
with f :=log % , is the formal adjoint of P with respect to the scalar product
(1.1). We define also the Q-Laplacian operator

Al = VIeV, = A+ V,fV,.

It is also useful to introduce the 2-divergence operator acting on vector fields
as follows;
. d(§-Q . _ .
divil¢ = % = el divy (e77¢) =divy & — g (&, Vyf).
(We denote by — the contraction operator.) We infer in particular the identity
div® Vgu = ngu, for all functions u. We observe also the integration by parts
formula

—/Xudivﬂgn = /Xg(vgu,é)ﬂ

An elementary computation made by Perelman [Per] (see also [Pal2]) shows that
the maps h and H satisfy Perelman’s twice contracted second Bianchi
type identity

Vithy o+ VeHg o =0, (1.2)
where hy o, = g~ 'hg.q is the endomorphism associated to hy q. We remind now
that for any symmetric 2-tensor u the tensor R, * u, defined by the formula

(RQ * U)(f, 77) = TI‘g [u (Rg (57 : )777 )] )

is also symmetric (see section 3). For any smooth symmetric 2-tensor u we
define the Q-Lichnerowicz Laplacian A%’ g s

A%gu = A?u — 2R, * u + uRicy () + Ricy (Q)uy,.



This operator is self-adjoint with respect to the scalar product (1.1) thanks to
the identity
(Rg * u,v)

= (u,Rq * v) (1.3)

g 9’

for all symmetric 2-tensors u and v (see section 3). We define also the set of
normalised volume forms V; := {Q > 0] [, Q2 =1}. From now on we consider
that the maps h and H are defined over M x V. Notice that the tangent space
of M x Vi is Tamxy, = C®(X,S5?T%) & C=(X,A™T%)o, where m = dimp X
and

C=(X,A™T%)y = {VG C=(X, A™T%) \/ vo}.
X

We denote by End, (T'x) the bundle of g-symmetric endomorphisms of T'x and
by C&(X,R)o the space of smooth functions with zero integral with respect
to 2. We will systematically use the fact that for any (g,Q) € M x V; the
tangent space Tvix, ,(g,0) identifies with C*°(X,End, (Tx)) © C&°(X,R)o via
the isomorphism

W, V) — (v, V5) = (97", V/Q).
With these notations holds the fundamental variation formulas
Q
2Dy ah (v, V) = A jv— Lv;%;+vgvgg — v, (1.4)
and

2D, 0H (v, V) = A2V — (LVZQU;WMQ)Q —2Vg — (v hga), . (15)

where L¢ denotes the Lie derivative in the direction £. (We will give a detailed
proof in section 3.) We infer that the variations of the non-linear operators h
and H are strictly elliptic in restriction to the space

Foo = {(V)€Thuxy, | Vitvg + VgV = 0}.

This fact strongly suggests that the following flow represents a strictly parabolic
system.

Definition 1 The Soliton-Ricci flow is the smooth curve (g, Q)i=0 C M xVy
solution of the evolution system

gt = 7hg‘,Qt7
Qt = 7ﬂgt79tﬂt’
with
ﬂg,ﬂ = Hgo-— /X Hg of2.



Indeed this is the case as shown in the proof of the following basic fact

Lemma 1 For every (go,Q) € M x Vy there exists a unique smooth so-
lution (g, U)o C M x Vi of the Soliton-Ricci flow equation with initial
data (Jo/ N, o), for some X > 0. In the case (X,Jy) is a Fano variety and
Jodo € 2me1(X) we can choose A = 1. In this case the Soliton-Ricci-flow rep-
resents a smooth family of Kdhler structures and normalized positive volumes
(Jt, 96, Q)0 uniquely determined by the evolution system

gt = _hgt,Qta
Qt = _EgthQt’
2Jy = [Ji, 47]

that we call the Soliton-Kdahler-Ricct flow.

We will show in section 3 that if the initial data (Jy, go, Qo) satisfies

W = g()J() = RiCJO(Q()),/ QO = ].7
X

then the Soliton-Kéhler-Ricci flow equation is equivalent with the evolution
system

w = RiC.]t(Qt) ’fX Qt = ].,
S (1.6)
Ji = Oty ,, (w_ldlog s%) .

Thus the Soliton-Kéhler-Ricci flow preserves the initial symplectic structure w.
Over a m-dimensional compact Riemannian manifold (X,g) we consider
Perelman’s W-functional [Per]

W(g, f) = /X[|ng\3—|—Scal(g)—|—2f_m]e—fdvg

= / [~A,f + Scal(g) + 2f —m]e~1dV,.
X

(We can use here the identity Age™/ = —(|V,f|2 + Agf)e7.) If we use the
identifications f +— Q :=e~/dV, and W(g, f) = W(g,Q) then

dv,
W(g,Q) = / [Trg hg.o +2log Qg} Q= 2/ Hy 0.
X b

With these notations Perelman’s first variation formula for the functional
W: M xV; — R in [Per| writes as

DyaW(v,V) = _/ ({0, hg0), — 2Va Hy 0] 2.
X



Thus if we consider the pseudo-Riemannian structure over the space M x V;
given by the formula (g,2) € M x V; — Gy q, with

Goalw Ui V) = [ [t ), —203v5]

X

for all (u,U), (v, V) € Tamxy,, then we infer the identity
VGW(Q7 Q) = - (hg,97£g79) .

This shows that the Soliton-Ricci flow is the gradient flow of the W functional
with respect to the pseudo-Riemmanian structure G. Perelman’s twice con-
tracted second Bianchi identity (1.2) implies the equality

{(9:92) e Mx V1| DgoW =0} = {(9,©2) € M x V1 | hy 0 =0},

i.e the critical points of W are precisely the shrinking Ricci solitons. We provide
at this point a geometric interpretation of the space IF; o. Let

[979} = DIHO(X) : (979)7

be the orbit of the point (g,2) under the action of the identity component of
the group of smooth diffecomorphisms Diffo(X) of X. Then FF, o represents
the orthogonal space, with respect to G, to the tangent space at the point
(g,92) € M x V; of the orbit [g,]. In formal terms holds the equality

Tic

0.00,(g,0) = Fg0 (1.7)

We define the anomaly space of the pseudo-Riemannian structure G at an ar-
bitrary point (g, {2) as the vector space

Q._
Ay =Fg0NTgag0-
In the case (g, ) is a shrinking Ricci-Soliton then the map

Ker(A? —2I) — AY

u — 2(Vgdu,—uf),

is an isomorphism (see section 8). In the case (J, g, ) is a Kéhler-Ricci soliton
then [A? is canonically isomorphic with the space of Killing vector fields of g.
This is a consequence of a non trivial result (see corollary 5).

We denote by VEW(g,2) the Hessian endomorphism of the W functional
with respect to the pseudo-Riemannian structure G at the point (g, ) € M x
V1. We show in lemma 7 that its restriction to the space Iy o is a strictly
elliptic operator for any point (g, ). A simple consequence of Perelman’s twice
contracted second Bianchi type identity (1.2) is that the map

ViW(g,Q) :Fyq — Fya, (1.8)



is well defined in the case (g, Q) is a shrinking Ricci-Soliton (see section 10). In
this case holds also the inclusion

A CFyonKer VEW(g, Q).

(See lemma 8.) In general (see section 10) for any point (g,{2) holds the funda-
mental and deep property

VeW(g, Q) (hga, H, Q) € Fyq. (1.9)

This is quite crucial for the stability of the Soliton-Kéahler-Ricci flow (see [Pal7]).
The following basic fact is a meaningful geometric reformulation of the monotony
statement for Perelman’s W functional discovered by the author in 2006 [Pall]
and published in 2008.

Lemma 2 Let (X,J) be a Fano manifold, let g be a J-invariant Kdhler metric
with symplectic form w = gJ € 2me1(X,[J]) and let Q& > 0 be the unique
smooth volume form with [, Q@ = 1 such that w = Ric;(Q). Then Perelman’s
W functional is monotone increasing along the Soliton-Kahler-Ricci flow with
initial data (Jo, go,20) = (J,9,Q). The monotony is strict unless (J,g) is a
Kahler-Ricci soliton.

From now on we will refer to the Soliton-Kéahler-Ricci flow only if the initial
data are as in the previous lemma. The fact that the Soliton-Kéhler-Ricci flow
preserves the symplectic form w strongly suggests the study of the restriction of
Perelman’s W functional over the image S, C M x V; of the natural embedding
of the space of w-compatible complex structures

Jo = {J €Tt |w=Jwlw] <0},

(where Jint denotes the space of integrable complex structures). Precisely let

My, = —-w- T, C M. Then
S = {(9,9) € My, x V1 |w=Ricy(Q),J =g 'w}.

The fact that the space J, may be singular in general implies that also the
space S, may be singular. We denote by TCs_ (4,0 the tangent cone of S, at
an arbitrary point (g,§2) € S,. This is by definition the union of all tangent
vectors of S, at the point (g,). We notice that (see for example [Pal3]) the
tangent cone TC a4, 4 of M,, at an arbitrary point g € M,, satisfies the inclusion

TCpm..g €D} s (1.10)

with

Prio = {” € 0 (X, S3T%) | v) =0, r, ,(v)); = 0} ,



where v/, and v denote respectively the J-invariant and J-anti-invariant parts
of v. The first variation of the Chern-Ricci form (see lemma 17) shows that for
any (g,Q) € S, hold the inclusion

TCs...q.0) € Ty (1.11)
with

T, = {(,V) € D] 1 x Ty, | d[(V3o0] + V,V5i) ~w] =0}

We consider also its sub-space
T/ o[0] = {(v, V)EF,q|ve 1]);7[0]} .
In the case (X, J, g) is a compact Kéhler-Ricci soliton then the map
VeW(9,9) : Fyol0] — Fyo[0], (1.12)
is well defined. Furthermore for any (g,?) € S,, the fundamental property (1.9)
implies
V%}'W(g7 Q)(hg,Q; ﬂg,QQ) E ]F;]],Q [0] (113)

This is precisely the key statement needed for the study of the stability of the
Soliton-Kéhler-Ricci flow in [Pal7]. For any (g,) € S,, we denote by

[Q,Q]w = SympO(X,w) : (gvﬂ) - Sw7

the orbit of the point (g,2) under the action of the identity component of the
group of smooth symplectomorphisms Symp” (X, w) of X. With these notations
hold the property
1 J J
T[g,?l]w,(gﬂ) ﬂ ’]I‘97Q == FQ,Q [0] . (1.14)
This combined with (1.11) implies directly the more geometric identity

T[?%]W(g,m NTCs, (0.0 = F o [0]NTCs, (4.0, (1.15)

for any (g,9Q?) € S,,. An other remarkable fact is that for any (g,Q) € S, the
restriction of the symmetric form G o to the vector space Tim with J 1= g7 lw,
is positive definite. This implies the G-orthogonal decomposition (see corollary
6)

LTy = LT, 0 Sc LFyo[0],
where for any subset S of smooth sections over X we denote by L2S its closure

with respect to the L2-topology. The finite dimensional vector space of -
harmonic Tx, j-valued (0, 1)-forms ’Hg:;) (T'x,s) embeds naturally inside IF;Q[O]

via the map A € ’HS:;Z (T'x,s) — (gA,0). By abuse of notations we still denote



by Hg:b (Tx,7) C T o[0] the image of this embedding. There exists an infinite
dimensional vector space IE;Q[O] - ng’Q[O], (see the sub-section 18.2 for its
definition) such that the G-orthogonal decomposition holds true

F; o[0] = E; o[0] & 7'[2’,512 (Tx,r) -

We can explain now a more precise property of the tangent cone TCs_ (4.0)-
For this purpose we consider the Kuranishi space K4 C H(g)iSll (Tx,7),0€ K4
of X. (See theorem 3 in the sub-section 21.4.4 of appendix B for its definition
and properties.) In the sub-section 21.4.5 we define also the Kuranishi space
of w-polarized complex deformations K4 C K, of the Fano manifold (X, J,w).
(See the definition 2). Then holds the inclusions

L*Tiya), (5.0) ®c L’E; o[0] ®¢ TCrs 0

N

L*TCs, (9.0 (1.16)

N

L*Tig0) (9.0 Ba L?E] o[0] ®¢ TCk,, 0 - (1.17)

We define now the non-negative cone of {2-harmonic variations

, , 2
Moo (Tx.)sg = {A € Moo (Tx.g) | /X AR FQ> 0} ,
and the sub-cone
Moo (Tx.s), = {A € Moo (Tx.s) | /X A2 FQ= o} .
In the Kéhler-Einstein case holds the obvious identities
Moo (Tx.s)sg = Hog (Tx.0)g = Hoo (Tx.s) -

In the Dancer-Wang Kahler-Ricci soliton case 7—[2:;2 (T'x,s)y # {0} thanks to a
result in Hall-Murphy [Ha-Mu2]. Let Hry , be the L-projector over the space
7—[21%2 (T'x,7). We define also the non-negative cone

T3 = {(0V) €Tyl Hry,v; € Myt (Txa)so }

and in a similar way ’II‘;’%. The meaningful non-negative cone from the geometric
view point is clearly

TCZY

o J,>0
Sui(9.) T TCs, (9.0 NTYG"

We observe also that Perelman’s twice contracted second Bianchi type identity
implies that the set of all Kéahler-Ricci solitons inside S, is given by

KRS, = {(g,Q) €8, | Hyg = o}.

10



Notice that for any (g,Q2) € KRS, holds the obvious inclusions [g, ], € KRS,
and
T[Q’Q]w:(grﬂ) g TCKRSW:(Q’Q) g Ker ngﬂﬂ N TC'Sw’(ng) .

The following statement provides a finite dimensional reduction which represents
the solution of the stability of Kéhler-Ricci solitons problem.

Theorem 1 (Main result. The stability of Kdhler-Ricci solitons)

Let (X, J,g) be compact Kdahler-Ricci soliton and let Q > 0 be the unique
smooth volume form with [, Q = 1 such that w = Ric;(). Then for all
(v,V) € ngzéo the Hessian form of Perelman’s W functional with respect to
the pseudo-Riemannian structure G at the point (g,€)), in the direction (v,V)
satisfies the inequality

VeDW (9,Q) (v, V0, V) < 0, (1.18)
with equality if and only if
(v,V) € KerDyoHNT? (1.19)
= T[gﬂ]w(mQ) Da Hg:slz (TXJ)O (1.20)
D) TCKRSL‘“(Q’Q) . (1.21)

In more explicit/classic terms the previous statement shows that for any
smooth curve (g¢, Q)ter C M x Vi (not necessarily in S,!) with (go, Q) =
(9,9) a Kéhler-Ricci soliton and with (go, o) = (v,V) € T‘g]:éo holds the
inequality

d2

@‘ Wi(g:, ) < 0,
t=0

with equality if and only if (v, V) € Ker Dy o H N Tng?r The identity (1.20) and
the inclusion (1.21) are part of the statement in the main theorem 1.

In section 17 we obtain also quite general and sharp second variation formu-
las for Perelman’s W functional with respect to variations (v,V) € Fy o over
a Kahler-Ricci soliton point which arise from variations of K&ahler structures
preserving the first Chern class of X.

These formulas provide a precise control of the sign of the second variation
of Perelman’s VW functional over a Kéahler-Ricci soliton point. This can be of
independent interest for experts. (In particular we will see below some general
consequences for the classical stability of Kahler-Einstein metrics.) For our
geometric applications the most striking particular case is the one corresponding
to the main theorem 1.

The highly geometric nature of the Soliton-K&ahler-Ricci flow combined with
the main theorem 1, suggest to the author the following version of the Hamilton-
Tian conjecture (compare with the statements made in [Ti-Zha] and [Ch-Wa]).

11



Conjecture 1 Let (X, Jy) be a Fano manifold and let w € 2me1 (X, [Jo]) be an
arbitrary Jo-invariant Kdhler form. Then there exists a complex analytic subset
Y of complex codimension greater or equal to 2 (which my be empty!), a smooth
complex structure J € [Jy] outside ¥ and a smooth volume form Q > 0 outside
Y such that;

w = RICJ(Q) y

ETXJ (w‘ldlog%) = 0,

outside %, i.e. the Riemannian metric g := —wdJ, is a smooth J-invariant
Kahler-Ricci soliton outside .. The triple (J,g,Q) is obtained as the limit in
the smooth topology of X \ % as t — +oo of the Soliton-Kdhler-Ricci flow with
initial data (Jo, go, Qo) where go := —wJy and w = Ricy, (o), with fX Qo =1.

We explain now that a very particular consequence of our study of the sta-
bility problem provides a result on the stability in the classical sense of Kahler-
Einstein manifolds. We introduce first a few basic notations.

Let (X, J) be a compact Kéhler manifold and let ¢; = ¢1(X, [J]) € H3(X, R).
We denote by IS the space of Kahler structures over X and we set

KSQﬂcl = {(J,g) eKS ‘ gJ S 271'61}.

We define also the set ]KW;]] (2mcy) of symmetric variations of Kéhler structures
preserving the first Chern class of X as the set of elements v € C* (X7 S’%T)*()
such that there exists a smooth curve (J,, g+): C KSare, with (Jo, g0) = (J, 9),
go=wv and J, = (jo)g. In section 14 we show the inclusion

KV} (27mc;) € Dy, (1.22)
with
D= {v e C™ (X, 83T%) | 8, ,(v)); = 0,9ry, (V)5 = 0,{) T}, = 0},

where {a}4 denotes the De Rham cohomology class of any d-closed form a. We
introduce also the classical stability operator (see [Bes])

Ly = Ay—2Rgx,

acting on smooth symmetric 2-tensors. With these notations we can state the
following stability (in the classical sense) result.

Theorem 2 Let (X, J,g) be a Fano Kdhler-FEinstein manifold. Then for any

veEKerVyn ID;O, holds the inequality

/X<£gv,v>ngg > 0,

with equality if and only if vy € Hg’l (Tx.,s).

12



(See sub-section 17.1 for the proof). A similar result in the case of negative or
vanishing first Chern class has been proved in the remarkable paper [D-W-W2]
(see also [D-W-W1]). The statement about the equality case holds also under
more general assumptions (see lemma 29 in the appendix B).

In the next section we enlight the results obtained by other authors in
the long standing problem of the stability of Kéhler-Ricci solitons and on the
Hamilton-Tian conjecture.

2 Other works on the subject

A question of central importance in complex differential geometry is the Hamilton-
Tian conjecture.

Solutions of this conjecture have been posted on the arxiv server in (2013) by
Tian-Zhang [Ti-Zha] in complex dimension 3 and quite recently by Chen-Wang
[Ch-Wa] in general.

Since we have learned about this conjecture in 2004 we asked ourself im-
mediately which one is the precise notion of gauge needed for the convergence.
(The Kéhler-Ricci flow (Jo, §t);, needs to be modified since its formal limit
(Jo, Joo) as t = 400 is a is a Kéhler-Einstein metric, but Fano manifolds do not
always admit such ones!)

It turns out that the Soliton-K&hler-Ricci flow introduced in this paper cor-
responds to a modification of the Kéahler-Ricci flow via the gauge provided by
the gradient of the Ricci potentials.

To the very best of our knowledge the Soliton-Kéahler-Ricci flow with variable
volume forms introduced in this paper does not appear nowhere in the literature.

In our previous works [Pal4] and [Pal5], we introduced also the notion of
Soliton-Kéahler-Ricci flow with fixed volume form. This leads to a complete
different approach which conducts naturally to the study of the existence of an-
cient solutions of the K&hler-Ricci flow and their modified (according to [Pal4]
and [Pal5]) convergence as t — —oo. This approach requires some particular
geometric conditions (which imply some strong regularity) on the initial data.
The key point in [Pal4] and [Pal5] is that these conditions represent a conser-
vative law along the Soliton-K&ahler-Ricci flow with fixed volume form. These
conditions imply good convexity properties for the convergence of this flow.

We review now the modifications of the Kéhler-Ricci flow made by other au-
thors. We can find two frequent approaches in the literature. One is based on the
gauge transformation generated by a holomorphic vector field with imaginary
part generating an S'-action on the manifold (see [Ti-Zhul] and [P-S-S-W2] for
a very elegant construction). A Kéhler-Ricci-soliton vector field provides such
example.

The second approach, which has been used quite intensively in the last years
is based on the gauge modification constructed via the minimizers of Perelman’s
W functional (see [Ti-Zhu3] and [Su-Wa]). As far as known the minimizers are
unique only in a small neighborhood of the Kéahler-Ricci soliton. Therefore the
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"modified Kahler-Ricci flow” in [Ti-Zhu3] and [Su-Wa] exists only in such small
neighborhood.

For historical reasons it is important to remind that Hamilton [Ham] pointed
out first that to any flow of Kéhler structures with fixed complex structure cor-
responds an other flow of Kahler structures which preserves the symplectic form
(see also Donaldson [Don] for the same remark). He suggested this approach
for the study of the Kahler-Ricci flow. As far as we know he did not pursuit on
this idea.

As explained in the introduction our definition of the Soliton-Ricci flow with
variable volume forms was inspired to us from Perelman’s twice contracted sec-
ond Bianchi type identity and the strict ellipticity of the first variation of the
maps h and H in the directions IF.

It was surprising for us to discover that the corresponding Soliton-Kéhler-
Ricci flow with variable volume forms (from now on we will refer only to this
flow) preserves the symplectic structure.

We realized quickly the power of this fact since it allows us to apply Fu-
taki’s weighted complex Bochner identity with uniform lower bound on the first
eigenvalue of the corresponding weighted Laplacian [Ful]. The main feature of
the Soliton-Kéahler-Ricci flow in this paper is that it presents the jumping of the
complex structure at the limit when ¢ — 4o00. This phenomenon is necessary
for the existence of Kéhler-Ricci solitons in general. We learned for the first
time about this key phenomenon in the Pioneer work of [P-S1]. In this fun-
damental work the authors introduce a condition on stability (is the condition
(B) in [P-S1]) wich is the key phenomenon occourring in the convergence of the
Kéhler-Ricci flow. We refer also to [P-S-S-W3] for further developpements.

We remind now that by definition, the stability of a critical point of a func-
tional corresponds to determine a sign of its second variation in determinate
directions.

The stability of critical metrics for natural geometric functionals was natu-
rally born with differential geometry (see [Bes]). The main classic example is
the Einstein metric. In the case of this metric the corresponding functional is
the integral of the scalar curvature.

In 2003 Grigory Perelman astonished the mathematical community with his
spectacular proof of the Poincaré conjecture. In this celebrated paper [Per] he in-
troduced various entropy functionals for Ricci-solitons. Shrinking Ricci-solitons
correspond to critical points of his W functional or to his entropy functional v.

Since then, the second variation of Perelman’s functionals W and v has been
studied quite intensively. It started in 2004 with the works of Cao-Hamilton-
Imlanen [C-H-I], [Ca-Zhu] and Tian-Zhu [Ti-Zhu2] independently. It continued
with [Ca-He| and [Ha-Mul], [Ha-Mu2].

We wish to point out that the results in this paper and in [Pal3] are of
completely different nature with respect to the previous works. The reason is
that in our work we compute the second variation of Perelman’s W functional
with respect to the pseudo-Riemannian structure G. (The work [Pal3] is a
particular case.)

An important fact about Kéhler-Ricci solitons is that once they exist, one

14



can obtain the Einstein condition by proving the vanishing of the Futaki in-
variant [Fut]. From our point of view they provide a natural and necessary
generalization in order to control the Einstein condition.

The stability of Kéhler-Ricci solitons is important in order to understand
the convergence of the Kéahler-Ricci flow. The first work on the subject is due
to Tian-Zhu, see [Ti-Zhu2].

In 2009 Sun-Wang [Su-Wa] posted on the arxiv server a stability result for
the Kéahler-Ricci flow basing on the Lojasiewicz inequality (see [Co-Mi]). In
this paper the authors use the modified flow in [Ti-Zhu3]. The same method
was used in Ache [Ach], where a uniform bound assumption on the curvature
is made. We report finally a quite recent work on the same subject by Kréncke
[Kro] which combines the technical details in [Su-Wa], [Ach] and [Co-Mi] in the
Riemannian set up.

The statements made in this section are based on the very best of our knowl-
edge and understanding of the subject. We sincerely apologize to other authors
in case of inaccuracies or omissions in the claims of this section.

3 Proof of the first variation formulas for the
maps h and H

3.1 The first variation of the Bakry-Emery-Ricci tensor

We remind (see [Pal3]) that the first variation of the Bakry-Emery-Ricci tensor
with fixed volume form € > 0 is given by the formula

d _. ‘e .
2@ R’lcgt (Q) = _vgingt,gta (31)
where D, := @g - 2V,, with @g being the symmetrization of V, acting on
symmetric 2-tensors. Explicitly

p

ﬁga(SOa"'ugp) = Zva(§j7§07"'75j7"'7§p)7

=0

for all p-tensors «. Fixing an arbitrary time 7 and time deriving at t = 7 the
decomposition

Q

Ricg, () = Ricy, () — V,,dlog o

we deduce, thanks to (3.1), the general variation formula
92

4 Sk
Q,

2dt Ricg, () = =V, Dy, g1 — 2V 5,d (32)
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This formula implies directly Perelman’s general first variation formula for the
W functional (see appendix A). We define the Hodge Laplacian (resp. the Q-
Hodge Laplacian) operators acting on ¢g-forms as

ATX_Q = VTX,QVZ+VZVTX,57’

Q - *Q *Q
ATx,y = Vi, V2 +VEaVr .

We remind also the following Weitzenbock type formula proved in [Pal4]

Lemma 3 Let (X,g) be a orientable Riemannian manifold, let Q > 0 be a
smooth volume form and let A € C>°(X,End(Tx)). Then

A7 A = AJA-TR,x A+ ARic)(Q),
Where (Rg x A) & == Try [(§-Rgy) A] for all § € Tx.
In analogy to the 2-Hodge Laplacian we can define the Laplace type operator
Al = VoV, =V Vie 1 C°(X, SPT%) — C*°(X, S*T%).
Using this notation we observe that for any u € C*°(X, S*T%) hold the identities

—V;“Dgu = <2Asg2 - A?) U — @QVZQU

Q _ AQ
(247 = A2)u— Loza,.0
The last one follows from the equalities Vi2u = gV 2uy and @g(gf) = L¢g,
& € C°(X,Tx). We observe now that for any symmetric 2-tensor u the tensor
Ry * u is also symmetric. In fact let (ex)r be a g(z)-orthonormal base of T'x ;.

Then

_(RQ *“)(&77) = Rg(f,ek,u;ekm) = Rg(n7u;ekaeka§)‘

Furthermore if we choose the g(z)-orthonormal base (e ), such that u is diagonal
with respect to this one, then

Rg(nvu;ekaekag) = Rg(n’ekvuzekag) = _(Rg * u)(n;é)

We observe also that the previous computation shows the identity

(Rgxu)(&m) = Ry(& ex,n, uger)
= Q(Rg(&ek)UZGkﬂ?)
= 9((R9*“;)§7n)’
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ie
(Rg*u)y =Ry *uy. (3.3)

g:

We deduce in particular the equality
* «\ T
Ry *uy = (Ry * ug)g . (3.4)

We remind that the 2-Lichnerowicz Laplacian A% , 1s self-adjoint with respect

3

to the scalar product (1.1) thanks to the identity (1.3) that we show now.
We pick a g(z)-orthonormal base (ey)r C Tx , such that v is diagonal with
respect to this one at the point z. Using (3.3) we infer

(R u,v), = Trr [(Ry*ug) vf]
= Ry(vyer, er, e, ugey)
= Ry(er, e, vyer, ugey)
= Ry(ex, e, uzer, vyer)

= <Rg * v,u>

g )

since these identities are independent of the choice of the g(x)-orthonormal base
(ek)k C TX,gc-

Lemma 4 For any g € M and u € C* (X, S%T%) holds the Weitzenbick type
formula

~Vy"Dgu = A} ju— Lyza,.g-
Proof The required formula follows from the identity

A2 u= (207 - A2) u. (3.5)

In order to show this identity we expand A?u = Vg2Vgu — @gvgﬂu. We
observe first

VieVeu(€,n) = ViVeu(&,n) + Veu(Vyf,&n).

We fix an arbitrary point zy and we choose the vector fields & and 7 such that
0 = Vg&(xo) = Vgn(zo). Let (ex)r be a g-orthonormal local frame such that
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Vger (x9) = 0. Then at the point xg hold the identities

V; @gu(fa 77) = _vg,ek ﬁgu(ekv fa 77)

= _vg,ek vgu(ekagvn)
= _vg,ek [Vgu(ek:a 57 77) + vgu(€7 €k, 77) + Vq“(% €k, f)]

= —Vyge, vg-,ek“(fa n) — Vg,ex Vg,éu(ek, n) — Vg,ekvg,nu(eka £),

and

Vou(Vof,&m) = Vou(Vef.&n) + Vou(, Vyf,n) + Veu(n, Ve f,&).

Moreover

VoVitul§n) = VaViulé,n) + Ve (Vof—u) (€.1),
and at the point xy hold the identities
VoViu(€n) = VeViu-n+Vy,Viu-§

= Ve [Viu-n] + Vg, [Viu-¢
= _V%f [vg,eku(ehn)] - ng [vg,eku(elmgﬂ

= _vg7§vg,eku(ek7 77) - vg,nvg,eku(eka f)a

and

ﬁg (Vof-u)(&mn) = Vee(Vof-u) n+ Vg, (Vgf-u)- €
= Ve u(Vofim]+ Vg [u(Vyf, )]
= Veu(§,Vof,n) + (uVif) (&)

+ Vgu(na vgfa 6) + (vgdeZ) (5,77)-

Let now A € C*°(X,End(Tx)). We denote by A—wu the 2-tensor defined by the
formula

(A-u)(§,m) = w(AEn) +u(E, An).

We observe that if u, ¢ are two germs of vector fields near g such that [u, (] (xg) =
0 then holds the identity at the point xg

VouVgcu—VgcVguu = —Rg(p,()u.

18



Using this identity we infer the equalities at the point xq

(Vg,eVget = Vg e, Vgeu) (er,n) = —u(Ry(& er)er,n) — u(er Ry(Es ex)n)
= —(uRic™(9)) (§,n) + (Rg xu)(&,n),

(vg,nvg,eku - vg,e;c vg,nu) (€k7 6) = - (Rlc(g)u;) (5; 77) + (Rg * u)(fv 7])»

by obvious symmetries. Combining the identities obtained so far and simplifying
we obtain the identity

Afu = Afu+ 2R, +u— uRic} () — Ricy(Q)u},
which in its turn implies the required identity (3.5). O

The Weitzenbock type identity in lemma 4 combined with the variation
formula (3.2) implies directly the variation formula (1.4).

3.2 Proof of the first variation formula for Perelman H-
function

We show now the variation formula (1.5). For this purpose let 0 < (g¢, ) C

M x Vi be a smooth family and set as usual f; := log QLf’ We start time
deriving the identity

—ANf = div?* Vg, f.

We compute first the variation of the Q-divergence operator. Set u; := Qf and
time derive the definition identity

d(E-Q) = (div? €)Q.
We infer
d
d(Eu ) = (dt div** g) Qp + g (div¥ €)Q.
Moreover expanding the left hand side we obtain

d(E-uiQ) = (Eur) +upd (§-Q),

which implies the formula

d .. .
(dt leQf’) § =y (Vthaf) .
We observe also the variation formulas

d

% (vgtft) = vgtft - g:vgtft, (36)
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and

. 1 ] .
ft = iTrgt gt _Qt~ (37)
Combining all these formulas we obtain
Doy (D4 g0 o 4
77 gt fe = dt le vgtft+dlv %(vgtft)

- L1 _
gt (vtht?vgtft) + Aff; <Qt -3 Trg, gt)

— div® (g Vg o)
We expand last term using the identity

div?e = Trg (Ve€) — g(& Vef).

We obtain with respect to a g,(z)-orthonormal basis (e ), C Tx,, at an arbitrary
space-time point (z,t)

div® (47 Vg, f2)
= 9t(Vger (9 Vg ft) ver) = 9: (9: Vg, ft, Vg, [2)
= 9t (Vgerdi -V ft +9: VeV frer) = 96 (9 Vg ft: Vg, [t)
= g (Vg ft:Vgerli - €x) + gt (v?],ekftvg;;ek) — 9t (Vg [t:9{ Vg, [t)

= —Gt (v;?t 9:7 Vgt ft) + <vgtdft7 gt>gt
We infer the variation formula
t !S;ftft = A?f (Qt - §Tr9f, gt> + gt (vg?tgt + Vthtvvgtft)
— {9t Vg dfe),, - (3.8)
We observe next the identity

d
27 *
il

2hy — 2071
= ADGE 2Ry, * §)f + 47 Rich, (Q) + Ric), ()47
— (Lormugew, a0), = 208 = 207h7,

gt 91
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thanks to the variation formula (1.4). We deduce the formula

d 1 . .o . *Q, -k -
% Trgt hy = iA?f Trgt gt — <gth1C(gt)>gt - legt (Vg?tgt + vtht> ’ (39)
thanks to the identities
Try (Rg*v) = (v,Ric(g)),, (3.10)
Trg(Leg) = 2Trr(Vy€) = 2divgé. (3.11)

In order to show the identity (3.10) we expand with respect to a g(z)-orthonormal
basis (ex)r C T, the term

Try (Rg*v) = (Rg*v) (e, er)
= —v(Ry(ex,er)ex, er)
= g (vjen, Ric*(g)er)

= (v, Ric(g)), -

The first equality in (3.11) follows from the elementary identity
(ng); = Vg + (ng)gT,

where Ag denotes the transpose of an endomorphism A of Tx with respect to

g.
In conclusion combining the variation formulas (3.8), (3.9) and (3.7) we infer
the variation identity

2D, 0H (v, V) = AgVg — div® (Vi20r + V, V) — 2V — (v,hg0)

and thus the required variation formula (1.5).

4 The Soliton-Kahler-Ricci Flow with variable
volume forms

4.1 Existence of the Soliton-Kahler-Ricci flow

We prove in this sub-section lemma 1.

Proof From now on we will set for notation simplicity h; = hg, 0., Hi = Hg, o,
and H, = ﬂgt’gt. We observe that for any smooth curve (g, Q)10 C M x Vy
the identity

dV,
= 1 9
ft og 9)

t
’
t
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is equivalent to the evolution equation

2fe = Try, gr — 200 (4.1)
with initial data fy := log —dgf)o . Along the Soliton-Ricci flow, the equation (4.1)
rewrites as

2f, = —Try, he+2H,

—AJf+2f — 2/ H,Q,.
X

We infer that the Soliton-Ricci flow equation is equivalent to the evolution
system
gt = g+ — Ric(g:) — V. dft
) (4.2)
2fe = =Dy fo — Vo fil2, + 2fr = W(ar, fr),

with fo = log d;;go We consider now the flow of diffeomorphisms (¢;)i>0

solution of the equation

200 = (vgtft) O Pt

with @9 = Idx and we define (g, ft) = ¢; (g1, ft). We observe the evolution
formulas

d . o . 1
79 T e\ + gngtftgt
= ¢ [g9: — Ric(gs)]
= gt Ric(fh),
and
d . - .
2%ft = 2ftops+2dy, fr - P4

= 2f0 ot + dy, fr - [(Vg, fi) o ¢1]

(th + dfy - vgtft) °py

<2ft + |ng,ft|§t) O Py,

We deduce thanks to the diffeomorphism invariance of the W functional that
the evolution system (4.2) is equivalent to
45, = g, — Ric(ge),
(4.3)
Q%ft = =Dy, ft +2ft = W(Gs, fi),
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with initial data (o, fo) := (g0, fo). Notice indeed that we can obtain (4.2)
from (4.3) by performing the inverse gauge transformation (g¢, fi) := ¥; (gt ft)
with ¢, = ¢, ! being characterized by the evolution equation

2p = - (Vgtft) o1y,
o = Idx. In order to show all time existence and uniqueness of the solutions
of the evolution system (4.3) we consider a solution of the Ricci flow (¢ )¢ejo,7),
d .
dtgt
with initial data go and 0 < T' < 4o00. Then (§;)¢>0 defined by

—2Ric(g1),

et

gt = ﬁgT(lfe_‘)a
satisfies the evolution equation relative to the metrics in (4.3). Then we set
A = 2T. In the case (X, Jy) is a Fano variety and goJo € 2me1(X) we can
choose A = 1 since the the evolution equation of §; in (4.3) represents a solution
of the Kéahler-Ricci flow equation.

The existence and uniqueness of the solutions of the evolution equation for ft
in (4.3) follows directly from standard parabolic theory with respect to Holder
spaces. Notice indeed that the presence of the integral term W(gq, fi) (we
consider the expression involving the H*(X) norm of f) does not produce any
issue in this theory.

In the Fano set up we define the complex structures J; := ¢} Jy. Then the
family (J, g+)t>0 represents a flow of Kéahler structures since (Jo, §t)e>o is also
a flow of Kéahler structures. The identity ¢;J; = Jp is equivalent to the equality

d .
0 = %(‘PtJt)

. 1
— (p: (Jt + QLV.%ftJt>

= @f (Jt + J 5TX,Jt vgtft) »
i.e to the equation
jt = 7Jt 5TX>Jt vgt ft'

This combined with the Ji-linearity of the first two terms in the right hand side
of the complex decomposition

RiC;t (Qt) = Ric* (gt) + 8%;111’ Vgt ft + 5TX,Jt Vgt ft,

implies the required characterization 2.J, = [Jt, g;] of the evolution of the com-
plex structures J;.
O
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4.2 Monotony of Perelman’s W-functional along the soli-
ton Soliton-Kahler-Ricci flow

We observe first the following elementary fact.

Lemma 5 Let (X,J) be a Fano manifold and let g be a J-invariant Kdhler
metric with symplectic form w := gJ € 2nc1 (X, [J]). Then (J,g) is a Kihler-
Ricci soliton if and only if there exists a smooth volume form Q > 0 with fX Q=
1 such that
w = RiCJ(Q)7
(8) )
A?f—2f+2fxf§2:0,f::10g:ﬁ.

Proof We assume first that (., g) is a K&hler-Ricci soliton. Then Perelman’s
twice contracted Bianchi type identity (1.2) implies H, o = 0. The latter is
equivalent to the second equation of the system (S) thanks to the identity
Trghgo = 0. We show now that the solution of the system (S) implies that
(J,g) is a Kéahler-Ricci soliton. Indeed multiplying by V,f both sides of the
identity (1.2) and integrating by parts we obtain the general formula

* Q
/ (hg.0:Vaf), Q= ’/ Hy oAy fQ (4.4)
X X
In our case this rewrites as
— 2
2/X B Vot 0 = /X(Ag 21 FALFO, (4.5)

thanks to the condition w = Ricy(2) and the complex decomposition of the
Bakry-Emery-Ricci tensor. We infer the required conclusion. O

We provide now a proof of the monotony statement in lemma 2.
Proof STEP I. Let (J,§:)i>0 be a solution of the Kéhler-Ricci flow and
observe that this equation rewrites in the equivalent form
Wi

%@t :iajgjlog o)

' (4.6)
@y = Ricy (), [ U =1,

with @&, := ¢;J, and &g := w. We define the function

f, = log = ,
ft g Qunl
and we observe the analogue of (4.1)
d d da\"
25 f = Tis, -2 =0 )
at " T <dt t>t
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This combined with the first equation in (4.6) implies

d

92
dt

fom o fi—2(50) . (4.7

On the other hand time differentiating the identity & = Ric;(;) in (4.6) we
obtain
d

. d . e om (A )
2@&% = 2% RlCJ(Qt) = -2 aJaJ (dtﬂt)t y

which combined with (4.7) implies
0B a5 d ; 2
21 0;05ft = 10,07 <2dtft + Agtft> R

i.e.
d

92
dt

ft = _Agtft+2ft+ct7

for some time dependent constant C; which can be determined time deriving
the integral condition [ € = 1. Indeed using (4.7) we obtain

dA\" A
o= 2 ()

d . .
= /X[?dtft-f—Agtft} Q

= Ct + 2/ fAtQt'
X
We infer the evolution formula
d - . . . .
QEft = *Agtft + th — 2/ fteifthg“ (48)
t X

with initial data

fo = logpo
We observe now that the identity & = Ric; () in (4.6) implies
gr = — Ricy (Q)J = Ricg, (%) — §:01y , Vi, frs (4.9)
and thus Trg, hét,ﬁf, = 0. We deduce the equality

Wi, fr) = 2/){ft€7ftd‘/gt- (4.10)
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We infer by Cauchy’s uniqueness that the evolution equation (4.8) is equivalent
with the second evolution equation in (4.3). We obtain, as in the proof of lemma
1, a Soliton-Kéhler-Ricci flow (Ji,wi, ¢)i>0 with initial data (Jo,wo, Qo) =
(J,w,2). We observe that thanks to (4.9) and (4.10) the Soliton-Ricci flow
evolution system (4.2) writes in our case as

gt = 7gt5Tx”]t vgf,ftv
(4.11)

2f = —ALfi+2f, =2 [ fre7fdV,.
Time deriving the identity w; = g+J; and using the evolution formula for the
complex structure 2J; = [Jy, ;] in the Soliton-K&hler-Ricei flow equation we

infer

we = giJi + gtjt
1 ., x
= §gt (97 ¢ + Je97)

1 x o x
= W (9 — J2gi Jt)

.47 1,0
= Wt(g;tk)J

= ()7
thanks to the first equation in (4.11). We deduce wy = w and thus the identity
in time
w = Ricy, (). (4.12)

STEP Ila. We provide now a first proof of the monotony statement for the
Soliton-Kéhler-Ricci flow. The equality (4.10) rewrites as

W™
W(gt,Qt) = 2/ fte_ft—‘ = 2/ ftQt, (413)
X n: X

thanks to the invariance by diffeomorphisms of W. Let

F o= ft*/ftQt,
X

and observe that the second evolution equation in (4.11) rewrites as

2f = —AYF, + 2F,. (4.14)
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Time deriving the expression (4.13) and using the evolution equation (4.14) we
infer

%W(Quﬁt) = Q/X(ft—ftft)ﬁt

_2/)( fofe

= / (A F, —2F,) F,Q, >0,
X

thanks to the estimate Al(Ag) > 2 for the first eigenvalue )q(A?) of the
weighted Laplacian A in the case gJ = Ricy(). (See the estimate (13.15)
in the section 13.) Indeed by the variational characterization of the first eigen-
value holds the estimate

2< M (AY) = inf{/ AduuQ | ue CF(X,R)o : / u?Q = 1}, (4.15)
X X
which implies
og/ (AJF —2F) FQ, (4.16)
X
with
d
F = f—/fQ, f = logﬁ.
X Q

We assume now equality in (4.16). We assume also F' # 0 otherwise g will be a
J-invariant Kéhler-Einstein metric. Equality in (4.16) implies 2 = Al(A?) and

—-1/2
uy = FU FQQ} ,
X

attains the infinitum in (4.15). Thus we can apply the method of Lagrange
multipliers to the functionals

O(u) = /A?uuQ,
X

V() = /X W20,

over the space CF (X, R)o. We have the equalities

2 = gl;rllq):@(uo),
which imply D,,® = pD,, V¥, ie. Aguo = pug, with g = 2. The latter is
equivalent to the equation A?F = 2F. Then the required conclusion follows
from lemma 5.
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STEP IIb. We give here a different proof of the monotony statement. We
remind first that Perelman’s first variation formula for the W functional [Per]
writes as

DyoW(v,V) = _/X[@,h%mg—wggw} Q.

Thus along the Soliton-Ricci flow holds the identity

d 2 2
%W(gh Qt) = /}( |:|hgtyQt|gt - 2ﬂgt’9t:| Qt'

Then the conclusion follows from the identity (4.12) combined with the elemen-
tary lemma below. O

Lemma 6 Let (X,J) be a Fano manifold, let g be a J-invariant Kdhler metric
with symplectic form w := gJ € 2meq (X, [J]) and let Q > 0 be a smooth volume
form with [ Q=1 such that w = Ric;(Q). Then

/X hyal2Q>2 /X H2 9, (4.17)

with equality if and only if (J, g) is a Kdhler-Ricci soliton.

Proof The condition w = Ric;(2) and the complex decomposition of the
Bakry-Emery-Ricci tensor in [Pal5] imply

h‘Q,Q = ggTX,ngfa
and thus Trg hg o = 0. We deduce
2H, o, = —(Ay —2D)F. (4.18)

Then

/. [Ihosl; —2130] 2

5 2 1 2
/X[|8Tx,.lvgf|g - 5 |(A?—2]I)F| ]Q

= /(A_{}—zﬂ)F-FQ,
X

thanks to the integral identity (4.5). The conclusion follows from the variational
argument at the end of step Ila. O

Remark 1 We observe that the elementary identities

V,f = Jw tdf = 2w d5f,

28



with 2d5f := —df - J, allow to rewrite the Soliton-Ricci flow evolution system
(4.11) as

jt = 5Tx,‘]t (w_ldft) )
(4.19)

2 = Tr, (dd5, fo — dfy N5, 1) + 20 =2 [ fre™ .

We notice also that the Soliton-Kéhler-Ricci flow evolution system with initial
data (Jo, go, Q) = (J, g,Q) such that w := gJ = Ric;(Q) is equivalent to the
system (1.6). Indeed the argument in step I of the proof of lemma 2 shows that
our Soliton-Kéhler-Ricci flow is equivalent to the Kahler-Ricci flow equation
(4.6) via the gauge transformation given by the diffeomorphisms ;. But (1.6)
is also equivalent to (4.6) via the same gauge transformation. Notice in fact the
identities

d -~ 1 * * . Y . - “

%wt = 5@,5 (ngtftw) =} (z 8Jt8tht) =10;05f;.
The corresponding identities for the transformation of the complex structure
have been considered at the end of the proof of lemma 1. We infer the equiva-
lence of our Soliton-Kéhler-Ricci flow with (1.6).

Remark 2 Let (g4, Q¢):>0 be the Soliton-Ricci flow and set for notation simplic-
ity Wy := W(gs, ), hy = hg, 0. Hy = H Perelman’s twice contracted
differential Bianchi identity (1.2) implies

g1,

Vot i + Vg, Q5 = 0. (4.20)

Then the fundamental variation formula (1.5) implies the evolution equation
along the Soliton-Ricci flow

d

2 H, = —(AS —2D)H, + |3, — Wi (4.21)

This combined with the monotony statement in lemma 2 or in [Pall] implies

the inequality

d 2
2 H, < —(AYr —2)H, + [hl,, , (4.22)

along the Soliton-Kahler-Ricci flow.

5 The second variation of the )V functional along
the Soliton-Kahler-Ricci flow

Let (Ji, gt, Q4 )i>0 be the Soliton-Kéhler-Ricci flow. In the proof of step I of
lemma 2 we obtained the identity

n

Wt = —2/ ftf.teiftwi.
X

n!
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Time deriving this we obtain

W= =2 f ez [ g (h-#F)e

Time deriving the identity
/ fily = / fte_f’*,

0o = [ (-i)en
% ( t t) t
and thus the evolution formula
Wo=-2 [ -2 [ F(f- 7). (5.1)
X X

We observe now that the second evolution equation in the system (4.11) rewrites
as

we deduce

2f = —AYfit2fi W,
thanks to (4.13). Time deriving this we infer
—2f = *AQ’ft —2fy + W, (5.2)

Plugging the identity (4.20) in the variation formula (3.8) and using the first
equation in the system (4.11) we obtain

d = 2
*Aﬂtft = A?:ﬂt_‘aTXJtvg‘ft‘gt

Q 2
= Ay H, — |l

with 2H, = —(Ag‘ — 2I)F;. Thus fi = H, thanks to (4.14). Using (5.2) we

infer
—2f, = (AYr —21)H, |ht| + Wi

(This last follows also from the general evolution formula (4.21).) Integrating
by parts we obtain the identity

*2/ thtﬂt = */ {QE?JFFtVLt@t Q,
X X
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(since [y FyQy = 0). Plunging this identity in the evolution formula (5.1) we
deduce the simple second variation formula

W, —/)([4ﬂ§+(|ht|§t—2ﬂf) F] o

X
5 1
_ /); (|3Tx,Jtvgt,ft’zt - 5 |(A_§]21t _ 2H)Ft|2) Ft Qt,

6 The Levi-Civita connection of the
pseudo-Riemannian structure G

In this section we compute the Levi-Civita connection of the pseudo-Riemannian
structure GG. This is needed for the computation of the second variation of the
W functional with respect to such structure. We set for notations simplicity
T := Tamxy, and we compute the first variation of G at an arbitrary point

(9,9),
DyoG:T xT — T

In a direction (6,0) € T this is given by the identity

d
Dy aG(0,0;u,V)(v,V) = i@ Gg,.0,(w,U;0, V),
t=0
where (g¢, Q¢)ie(—cey) C M x Vi is a smooth curve with (go, Qo) = (g,9) and
(90,€0) = (0,0). For notation simplicity let denote u} := g; 'u and U} :=
U/Q:. Then holds the equality

d
Dy aG(9,0;u,V)(v,V) = — / Trg (uy vf)Qth/ Uuyv
’ dt|i—o [Jx b
d * ok * ok
= pn Trr(u; v;)| Qe+ [ Trr(u; v;)O
X le=0 X
d
- 2/ = UV
/X dtje— '
Using the identity % uy = —g; uf, which follows from the formula
d _ 1. -
%gtlz_gtlgtgt h
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we obtain

%Tr]R(ut vy) = Trg (dtut vy + utdtvt>

Sk ok ok * ek Kk
—Trr(gf uy vy + u g7 vf)

= - QTI‘IR(Q: ur Ur) )
since ¢ is also symmetric. Indeed we observe the elementary identities
Trg [(uf g7)vi] = Trm [vp (ug 67)]

* * x\1T
= Trr[v; (uy )],

= Trr [(uf §¢)i v7]

= Trr(g; uf vy),

where Al denotes the transpose of A with respect to g;. Time deriving the
identity U = U/}, we infer

dU; iy
dtt O+ Uy,

and thus

auy
dt

= U

Summing up we infer the expression of the variation of G at the point (g, ) in
the direction (¢, ©)

Dy aG(0,0;u,U)(v,V) = / {Trr[(Og — 20;)uy v,] +200U4 VS T Q.
X

We can compute now the Levi-Civita connection Vg = D + I'g of the pseudo-
Riemannian structure G. At a point (g, Q) the symmetric bilinear form

Fg(g,ﬂ) 2T X T—)T,
is identified by the expression

2G97Q (FG(ga Q)(U7 Ua v, V)v 95 6)
= [DgaG(u,U;v,V)+ Dy oG(v,V;u,U)](0,0)
- D.(LQG(aa@;ua U)(U7V)
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Expanding and arranging the terms of the right hand side we obtain

2G40 (Talg, ) (w,U;v,V);0,0)
= [ {TR[(Ug — 2l v} 03] + 205V 05} Q
+ [ ATR[(VE — 200)u) 03]+ 2V3 U505} Q
- /X (Trn[(0% — 26 )ul o) + 205U8V} €
= X{Tm[(U;g — 20l 0 + Vs 0F — Ohut vl + 2U5 V0510
= /X Trg[(u) (Ve — v3) + vk (UG — ul)) 03] Q
- [ [Mngu; o) - 20avgI05
_ /X (u(Vis = 03) + (U — ). 6), €.

1 1
— 2 [ [ (wo), - UaVi — 5Goa(u Usv, V)65 0,
X

since [ + © = 0. We infer the expression

(1/17‘1’) = Fg(g,Q)(U, U;'Ua V)a
1
o= LV - )+ U - )
v - i[m, v}, = 204V — oo, Usv, V)]

This concludes the computation of the Levi-Civita connection V.

7 The second variation of the )V functional with
respect to the pseudo-Riemannian structure

G

We justify first the geometric interpretation of IFy o provided by the identity
(1.7). We observe indeed that (v,V) € T[;‘%] (9.0 if and only if

Gg,Q(ng, LgQ; v, V) = O,
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for all £ € C™(X,Tx), i.e

o
Il

| [izeom, —2(zcivi] o

2/X {<vg§,u;>g _ (div%)vg} 0

2 /X (6. V0] + YV, O
which shows the required conclusion. We introduce now the operator
Ly : C®(X,End(Tx)) — C*(X,End(Tx)),

defined by the formula

LIA = AJA—2R,xA.
By abuse of notations we define also

L] C™(X,8°Tx) — C™(X,S*T%),

defined by the same formula

E?v = A?v —2Rg4 *xv.

We observe that (3.3) implies the identity (E?v); = E?v;. We show now the
second variation formula for the W functional.

Lemma 7 The Hessian endomorphism VW(g,Q) of the W functional with
respect to the pseudo-Riemannian structure G at the point (g,Q2) € M XV in
the directions (v,V) € Fy q is given by the expressions

(wU) = VeW(e,Q,V),
1, 4 1,
u = 75 (L:g +Eg,ﬂ)vi §Vth,Q,
* 1 Q * 1 1
UQ = —5 (Ag +Eg,ﬂ - 2H) ‘/Q + Z <hg,Q,U>g + ZD%QW(U’ V)

In particular if hg o = 0 then

1
u = —55_{}1},
* 1 Q *
Uy = _i(Ag _QH)Vsz'
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Proof We consider a smooth curve (g;, Q¢)ier C M x V1 with (go, Q) = (g,9)
and with arbitrary speed (go, ) = (v,V). We observe that the G-covariant
derivative of its speed is given by the expressions

(0:,00) = Val(ge 2)(ge Q) = (G, %) + T(ge, ) (G, Q5 Go, ),
0 = Gitan (% -3t),
O 1= Gty 10l — 2% — Gy (s 20 g0, 20|
We infer
0f = jt tht>
O = DOi 4 (@) + LIk, — G G0 )

Using this expressions and Perelman’s first variation formula we expand the
Hessian form

VaDW(gs, )(Ge, Q3 91, )

d2
= —WI(g:, %) — Dy, 0, W(0:,01)

dt?
_ _a/ [Tr]R(gt 5 QQ*Ht]Q
+ /[Tr]R(G* 7)) — 207 H{ Q
X
= —L |:TI'IR (dtgtht +gt dtht) thQ Ht 2Qth Qt
- / [TYIR(gt 1) - 20 Ht}Q
X
+ / [Trg (07 h;) — 207 Hy] Q
X

= [ {ea [ar (i = aing)| 2o

1

_ 5/}( [|g't|§t —2(;)? _th,gt(gt,Qt;gt,Qt)] H,Q,.
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Using the variation formulas (1.4) and (1.5) and evaluating the previous identity
at time ¢ = 0 we obtain the expression

VaDW(g,Q)(v, Vv, V)

1 Q
T2 /x [<‘C9 v Logeiv,vs 9 ”>J .

1 * * : *Q, K *
- /X{_WQ (A2 — 2DV — div® (V0] + V, Vi) — (v, ), |12

1 *
- 5 [ Il =201, 0

since f v H, o0 = 0. Arranging symmetrically the integrand terms via the
identity

VeDW(g,Q)(v,V;0,V) = Ggalu,U;v, V),

(u,U) VeW(g, Q)(v, V),

we infer the general expressions

1 1 1,
wo= 73 (£ + Hyo) v+ §Lv;9v;+vg\4;g - ivﬂhgﬂv
* 1 Q *
UQ = —5 (Ag +ﬂg,ﬂ —2I[) VQ
1 1 1
+ 3 (ngnvgwgvéﬂ)g + 7 (hg,v), + 7 Dg2W(@,V),

Then the required expression of the Hessian of W follows from the assumption
(v, V) € Fgq. If hgo = 0 then the required conclusion follows from Perelman’s
twice contracted second Bianchi identity (1.2) which implies H, o = 0. O

8 The anomaly space of the pseudo-Riemannian
structure G

Let Isomg’ﬂ be the identity component of the group
Isom, o = {peDiff(X)|p*g=yg,¢"Q=0Q},
and let

Killyo := Lie(Isom) ) ={{ € C®(X,Tx) | Leg = 0,LeQ =0}
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We define the anomaly space of the pseudo-Riemannian structure G at an ar-
bitrary point (g,{2) as the vector space

Q
Ag = Fg,QmT[gyﬂ],g,Q'

We will study some properties of this space. It is clear by definition that this
space is generated by the vector fields £ € C*°(X, Tx) such that

*O . Q AQ
0 = |VioV,+ ddlvg} (96) = A4 (96).
More precisely there exists the exact sequence of finite dimensional vector spaces

0—Killyo — KerA? — A? —0

= gét=a — (@ga, (divz2 a)Q) .

We observe that if & = du € Ker Af} then the function u satisfies the equation
20TV gu— VyAlu = 0,

which is equivalent to the equation

[AY — Ric}(Q)] Vyu =0, (8.1)
thanks to the general identity

VA = ATV u + Ric)(Q)Vyu. (8.2)

We set

Voo = {a € Ker A? |a= du}

~ {ueCF(X,R) | [AT —Ric}(Q)] Vyu=0}.
We observe that in the soliton case hg o = 0 we have
Vg0 = Ker(A — 2I) € CF (X, R)o, (8.3)

thanks to the identity (8.2). By duality we can consider Kill, o C Ker Ag and
we observe the inclusion
V0 C Kill 5", (8.4)

where the symbol L, o indicates the orthogonal space inside Ker A? with re-
spect to the scalar product (1.1) at the level of 1-forms. The previous inclusion
holds true for any (g, ) since

/){(du,ﬁ)_qﬂ - —/X<u,div§5>gﬂzo,
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for any 8 € Kill; o. We infer that in the soliton case the previous exact sequence
can be reduced to the sequence

0 — Ker(A —2I) — A}

u = 2(Vydu,—uQ).

In order to show that the previous map is also surjective we need to show a few
differential identities. We show first the Weitzenbock type formula

Y Q s K

Aja = Aja — aRicy(Q). (8.5)

(This implies in particular the identification of V, o in terms of functions). We
decompose the expression

Afa = Vv, —avye| a. (8.6)
We decompose first the term
VieVea & = ViVga &+ Vea(Vyf,<).

We fix an arbitrary point p and we choose the vector fields £ and 7 such that
0 = V4&(p) = Vgn(p). Let (ex)r be a g-orthonormal local frame such that
Vgexr(p) = 0. Then at the point p hold the identities

ViVga-€ = =V, Vyaler, )

= *vg,ek [vga(ekag)}
= _ngek [V!]aeka &+ vg;ﬁa ’ ek]

= —Vwk ngek,oz . € — Vwk vg,ga c €L
We infer the expression
V;“§ga & = AJa—Vg Vgea-ep+ Voa(€,Vyf).
Moreover
AVita(§) = —VeeVya e+ Ve -Vof+a-V, . f

9:€k

Summing up we deduce

A?a £ = Aga &+ (Vg,£V o — Vg’ekvy:éa) TEk T vg,ﬁf

g€k
= Afa-{—a Ry ep)exr —a- Vi f,
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thanks to the dual identity
VeVt = VynVgea=Vgiena—a-Ry&mn), (8.7)

and to the fact that [£,ex] (p) = 0. We infer the required formula (8.5). We
deduce that in the soliton case hg o = 0 holds the equality

Ker A? = Ker(AY —T) € C*°(X,T%). (8.8)

We define now the 2-Hodge Laplacian acting on scalar valued differential forms
as the operator

AY, = AV +Vied
At the level of scalar valued 1-forms we observe the identities

(Afzg + A?) a = V.° (d+ @g) !

2V 2V a

_ Q
= 2Ag Q.

We infer thanks to the identity (8.5) that for any scalar valued 1-form o holds
the Weitzenbdck type formula

Aga = Aggoz — aRic, (). (8.9)

Applying the V #-operator to both sides of this identity and using the fact that
(V32)? = 0 at the level of scalar valued differential forms we obtain

* Q Qvox* * o %
ViPAja = AV fa—V e [ Rlcg(Q)] .
In the soliton case hg o = 0 this implies the formula
* Qo AQT* *
V2 A ja= AV i2a—Vita. (8.10)
Then the identity (8.8) implies that the map

Ker A — Ker(AY —2I) C CF(X,R)o
a divzZ «,

is well defined. More precisely there exists the exact sequence of finite dimen-
sional vector spaces

0 — Killyo — KerA? — Ker(AJ —2I) — 0
E— gl=a Hdiv?a.
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Indeed the surjectivity follows from the isomorphism (8.3). The injectivity fol-
lows from the fact that

Kill,o = {aeKerA?|divia=0}.

This hold true thanks to the identity

_ 2 1 L2
/ le? al O = 3 / ’Vga Q,
X g X g
which follows from the expression
Ao = [1¢r0¥, —dvie
g o = 5 g g g .

For dimensional reasons we conclude the existence of the required exact sequence

0 — Ker(A7 —2I) — Ay —0

u = 2(Vydu,—uf).

(We observe also that for dimensional reasons (8.4) is an equality.)

9 Properties of the kernel of the Hessian of W
Lemma 8 In the soliton case hg.q = 0 holds the inclusion
A CFyonKer VEW(g, Q).

We start with a few notations. For any tensor A € C(X, (T%)®"™! ® Tx)
we define the divergence type operations

@gA(ula"'vup) = Trg [VHA('7U13"'7up7')]7

dng(ul,...,up) = divgA(ur, oy up) — Alur, . up, Vo f).

The once contracted differential Bianchi identity writes often as @gRg =
—Vry.g Ricz. This combined with the identity VTxygi?f =Ry - V4 f implies

divyRy = —Vr, 4 Ric}(Q). (9.1)

We define the Q-Lichnerowicz Laplacian A% , acting on g-symmetric endomor-
phisms A as

AT A = LIA+RIcH(Q)A+ ARic)(Q).

Let now (21, ..., ;) be g-geodesic coordinates centered at an arbitrary point p

and set ey 1= 82k' Then the local frame (ex) is g(p)-orthonormal at the point
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p and satisfies Vger(p) = 0 for all k. We take now an arbitrary vector field §
with constant coefficients with respect to the g-geodesic coordinates (1, ..., T, ).
Therefore V,£(p) = 0. We expand the identity at the point p

(AJV2W)E = =V, Viu(er, &) + Viu(V,f,€).

Commuting derivatives at the point p we obtain

Ve Vouler,§) = Ve, [Vouler,§)]
= Ve [VoerVgeVou—Vou- Vg, €]
= Ve [VoeVger Vot + Ry(en, §)Vyu — Viu- Vg, £]
= V,eVgerVer Vot + 2Ry (ex, €)V g 0, Vgu

+ Ve Rgler,§)Vou — Vou - Vo, Vg ek,

since [eg,&] = 0. The choice of g-geodesic coordinates centered at the point p
implies the expansion

2
AgVgu = =V4, Ve Vou+ Vzu “Vyerer +O(z]7).
Taking a covariant derivative of this identity we infer
VaeAgVou = =V eV Ve Vou+ Vou-VgeVye er,
at the point p. Combining with the previous expression we obtain

Vg,ekvgu(% § = -2 (Rg * Vf}ﬂ) §—VgeAgVgu

+  (Ric*(9)§) “Vou+ Ve, Ry(er, ) Vgu.

On the other hand deriving the identity

AJVeu = AgVou+Viu-Vf,
we infer
VgeAgVou = VyeAVou+ Ve eVou-Vof +Vou- Vo . f,
and thus
Vg’ekvgu(e’“ § = —2(Rgx Vgu) £~ vg,EAgvgu + Vg,ivgu Vyf

+  Viu-Ric)(Q)¢ — div, Ry (€, Vgu) — (Vyu-ViRy) &,
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thanks to the algebraic Bianchi identity. We obtain
(AFVIu)E = 2(Ry* Vou) & — Vi g Vau(E, Vo f)
+ div,Ry(&, Veu) + (VounViRy) €
+ VgeAYVeu— Viu-Ric(Q)E.
The identity VTXﬂVgu =Ry - Vgu implies

—VTX,ngU(f, vgf) = Rg(ng, f)vgu

= —Ry(&,Vau)Vyf +Ry(Vyf, Vyu)§,

thanks again to the algebraic Bianchi identity. We infer

(LoVIE = [Vyun (VieR, - divR, )| ¢

+ Vg eAlVgu — Viu- Ric)(Q)¢

[Vgu= (V;Ry + Vi, 4 Ric (Q2))] €

+  (V2ATu)E — Vg e[Rich (Q)Vgu] — Viu- Ric)(Q)E,
thanks to (9.1) and (8.2). Thus
AL Veu = ViATu+ Vyu- [V R, + Vg Ricy(Q)] — 2V, Ric) (Q)Vu. (9.2)

We observe now that the endomorphism section V,u=Vi¢R, is g-anti-symmetric
thanks to the identity

Re(&m) = —(Ry(&m)y

which is a consequence of the alternating property of the (4,0)-Riemann curva-
ture operator. Notice indeed that the previous identity implies

V97MR9(§777) = _(VQ,MRQ(§777))§)

for all vector fields &,n, 4. Combining the g-symmetric and g-anti-symmetric
parts in the identity (9.2) we infer the formulas

- . T

AL Viu = VIAJu+ Vau-Vr, g Ric(Q) — [V, Ricy(Q)Vgu]
*q _ % - x T
Ve R, = V,4Ric, ()¢ [V, Rlcg(Q)g]g ,
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for all § € Tx since the function w is arbitrary. In the case V, Ricy(Q2) = 0 we

deduce the identities AQ V2u = V2A9u and V2R, = 0. More in particular
in the soliton case hg o = 0 the first formula reduces to the differential identity

LIVEIu= V(AT - 2T)u. (9.3)

We infer the conclusion of lemma 8. This formula will be also quite crucial for
the study of the sign of the second variation of the W functional at a Kéahler-
Ricci soliton point.

10 Invariance of F under the action of the
Hessian endomorphism of W

We observe that Perelman’s twice contracted second Bianchi type identity (1.2)
rewrites as;

V;th)g + ng7Q =0.
If we differentiate this over the space M x V; we obtain
[(Dg,2Ver) (v; V)] hg,0 + Vi [Dg,oh (v, V)] + d[Dg,oH (v,V)] = 0
We deduce using the fundamental variation formulas (1.4) and (1.5)

% [E?v +vh} o + hg vy ]
+ (AT =2V — (v hg0), ]

= —2[Dg,aVe (v, V)] hga

in the directions (v,V) € Fy . We infer that in the soliton case hgy o = 0 the
map
VeW(g,Q) : Fga — Fya,

is well defined. In order to investigate the general case we use a different
method which has the advantage to involve less computations. Let (ey)r be
a g-orthonormal local frame of T'x. For any u,v € C*° (X , SQT;() we define the
real valued 1-form

My(u,v)(§) = 2Vgv(er,uzer,§) + Vou(l,vpex, ex)
for all £ € T'x. One can show that the operator
To(u,v) = Mg(u,v) — My(v,u),

is related with the torsion of the distribution IF. We observe now that by lemma
3 holds the identity

Q)% *Qy ¥ _ *Q * * ok ik
Ajvy =V, Vitvy = V@V gv5 + Ry * v, — v, Ricg (Q).

g
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Applying the Vi2-operator to both sides of this identity we deduce the commu-
tation formula

*Q) Q * _ *Q *Q * * k% ok
Vo2, Ay vy = V2 [Vi2Vry gug + Ry x vy —vshy g —vg].

We observe now that for any ¢ € C°(X,A?Tx ®g Tx) and £ € C*(X,Tx)
hold the equalities

JRGARRR
X

/X (V52,V,48)

3 [ (Vi 0.9.8) @

1
= 3 0.Vh 0,0
1

5| WRe-0,0

and

(0, Rg-&), = (dlex,er), Ryler,e1)§), = — (Ryler, er) (e, er),€), -
We infer

1
(V;Q)szX7gU; = —iRg(ek,el) [ng;(ek,el) — ng;(el,ek)]

= Ryler,er)Vgvy (e, er).
This combined with the expression
Vit (Rg xvy) = Vi 2Ry(er)vger + Ryler, ex)Vguy(ex, er),
implies the identity

Vit Lyvy = (A7 =DVv) + Vug(en, by gex)

KTTkQ 7,k *Q *
— v,V 2hy o =V, ’Rg(ek)vgek,
which rewrites also under the form

VieLdv = (AT —I)Vitv+ Vyv(er, hlger, o)

— WVthga + v (er Vo Ry(ex)s)
thanks to (3.3) and the anti-symmetry property

T
*Q — *Q
ek ViR, = —(exmViIRy),
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On the other hand the once contracted differential Bianchi type identity (9.1)
rewrites as

Vi Rich(Q) = Alt(VieR,),

thanks to the algebraic Bianchi identity. Therefore for any £ € C*°(X, Tx) hold
the identities

v (ek, V;“Rg(ek)g) = v (V;“Rg(ek)f, ek)
= v (V;QRg(f)ek, ek) +v ([{—WTX’Q RICZ(Q)] €k, ek)
= Trg [v;V;"Ry(€)] + Try [v (§-V 1y, 4 Ric} (Q))]

= Try [v(6&-Vryghs0)l,

since the endomorphism section V2R, (€) is g-anti-symmetric. Notice indeed
that if A, B € C* (X,End(Tx)) satisfy A = Al and B = —B[ then

Trp(AB) = Trg(BA)
= Trr(BA),
= Tir(AgBy)
= —Trr(4B),

i.e Trg (AB) = 0. We deduce in conclusion the formula

VieLiv = (AY —I)Vio0 —oViehi g

+  Vgv(er, h} ger,®) + Try [v (e=Vpy gh' )] .
Using the general formula
Vi (pv) = —oVep + oVi2o,
with ¢ € C*(X,R) we infer

Vg? [ﬂg,ﬂv +Vihga] = —0VgH, o+ H, Vv —hgaVeVa +VoVithgo

= oV thgo+H, Vo —dVg-hyg—VodH, o,
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thanks to Perelman’s twice contracted differential Bianchi type identity (1.2).
Using the identity (15.1) we expand the term

.1
d(Ay +Hyq—20) V- 5 (W h.0),

= AJdVG +dVy - Ric(Q) + VidH , o + H, odVE — 2dVE — 34 (v,hg0),

1
(A + H, o —D)dVG +dVe - bl g+ VidH , o — 5 (v hg ), -
Summing up we infer

Ve (L] + Hy o) v+ Vihg ol
1
+ d (Azz THyo- 2]1) Vo - ) (v, hg79>g
= (AY+H, o -1) (Vo0 +dVy)

1
+ Vyu(es, h;Qek7 o)+ Tr, [v (oﬁVTX,gh;Q)} — §d<v7 h,g7Q>g .
We observe now the identity

* ¥ 1 1
Vgv(er, hy ger, o) + Try [v (o—\VTX7ghg7Q)] - §d (v, hg,9>g = §Tg(hg’Q,U).
We deduce the formula

Ve [(ﬁg + ﬁg,Q) v+ Véhg,ﬂ]

.1
+ d[(AY+H,o—20) V3 — 5 (W hea),

1
= (A7 +Hyo = D) (Vi +dV3) + 5Ty (hg0,v).
Setting (v, V) = (hg,0, H, of2) € 'y o in the previous identity we infer

0 = Vo [(£5 +2H,.0) hyol

1 2
+ d (Ag +ﬂg79 - 211) ﬂg,Q D) |h979|g :

This shows the fundamental property (1.9) of the Soliton-Ricci flow.
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11 The Kahler set up

In this section we introduce a few basic notations needed in sequel. Let (X, J, g)
be a compact connected Kahler manifold with symplectic form w := gJ. Let
h:=g—igJ = 2g7rJ0 be the hermitian metric over T'x ; induced by g. We
remind that in the Kéhler case the Chern connection

D!J

Tx,;

o

Tx,s

+8TX g - OOO(TXJ) — OOO(T)*( XR, TXJ),

of the hermitian vector bundle (T’x s, h) coincides with the Levi-Civita connec-
tion V4. We set CTx :=Tx ®r C and CT% :=T% ®r C. We observe further
that the sesquiliner extension of g

go € COO(X, @T;} (23] @T)*()ag(lj(§7n) = g(57ﬁ)?v6an € CTX?

is a hermitian metric over CTx and the C-linear extension of the Levi-Civita
connection V,

Ve 1 C®(CTx) — C™(CTx ®c CTx),

is a gg-hermitian connection over the vector bundle Tx ®g C. We will focus
our interest on the sections of the hermitian vector bundle

(((DT;{)(@p ®@ TX,J7g® & h) )
and we will denote by abuse of notations V, = VC ®Dg , the g¢ ®h-hermitian

connection over this vector bundle. Still by abuse of notatlons we will use the
identification (-,-)_ = go ® h. With these notations we define the operators

Vloj : O™ ((@T;()®p R TXJ) — O (A}]’OT;( Re (@T;)@)p Re TXJ) s
0l O (CT)™ @0 Txy) — € (AY'Tx ¢ (CTH)™ G Txy)

by the formulas

1,0
QVQ’J

vg - ng,J07

2V, = Vy+JVg e

Then the formal adjoints of the operators 89 , and 8TX , acting on T’y j-valued
differential forms satisfy the identities (see [Pal6])

3T;Ja = —qTrngJa
ET;JOZ = —qTrngJa

47



for any a € C°(X, AT% ®¢ Tx,7). We remind now that with our conventions
(see [Pal3]) the Hodge Laplacian operator acting on Tx-valued ¢-forms satisfies
the identity

1 * 1 *
ATX,g = 5VTX’QVTX19 + q n lvTx,gvTxxg'

We define also the holomorphic and antiholomorphic Hodge Laplacian operators
acting on T'x-valued g-forms as

1
J - g * * g
ATX,g T ;aTX,JaT()](,J + q+ laTz(,JaTX,J7
1- —x 1 —w -
—J
Tx,g = gaTx,JaTng + q_’_laTgnyaTx,m

with the usual convention co - 0 = 0. This Hodge Laplacian operators coincide
with the standard ones used in the literature. We remind that in the Ké&hler
case holds the decomposition identity

—J
Ary, = A:L;X,g"‘ATX,g'

We observe now that the formal adjoint of the O%X , operator with respect to
the hermitian product 1

(b = [ 9 (1.1
X
is the operator

(r“);j(”] = efa;;(] (e_fO).

In a similar way the formal adjoint of the ETX,J operator with respect to the
hermitian product (11.1) is the operator

7*9,Q =% _
8T;J = efBTgX,J (e fO).

With these notations we define the holomorphic and anti-holomorphic Q-Hodge
Laplacian operators acting on T'x-valued g-forms as

Q,J o 1 g *g,0 1 *g,Q a9

Tx,g " ;aTX,JaTi(,J + q+ 18T§(,J8TX,J’
1- — 1 —s o=

Q,—J . *9,Q g9,Q

TX,g = gaTX’J TX,J + q + 18TX,J8TX,J'

12 The decomposition of the operator L’? in the
Kahler case

For any A € End(Tx) we denote by A’; and by A’} the J-linear, respectively
the J-anti-linear parts of A. We observe that the operator

Ly C>(X,End(Tx)) — C*(X,End(Tx)),
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defined by the formula

LIA = AJA-2R, A,
restricts as;
L]:C® (X, Tx ;®Tx,7) — C(X,Tx ; ®Tx,J), (12.1)
L]:C™ (X, Tx_;©Tx.5) — C™(X,Tx_; ®Tx,J), (12.2)
Indeed these properties follow from the identities
(RgxA); =Ry A}, (12.3)
(Ry* A)f =Ry x A, (12.4)

for any A € End(Tx). In their turn they are direct consequence of the identities
J(RgxA) =Ry (JA), (12.5)

(Rgx A)J =Ry * (AJ), (12.6)

In order to see (12.5) and (12.6) let (er)r be a g-orthonormal real basis.
Using the J-invariant properties of the curvature operator we infer

JRyxA), = JRy (& en)Aey, = Ry(&, ex)JAey, = [Ry * (JA)]E,

(Ryx A)JE = Ry(JE ex)Aer = —Ry(&, Jep)Aer = Ry(&, mi) Ad g,

where 7y, := Jeg. The fact that (ng)x is also a g-orthonormal real frame implies
(12.6). By (12.1) and (12.2) we conclude the decomposition formula

/ (Lg4,4) Q= / (Lg A, AL +/ (Lg A, AG) Q. (12.7)
X X b's
We observe that the properties (12.1) and (12.2) imply also that A € Ker E? if

and only if A, € Ker Lg and A’} € Ker E?. We observe further that the identity
(9.3) combined with the properties (12.1) and (12.2) implies the formulas

L30F, Veu= 0 V(AT —2M)u, (12.8)
L0 ,Vyu=0r, ,Vy(A} - 2D)u, (12.9)

in the Kéhler-Ricci soliton case. The properties (1.8) and (1.9) combined with
(12.2) imply (1.12) and (1.13).
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13 Basic complex Bochner type formulas

We need to rewiew in detail now some fact from [Fut], (see also [Pall]). Most
of the formulas in this section will be intensively used in the rest of the paper.
Let (X, J,g) be a compact connected Kéhler manifold with symplectic form
w := gJ. We remind that the hermitian product induced by w over the bundle
A},’OT)*( satisfies the identity

2(a, ), = Tr, (ia A B) .
Let ©Q > 0 be a smooth volume form and set as usual f := log % We define the

Q-weighted complex Laplace type operator acting on functions u € C*° (X, C)
as

A?ﬁ,u = el Tr, [iaf (e_fa]u)]
= Agu+2(0ju,05f),

= Agu+205u-Vyf.

We notice the identities A;)’Jf = Agf and QA;) = Re(Ai{J). The complex
operator Ag_ ; is self-adjoint with respect to the the L-hermitian product

(u,v)q :z/XuEQ. (13.1)

Indeed integrating by parts we obtain

/ia] (e*fa]u)@/\wnfl = /aJu/\ie*fa]ﬁ/\wnfl
X X

—/ widy (eifaﬁ) Aw™ L
X
(Notice the equality Q = e~fw™/n!.) We observe in particular the identity

/AgJu-EQ = /2<8Ju,8jv>wQ,
X X

which implies that all the eigenvalues satisfy )\j(Ag ;) = 0. For any function
u € C°(X,C) we define the J-complex g-gradient as the real vector field;

Vgiu = VgReu+ JVyImu e CF(X,Tx).
With these notations hold the complex decomposition formula

VQ}J’U,—'g =dyu+ a]u. (132)
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We consider now the linear operator

By, :C¥(X,R) — CF(X,R)o,

BgJu = div?(JV u).
This is a first order differential operator. Indeed

BYu = Trg (JViu) —df - JVgu

= g(Vau,JV4f),

since J is g-anti-symmetric. We extend Bg ; over C*°(X, C) by complex linear-
ity. Let also

2d5u = (05— 0j)u=—du- J.
Then the identity 20; = d + 2id9 implies the decomposition
AJ ;= A7 + 2V, f-d.
In other terms
Ay, = AJ—iB3,

The following lemma is needed for the study of the operator A;{ ;. (Compare
also with [Fut].)

Lemma 9 Let (X, J,g) be a Kdihler manifold with symplectic form w = gJ
and let Q > 0 be a smooth volume form. Then for all u € C*(X,R) and
v € C*(X,C) hold the complex Bochner type formulas

2077 0%, Vgu= Vg Ay ju =207, ,VyfVgu, (13.3)
2072 01y, V.57 = V. A% ;v — 2Ric}(Q),, V7. (13.4)

Proof Let { € C*°(X,Tx) and observe that for bi-degree reasons hold the
identity

*9,Q o9
28TX,J 8TX,J§

PAVISZ NS

AGE =V (JVg.106)

ATE =V (IVg,508) — IV 5w, 56

o1



Let (ek)i’il be a local g-orthonormal frame over a neighborhood of an arbitrary
point p such that Vgei(p) = 0. Then at the point p hold the equalities

_vz<ng,J-f) = JVge,Vgiel

1
= 5 (ng,ek vg,Jekg - ']vg,Jekvg,ekf) )

since (Jey)?™, is also a local g-orthonormal frame. Then the fact that
ler, Jex] (p) = 0 implies

V5 (IVasd) = 5IRy(en Jer)é = Ric”(g)6
We infer the complex Bochner type formula
20707 O & = AJE+RICT ()€ — TV v, 1€ (13.5)
In a similar way we obtain
2075 Oy ,€ = ASE —Ric* (9)¢ + IV v, £ (13.6)

Using formulas (13.5) and (8.2) we deduce the expressions

28*9,0 89 vgu = VgA?u — vzfvgu — ngUJva

Tx, ;7 Tx,j
= VyAJu— (Vif+JVLfJ)Vau
— J(ViuJVyf —V2fJVgu)

= VyAJu—20r, ,VefVeu— JV,[g(Vgu, JV,f)].
Using the first order expression of Bg , we obtain

2075 0

Tx,0 Tx,J

Vou = [VeAY = JVyBY | u—207 ,VefVgu.

We infer the complex differential Bochner type formula (13.3). In a similar way
using formulas (13.6) and (8.2) we deduce

20,7 0y ,Vgu = VyAlu—2Ric}(Q)Vyu+ V2fVeu+ JViuJV,f
= VyAfu—2Ric,(QVeu+ (Vof +JV.fJ) Vgu
+ J(ViuJVyf =V fJIVgu)
= VgAju—2Ric)(Q)Vyu+ 207, , Ve fVau

+  JIVy[g(Vgu, IV, f)].
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Using the first order expression of B?’ , we obtain
20, 01y ,Vou = [VyAL+JV,BT ] u—2Ric(Q),Vyu.
We infer the complex differential Bochner type formula
2072 01y, Vgu = Vg A2 ju — 2Ric}(2).,Vgu. (13.7)

More in general for all v € C*° (X, C) this writes as (13.4). O

Notice that for bi-degree reasons the identity (8.2) decomposes as

2a;§;f;a%xvl,vgu + 2aTX 201, Vou = Vg AL u+ Vg A8 ju

— 201,V Vu —2Rich(Q),Vyu.

Then we can obtain (13.7) from (13.3) and vice versa. We observe also that the
complex Bochner identities (13.3), (13.4) write in the K&hler-Ricci-Soliton case
as

20,72 0

Tx,7 Tx,s

Vou= Vg AL u, (13.8)

28TX J8TX ngwjﬁ = Vg J(A — 2]1) (139)

for all u € C*°(X,R) and v € C*(X, C). Obv10usly the identity (13.9) still
hold in the more general case Ric;(£2) = w. We observe now an other integration
by parts formula.

Let £ € C* (X, Tx), A€ C™® (X, Ty ;@ TX“]) and observe that the com-
parison between Riemannian and hermitian norms of T'x-valued 1-forms (see
the appendix in [Pal2]) implies

1

/X (Ore,64),0 = 1 /X (D, & A), + (4,31, ,€),] 0
= 5[ [enna) + (iiag) Jo
= /<g 30" A >gQ.

Using this and multiplying both sides of (13.9) by V,, ;U we obtain the identity

2/ |5ijjvgﬂ|jfz:/ <vgyJ(Ang2n)v,vgﬁ> Q, (13.10)
X X g

in the case Ric;(2) = w. We consider now the J-anti-linear component of the
complex Hessian map;

HOY O (X, Tl — O®(X,AY'T§ 0 Tx )
u —> ETXng,Ju'
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We observe that H}(X,C) = 0 in the case of Fano manifolds and we remind
the following well known fact

Lemma 10 Let (X, J,g) be a compact connected Kdihler manifold such that
H}(X,C)=0. Then the map

KerHy), — HOX,Tx)

u — Vg4 gu,
is an isomorphism of complex vector spaces.

Proof We observe first the injectivity. Using the complex decomposition (13.2)
we infer the formula

d(VgJuﬂg) = anJ(ufﬂ),

which in the case V4 ju = 0 implies Imu = 0 and thus Reu = 0. In order
to show the surjectivity we consider an arbitrary & € HO(X, Tx,j). Then the
identity (13.11) below implies

9s("w) = 0.

By Hodge decomposition hold the identity Hg’l(X ,C) = 0. We deduce the
existence of a unique function v € CF (X, C)g such that

i0ju = f},’oﬁw:if‘lj’oﬁg.

Thus § = V4 ju thanks to the complex decomposition (13.2). O

Lemma 11 Let (X,J) be a complex manifold and let w € C°°(X,A1J’1T)*(),
€€ C®(X,Ty"). Then hold the identity

05(§-~w) = 010 Ew — E-0 . (13.11)

Proof Let 7,1 € C®(X,Ty") and observe the identities (see [Pal])
9w ) = nw(§ p) = pw§n) —w& M aul),

EJW(TL&M) = 77~W(57M)+N~W(71a5)
— w(n &) w) +wlln u] &) —w(E,u" )

= 0y(&w)(np) —w (5@0‘,6 (), u) +tw (3@1&0 &(n), 77)
= 0s(Ew)(np) —w (@;gf (n),u) —w (nﬁTwaE (u))
= [0s(6w) *ET;,OJSW} (1, 1),
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which implies the required identity. O

On the other hand the identities (13.9) and (13.10) show that in the case
Ric;(€2) = w hold the identity

Ker(A% ; — 2T) = Ker H,'},. (13.12)

We infer the following well known result due to Futaki [Fut]. (See also [Gau]
and the sub-section 21.2 in appendix B for a more more complete statement.)

Corollary 1 Let (X,.J) be a Fano manifold and let g be a J-invariant Kdhler
metric such that w := gJ € 2mey (X, [J]). Let also Q > 0 be the unique smooth
volume form with[, Q@ =1 such that Ric;(Q) = w. Then the map

Ker(A, —2I) — H°(X,Tx,,)

u — Vg su,

1s well defined and it represents an isomorphism of complex vector spaces. The
first eigenvalue Al(AgJ) of the operator AgJ satisfies the estimate Al(AgJ) >
2, with equality in the case HY(X,Tx ;) # 0. Moreover if we set Kill, :=
Lie(Isomg) and

Kerg(AJ, —2I) := Ker(Ay, —2I) N C& (X, R)o,

then the map
IV, : Kerg (A, —2I) — Killy, (13.13)

1s well defined and it represents an isomorphism of real vector spaces.

Proof We only need to show the statement concerning the map (13.13). Let
¢ € Kill, and let (¢¢)ter C Isomg be the corresponding 1-parameter sub-group.
The Kéhler condition VyJ = 0 implies Ay w = 0 and thus Ay 4(pfw) = 0.
Time deriving the latter at ¢ = 0 we infer

AggLew =0, (13.14)
But Lew = d(§—w) and (13.14) rewrites as d*sd({—w) = 0. We infer
0 = Lew=gLeJ = 2w5TX1J§,
and thus

Kill, = {¢{€H%X,Tx,)|Lew =0}
= {{e H'X,Tx, ) | d(¢~w) =0}
= {(e H'(X,Txs) | 3uec CF(X,R)o: {~w = du},
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thanks to the fact that H}(X,R) = 0. But the latter identity rewrites as
Kill, = {¢(¢€H°(X,Tx,y)|3ueCT(X,R):&=JVqu},

which shows that the map (13.13) is well defined thanks to the first statement of
corollary 1. The surjectivity of the map (13.13) follows from the identity (13.9)
applied to the function v := —iu, with u € CF (X, R)o such that JV u € Kill,,.
The injectivity of the map (13.13) is obvious. O

Using the variational characterization of the first eigenvalue we observe;
Q —
S x Ay juusl

Tl e |UECBO(X,@)0\{0}}
v

)\1(AS;7J) = 1nf{

N

210,ul> Q
inf{w |ue CF(X,R)o \{0}}
b's

ALuuf)
X

= M(AY),

thanks to the identity 2 |8Ju|i = |Vgu\§. We deduce that in the set-up of
corollary 1 hold the estimate

A (AD) > 2. (13.15)

14 Symmetric variations of Kahler structures

We show a few fundamental facts about the space of symmetric variations of
Kahler structures IKWQJ given by the elements v € C'* (X , S]%T)*() such that
there exists a smooth family (J;, g:); C KS with (Jo,g0) = (J,9), go = v and
Jo = (Jy)L. One can observe (see [Pal3]) that KV C D; with

D] = {v e % (X, 53T%) | 94, ,(05)}° = 0.9r, ()3 =0}, (141)

where (v;)b’o and (v;)?,’l denote respectively the J-linear and J-anti-linear parts

of the endomorphism v;. We remind here some lines of this basic fact. We define

2V, 0, = Vy—iVge
ovhl = V4V
gid T gt 1Vg,Je

Let v/, and v/} be respectively the J-invariant and J-anti-invariant parts of v
and set for notation simplicity

A= @)Y= W),
AT = @)y =



The identity A” = —J.Jy (see [Pal3]) implies directly wo = v';J = wA’. We infer
0 = dig=dW,J).

The fact that the (1,1)-form v/;J is real implies that the identity d(v/;J) = 0

is equivalent to the identity 0;(v’;J) = 0. In its turn this is equivalent to the

identity 07, A’ = 0. We observe indeed that for all &, 7, u € C*(X,Tx ®g C)
hold the equalities

Ap(wA)E ' 1) = Vo JwANE ") =V @A (0 € i)
+ Vs wA) W€ )
= w ({V;Z?,JA/@/, ') - V;Z?,JA/(U/@/)} a,U'N)
- (T AW
= w([viSa€ ) - ViSO )
= w(of, A€ ) u").
In order to continue the study of the space ]DgJ we need to show a few general and
fundamental facts. We start with the following weighted complex Weitzenbock

type formula.

Lemma 12 Let (X, J,g) be a Kdhler manifold, let Q > 0 be a smooth volume
form and let A € C> (X, 5 _;® Tx,s). Then hold the identity

A%’;QJA = VioVILA— Ry * A+ ARic)(Q)., (14.2)

Proof We observe that for bi-degree reasons hold the identities

Tx,s Tx,s

= =% 1« -
Ag),;q]A = aTX,J8 e A+ 56 9. 8TX,,,A

= Ory, Vil

1, —
oA+ 5V Or A

Tx,g

= ETX)JVZQA =+ V;QETX)JA.

Let

—

VOLAE ) = VILA®,E).
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Then

20T TA = YV Vit A+ IV, V0 A

ro 0,1 fo 0,1
+ 2V eV A =2V RV A
We fix an arbitrary point p and we choose an arbitrary vector field & such that

Vg&(p) = 0. Let (ex)r be a g-orthonormal local frame such that Vger(p) = 0.
We observe the local expression

VioVOL A€ = =V, Vo Aler, &) + VoL AE, Vyf).
At the point p hold the identities

2V VO Aler, ) = 2V, ng,A(f,ek)}

Ve VgeA e+ Ve, Vg eA-eg,
and thus

VIOV LA & = Ve, VoeA-er— IV Vg ieA- ey

+ Vg eA-Vof+JVy3eA-Vyf.
We obtain the identity at the point p,

QAT TTAE = —VeVge Aver+ Ve (A-Vyf)
— IV seVgen A-en+ Vg e (A-V,yf)
+ 2VieV)LA ¢
+ VgeVgeA-en+JIVye, Vg ieA-ep

— VaeA-Vyf — IV, cA-V,f.

We remind that for any A € C* (X, End(Tx)) and &, € C*°(X,Tx) hold the
general formula

vg,évgmA - ngvg’fA = [Rg(§7 77)» A] + ng[ém]A' (14-3)
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Using (14.3) and the fact that in our case [ex, ] (p) = [ex, J€] (p) = 0 we obtain

2ATTTAE = Rylen, A ex — ARy(er, &) - e
+ J[Rgler, JE)A e — ARgy(er, JE) - ex]
+ VOV LA E+ AV f + JAV, 5eV, f
= —(RgxA)-&+ ARic*(g) - €
— J(Ry*A)-JE+ JARic*(g) - J€
+ 2VOVOL AL+ ADS Vof €

= 2 [v;ﬂ VOLA— Ry« A+ A Ricf‘,(Q)w} €,

thanks to (12.4). O
Multiplying both sides of (14.2) by A and integrating by parts we infer

/<A¥;{fg"A,A> QO = / [<v_2;§A,V9A> —s—(ARicL*,(Q)w—Rg*A,A)g} Q.
X g X g9

Using the fact that <V;:3Af}, V2:1JA1§>g = 0 we obtain the integral identity

Q,—J s sk
/X <ATX79 A,A>g9 - /X [|v§7§A|§ + (ARICH(Q)w — Ry * A, A>g} Q. (14.4)
We observe also the following corollary.

Corollary 2 Let (X, J,g) be a Kdhler manifold, let Q > 0 be a smooth volume
form and let A € C> (X, Ty ;@ Tx,s). Then hold the identities

LIA=207"T A+ divy V se(JA) — 24 RicH (D)., (14.5)

divi Vg se(JA) = Ric* (9)A + ARic*(g) — (JVf)~(JV4A). (14.6)

Proof It is obvious that the identity (14.2) rewrites as (14.5). In order to
show (14.6) let (nx)7_, be a local complex frame of T’x,; in a neighborhood of a
point p with V,ni(p) = 0 such that the real frame (¢,)?%, e, =m, l=1,...,n
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and e 4+ = Jnk, kK =1,...,n is g-orthonormal. Then at the point p hold the
equalities

[~

n

divy Vg je(JA}) = Z Ve Ve (JAT)
1

~

[ngk Vg,Jnk (JAIJ/) - ngJm- vg,nk (JAZ)}

M= 10

[Rg(mw Jnk)’ JA{” )

B
I
—

thanks to the general formula (14.3) and thanks to the fact that [, Jnk] (p) = 0.
Using the J-linear and J-anti-linear properties of the tensors involved in the
previous equality we obtain

NE

divy V. se(JAT) = [T Ry (i, i) A7 + A7 TRg (s Tk )]

E
Il

1
= Ric"(g)A + A Ric*(g).

Notice indeed the identities

2n

2RiC*(g) = ZJRQ(GZ, Jel)

=1

n

= Z [JRg(nk, Jnk) — JRg(Jnkvnk)]
k=1

n

= 2 TR (nw, Jnk).
k=1

We conclude the required formula (14.6). O

We define now the vector spaces

Hyo (Txs) = KerAp ' no= (X, T, ©Tx),
Hyl (Tx)gy = {AEHTL(Txy)| A= AT},

Lemma 13 Let (X, J) be a Fano manifold, let g be a J-invariant Kahler metric
with symplectic form w := gJ € 2me1 (X, [J]) and let Q > 0 be the unique smooth
volume form with [ Q@ =1 such that w = Ric;(Q). Then hold the identity

ngglz (Tx,7) = HS:%; (T'x,7) g -
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Proof We consider the decomposition A = Ag,, + A.s, where A, and A, are
respectively the g-symmetric and g-anti-symmetric parts of A. We observe the
symmetries

Rg*xAm = (Rg* Asm)g,

Rg * Aps = _(Rg * Aas)§~
The fact that A € C* (X, TS 4 ® TX,J) implies Agm, Aas € C° (X, 5 _;® TXJ)
and thus

T
vyl o = (vreydla
g g,J*sm g g,J < sm g’

T
#0r0,1 _ +a 0,1
VQQVQ’JAaS = — (vggvg’]Aas)g ’
Then the identity (14.2) implies the equalities

T
(af/ Asm)g — AT Ay = [Ric) (), A (14.7)

T
(A‘;;;QJA%)Q + AT Ay = [Aus, RiCH (2] (14.8)

We deduce that in the case Ric;(2) = Aw, with A = 1,0, the condition
A e ’ngg (T'x,s) is equivalent to the conditions Agm, Aas € 7{2:51) (Tx,s). We
focus now on the Fano case A = 1. We remind the identity R, * Aas = 0. (See
(20.9) in the appendix.) Thus if A € ’HO’}Z (Tx.7) and Ricy(2) = w then the

g,
integral formula (14.4) reduces to
0 = /X (199 Aucl? + | Ausl2] €

which shows A,s = 0 and thus the required conclusion of the lemma. O

We obtain also the following statement (the case ¢; < 0 has been proved in
[D-W-W2]).

Lemma 14 Let (X, J,g) be a compact non Ricci flat Kahler-Einstein manifold.
Then hold the identity

7‘[2’1 (TX”]) = 7‘[2’1 (Txv‘])sm .

Proof Using the identities (14.7) and (14.8) with Q@ = CdV, we deduce that
in the Kahler-Einstein case Ric(g) = Ag, with A = £1,0, the condition A €
7—[2’1 (T'x,7) is equivalent to the conditions Agm, Aas € ’Hg’l (Tx,7)- On the
other hand the identities (14.5) and (14.6) imply in the case Q = CdVj the
formula

LyA =205 A+ [Ric*(g), A, (14.9)
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for any A € C* (X, T ®TX7J). The fact that R4 * Ass = 0 implies the

formula
ANgAas = 2077 Ags + [Ric™(g), Aus).

We conclude that in the Kahler-Einstein case Ric(g) = Ag, with A = 1,0, any
Ae ’Hg’l (Tx,r) satisfies VyAu,s = 0. Then the formula (14.6) with Q = CdV
implies

0=divg Vg je(JAas) = Ric™(g)Aas + Aas Ric™(g) = 2AAys.

We deduce A,s = 0 in the case A = +1. This shows the required conclusion. [J
We denote by

Al =Ker(A7, —2I) C CF(X,C)o,

9,
and by

1L
]

A = [Ker(A?, —2D)] " € OF (X, ©)o,

its L}-orthogonal inside C&P (X, C)o. We obtain as corollary of lemma (13) the
following fundamental fact.

Corollary 3 (Decomposition of the variation of the complex structure)
Let (X,J) be a Fano manifold, let g be a J-invariant Kihler metric with
symplectic form w = gJ € 2mwcy1(X,[J]) and let Q@ > 0 be the unique smooth

volume form with [ Q =1 such that w = Ric;(2). Then for all v € D, there

exists a unique ¢ € Ag’f and a unique A € Hg:é (T'x,s) such that

(U;)Oj’l = ETX,JV!LJJ—F A.
Proof We observe that the identity
a 10,1
aTX,J (vg)J = 0,

combined with the Q2-Hodge isomorphism

ngsl) (TX“]) ~ HO’I(X, TX,J)

{B € O®(X,A5' Ty ®¢ Tx,5) | Ory, B = 0}
{Or, € | € € C=(X,Tx)} ’

implies the decomposition
%10,1 =
(vg)J = aTX,Jg—i_A?

with & € C°(X,Tx) and unique A € ’HS:}Z (Tx,s). Then the fact that the

*

g)g’l is g-symmetric combined with lemma 13 implies that

endomorphism (v
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ETX’Jf is also g-symmetric. Then formula (13.11) implies that for all n,u €
C>=(X,Ty") holds the identity

5](5(1],0_'00)(777 M) = w (ETX,Jg -1, :U') +w (UagTX,,Jf . M)
= g (JOry, & n 1) + 9 (In, 01y ,€ - 1)
= g({<3TX,J£)§75TX,J£} 'JTML)

= 0.

Then the argument showing the surjectivity of the map in lemma 10 in the
section 13 implies the existence of a function ¥ € C (X, C), such that

¢ = V,.;V. This combined with the identity (13.12) implies the existence and

uniqueness of ¥ € A?” f such that

5TX.J§ = ETX,JV.%J@'
We infer the required conclusion. O

We show now the inclusion (1.22). Time deriving the condition w; := g¢J; €
2mcy we infer {wo}, = 0. Then (1.22) follows from the complex decomposition
identity

’U; = g lgo=wtdy - JJo = (U’J); + (vg);
15 The decomposition of the space IF, o in the
soliton case

Lemma 15 Let (X, g,Q) be a compact shrinking Ricci soliton. Then the linear
map

Tya:CF(X,R)o @ [Ker Vi NC®(X,5°Tx)] — TFyq

(0,0) — (Vodp+0,(p—AJp)Q),
s an isomorphism of vector spaces.

Proof STEP I. We observe first that in the compact shrinking Ricci soliton
case the first eigenvalue )\1(A§;) of A? satisfies the inequality )q(ASg)) > 1.
Indeed multiplying both sides of the identity (8.2) with V,u and integrating we
infer

/X (VyAZu, Vou) Q= /X (A0, T gu), + Ricy(Q)(Vu, Vyu)|

/X [|V§uyj + Ricy ()(V g, vgu)} Q.
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Let now u € C&(X,R)o be an eigen-function corresponding to Ay (Af) > 0. By
definition u # 0. Thus by the previous integral identity we deduce

M (AD) / V,uf’ 0 / (V4 A2, Vu) O
X X

/X [[V2ul2 + [9,ul2] @

2
/X [Vgul, >0,

V

which implies the required estimate.
STEP II. Multiplying both sides of the the identity (8.2) with g we obtain

Q, _ AQ -
dAju = Agjdu+ du - Ricy(Q). (15.1)
Let now (v,V) := T, o(p,0) and observe the equalities
Vitv = VioVyde = Aldp = d(Ale — o).

The last one follows from (15.1). We infer that the linear map T, o is well
defined. The fact that in the soliton case hg o = 0 the differential operator
A? — T is invertible over C& (X, IR)o implies the injectivity of the map T o.

In order to show the surjectivity of the map Ty q let (v, V) € F; o and define
the function

e = (I-A}VS € CF (X, R)o.
Then the identity
ViiVedp = d(AJe — o),
implies that the tensor ¢ := v — V dy satisfies V20 = 0. We deduce the
orthogonal decomposition with respect to the scalar product (1.1)
v=Vydp+0, (15.2)
with V720 = 0. We deduce the required surjectivity statement.

We need to introduce a few notations. From now on we assume H(X,R) =
0 (this is the case of any Fano manifold) and we observe that the first projection
map
p1:Fgo— 350 := {v € C™(X,STx) | dV v = 0} ,

is an isomorphism. Over a compact Kéhler manifold we define the real vector
spaces

$/o = $,0nD],
$70(0) = $,0NnD,,
$gJ7Q [O] = $g7Q N I])57[0},
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and

EY, = {weAds|A2,(AT, - 2My = AT, (A7, — 2Dy}

With the notations introduced so far we can state the following decomposition
result.

Lemma 16 Let (J,g) be a Kdhler-Ricci-Soliton and let Q > 0 be the unique
smooth volume form such that gJ = Ric;(Q) and [, Q = 1. Then the linear
map

CF (X, R) @ ES; & Hyq (Txs) — $;(0)

(o, 9, A) — v,

(0)5° = 0%, Vlo+1),
(U;‘)?fl = 5TX.JVQJ(QO + @) + A,

with T € CF(X,R)g the unique solution of the equation
—A% T = (A7, - 21)y, (15.3)
18 an isomorphism of real vector spaces. In particular the linear map

E?, & Hg;; (Tx,;) — 8 o10]
(W, A) — v,

W5 = Or,Veuslp+0)+ A4,
with ¢ € CF (X, R)o the unique solution of the equation
AZ yp = (A7, = 20), (15.4)
1s also an isomorphism of real vector spaces.

Proof Let first v € $, o and observe that the decomposition formula (15.2)
rewrites as

* _ g
Vg = 6TX,J

Vo + 0y, Vg + 07

This implies that v € ID_‘q] if and only if 6 € ]Dg, and also v € ]DgJ)0 if and only if
0 € Dy ,.
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Let now v € $;Q (0). Then the decomposition of the variation of the complex
structure in corollary 3 implies the existence of unique 7 € CF(X,R)o, ¢ €

A?j and A € 7‘[2:51) (T’x,s) such that

* __ 09
09 - aTX,J

Vo7 + 01y Vgt + A (15.5)

For bi-degree reasons the condition V260 = 0 is equivalent to the identity

0 = 2075° 0% Vg7 +207" 01,V 0.

Tx,s
The latter is equivalent to the equation
0 = V|2 +(@BF 2Dy,

thanks to the complex Bochner identities (13.8) and (13.9). We remind that if
u € CF(X,R) satisfies V4 yu = 0 then u = 0. (See the proof of the injectivity
statement in lemma 10 in the section 13.) We conclude that the condition
V320 = 0 is equivalent to the equation (15.3) via the decomposition (15.5) of 6.
Then the required decomposition statement concerning the space SiQ(O)
follows from the fact that the condition 7 real valued is equivalent to the equation
defining ¢ € Eg{ s- In order to see this we show first the commutation identity

Q po
[Ag,Bng] =0. (15.6)

Indeed using an arbitrary g-orthonormal local frame (ex)r we obtain

AJBS u = AT [g(Vgu, IV, f))
= g(AYVgu, IV f) —29(Viu- e, JVLf - ex) + g(Vgu, JATV, f)

= g(AVgu+Vgu, JVyf) —2Trg (VouJVf)
thanks to formula (8.2) applied to f and thanks to the fact that (A —2I)f = 0.
Moreover the endomorphism J Vg f is g-anti-symmetric since in the soliton case
[J, V;f] = 0. We deduce
AYBS ju = g(VyAfu, JV,f) = By ;Afu,
thanks to formula (8.2) applied to u. We infer the identity (15.6) which implies
(a2, A7, ] =2i [BS,.a2) =0. (15.7)

Multiplying both sides of (15.3) with A ; we obtain

- (A;)JA?,J) T =Ag (A, - 2D)¢. (15.8)
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The invertible operator
AD AL CF(X,C)y — CF(X,C)o,

is real thanks to (15.7). We deduce that the condition 7 real valued is equivalent
to the left hand side of (15.8) being real valued, thus equivalent to the equation
defining ¢ € IEg2 g

We observe finally that a variation v € $[0] C $; 4(0) corresponds to
p = —, i.e. to (p,1)) solution of the equation (15.4). O

Remark 1. If we write ¢ = 11 + 112, with 91,92 € CF(X,R)o, then (15.3)
is equivalent to the system

—Ag’]’ = (AS; — 21]:)’1[)1 + BgJ’LZJQ,
(15.9)
—B},m = (A} - 20)y — B 4.

Moreover separating real and imaginary parts in the equation defining ¢ € IEEJ{ J
and using the commutation identity (15.6) we obtain

Y, = {v e Ay | [ARAT —21) — (B )% 2 = 2AT — DB v |
(15.10)
Using (15.10) and the complex Bochner formula (13.9) we obtain also the iden-
tity

B2, = {v € Ay | - div? 0", O, Ytz = (AT ~ B un }.
Remark 2. We observe that the linear map
ALy AT — AT (15.11)

is well defined and it represents an isomorphism of complex vector spaces. In
fact this follows from the identity

/qu /AgJqu

for all v € Ag’ ;- Thus the linear map
A2, =20 ASy — AT (15.12)

is also well defined and represents an isomorphisms of complex vector spaces.
The surjectivity of the latter follows from the finiteness theorem for elliptic
operators. By definition of E_f;’ s we deduce the existence of the isomorphism of
real vector spaces
Q Q Q Q,1
Ay (A, =20 ES, — AN CF(X,R)p.
We notice also the inclusion

Apr NCF (X R 2 (A7, —2D)(AT, —2)0F (X, R)o.
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16 The geometric meaning of the space IF‘;,Q 0]

We define the subspaces

F)o0) = {(,V)eFyalves]q0)},

F o] = {(v,V)€eF alves$) q0]}.

In the previous section we gave a parametrization of the space SB‘;,Q (0), and

thus of IFg{Q (0), which is fundamental for the computation of a general second
variation formula for the W functional at a Kéhler-Ricci soliton point. In this
section we give a simpler parametrization of the sub-space IF;_’Q [0] and a useful
geometric interpretation of it. We show first a quite general variation formula
for the Ricci-Chern form.

Lemma 17 Let (g, Ji): C KS, (§4): C V1 be two smooth families such that
Ji = (Jt)g;. Then hold the first variation formula

d . .
22 Ricy, () = —~d (gtvgft J, + 2d‘jt(22‘> . (16.1)

Proof In the case of a fixed volume form € > 0 we have the variation formula
(see [Pal6])

d L
22 Rie () = —d(gtvg?Jt).

For an arbitrary family (£2;); C V; we fix an arbitrary time 7 and we time derive

at t = 7 the decomposition
. . . Qy
Ricy, (%) = Ricy, (Q2,) — ddj, log o

We obtain the required variation formula. O

We show now that for any point (g,2) € S,, hold the inclusion (1.11). Indeed
for any smooth curve (g¢, ) C Sw, with (go, Q0) = (g,) we have ¢gf = —J;J;
and thus

0 = 2% Ricy, (@) = —d {(V;?tg',’f + VthI> —\w} :

thanks to the variation formula (16.1). Then the inclusion (1.11) follows from
(1.10).
We can provide at this point the geometric interpretation of the sub-space
F/,[0].
9,2

Lemma 18 For any point (g,2) € S, hold the identities (1.14) and (1.15).
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Proof We remind that by the orthogonal decomposition in corollary 3 any
element v € ]Dg (0] decomposes as

U; - 5TX1JVQ,JEU + A’U?

with unique ¢, € A j‘ and A, € HO L (T'x,s). Moreover the weighted complex
Bochner identity ( 13, 9) implies the equahty

1 -
vy + VoV = 3V (A, —2D)y, + 2VQ} (16.2)

for any (v, V) € ng{[O] x Ty,. Thus

Flal0)={(0,V) €D g x Ty, | (A7, - 2Mw, = =2V} (163)

Let
Ry = Re[(A],—2D)y], (16.4)
I, = Im[(A7,—20)¢], (16.5)

(for any z € € we write z = Rez + iIm z) and observe that (16.2) implies the
identity

(Veovr +VyV5) ~w = %dfwv +d5 (Ry, +2Vy),
for any (v, V) € ngJ,[o] x Ty, . Thus
Tjo={(v,V) €D g x v, | Ry, = -2Vi}. (16.6)
We notice now the equalities
Tiga, .00 = {(Leg, L) [ €€ CF(X, Tx) 1 Lew = 0}
= {(Lsv,u9 Liv,u®) | ueCT(X,R)o}

_ {(QngTXV,Vgu,din(JVgu)Q) lue CF(X, IR)O} ,
indeed

(Liv,u9);, = JViu—Voul=2J0r, ,Vgu.
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We deduce that (v,V) € T[?%]w(g,ﬂ) if and only if for all u € CF(X,R)o hold

the equalities

0 = 2/ [<J5TX7JVgu,v;>g—din(JVgu)-V{{}Q
X

_ _2/X (Vg (350,05 + V%)) ©
- Q 9.2 % *
= 2/Xu~d1v {J (aT;ng —I—VgVQ)} Q.
If we assume (v,V) € T;)Q then
S0k " 1
Dy vy + VgV = =57Vl (16.7)

thanks to (16.2) and (16.6). Thus if (v,V) € T[.Jq_,??]w(gﬂ) NTY, then

0 = —/u-A?IwUQ,
X

for all w € CF(X,R)o, ie. A?Iwu = 0, which is equivalent to the condition
Iy, = 0. We infer

Lla

J J
Ty 0o NTha S Fyol0].

The reverse inclusion is obvious. We deduce the identity (1.14). Then the
identity (1.15) follows from the inclusion (1.11). O

17 The sign of the second variation of the W
functional at a Kahler-Ricci soliton point

Proposition 1 Let (X, J,g) be a compact Kihler-Ricci-Soliton and let Q > 0
be the unique smooth volume form such that gJ = Ric;(Q) and fX Q=1. Let
also (g¢, )em C M X Vy be a smooth curve with (go, ) = (g,8) and with
(90,) = (v,V) € ) o(0). Then with the notations of lemma 16 hold the
second variation formula

d2

ﬁ‘iw(gtagt) = VeDW(g,Q)(v,V;v,V)

= 5 (A7 -D(A7 - 2mp- (A7 - 2mp0

1
_ 5/ [(A?—]I)A?T-A?T—FngJImuJ-Ide—l-\A|§F}Q,
X
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where
Q Q
Pyy = (A, — 2]I)(A§,J — 20,
is a non-negative self-adjoint real elliptic operator with respect to the L3 -hermitian
product. In particular if (v, V) € IFiQ [0] then
2

@I W(g, %) = VaeDW(g9,Q)(v,V;0v,V)
t=0

1
*5/ [41(a5 ~D[* + Py Iy Im + A F | 0
X

Proof STEP I. Let (X,g,Q) be a compact shrinking Ricci soliton point and
let (g¢,Q¢)ter € M x V1 be a smooth curve with (go, ) = (g,$) and with
arbitrary speed (go, ) = (v,V) € Fy o. We know from lemma 7

2

EI_W(gt,Qt) = VaeDW(9,Q)(v,V;0v,V)
1

-5 /X [<£§lv,v>g —2(A7 -2V - V5| Q.

By the considerations in the beginning of section 10 we deduce that in the soliton
case hg o = 0 holds the identity

VieLdv + d(AJVG —2V) =0, (17.1)

for all (v,V) € IFy 0. Applying the operator V;2 to both sides of this identity
we infer

(Vio)2LYv + AP (AT — 2DV = 0. (17.2)

For any function ¢ € CF (X, R)o let (v,V) := T, a(p,0). Integrating by parts
and using the identity (17.2) we infer the equalities

VGDW(97 Q) (Uv V7 v, V)

1 ,

= —§/X[(vgﬂ)chv-<p+2(A§—21)(A§—H)¢.(H—A§)<p}Q
1

= fi/XA_?(A?fQ]I)(A?f]I)@-@Q

1
- §/X2(A§—2H)(A§—H)¢-(H—A§)¢Q

1

- /X(Ag — (A2 — I)p - (A? — 202

_ %/X(A_ff CI)(A2 - 2M)p- (A - 2M)p0.
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Remark 1. We can also compute the integral
Qo2 2
/X (LqVap: Vae), 2

in the previous expansion via the formula (9.3). Indeed

/}((cf;v;w,viwga A<v§(A§—2H)¢,v§¢>gQ

= /X<A§V9(A?—2H)%ng>gﬁ

= [ (T80 - 1(AF - 2. V),
X

thanks to the identity (8.2). We conclude integrating by parts
/X LGV, Vi), @ = /X AF(AY - 2D)(AF —T)p - o0

Remark 2. Weset ¢ := (A;)fQII)cp € CF(X,R)g. Then the previous variation
formula rewrites also as
2

ﬁ\ W(gt, ) = VeDW(g,Q)(v,V;v,V)
t=0

1 s
. 5/X[|vg<1>|f<1>}ﬂ>o.

the last inequality follows from the variational characterization of the first eigen-
value of Af},

2
Jx [Vgul, Q
Jx v
which satisfies the inequality )\1(A§2) > 1.

STEP II. Let (v,V) € F, . Using the L?-orthogonal decomposition (15.2)
in the proof of lemma 15, we expand the integral term

(A = inf{ |ue CF(X,R)o ~ {0}} ,

[0 = [ (€090 s 250,900, + (£39,d0 4 £50.6), ] 0
x X
‘We observe that

[t vae), 0 = [ (Te50.a0),0=0

¥ X

since V32 L0 = 0 thanks to the identity (17.1) applied to (6,0) € Fgq. On
the other hand formula (9.3) implies

/<£§V9d¢,0>99 = /(d(Af}—QII)@,V;“@)gQ:O.
X X
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We conclude the decomposition identity

/X <£§v, v>g Q

Then step I implies

/X [<£?V9d¢, Vodp), + <£§9,e>g} Q.

2

@_W(gt,ﬁt) = VaDW(g9,0)(v,V;v,V)
1
= 3 (A7 -DaF - M- (A7 20
1 Q
- 5] (ge0),0

On the other hand using the decomposition (15.5) of § and the decomposition
formula (12.7) we infer

Q
/X (£20,0) ©

/ <£§26%X S VT, a%x ngT> Q

X ? g g

+ / <L;ZETX,JV97JE7ETX”]VQ,JE+A>gQ
X

+ / (L3 A, 01y Vot +A) Q.
X

Using the identities (12.8), (12.9) and the property (12.5) we deduce

Q
/X (£20,60) 0

/ (0%, ,Vo(AT = 2D)7. 08, V,m) Q

X ’ ’ ’ g

+ / <5Tx,.1 ng,](A? — QH)@, ng,,/ Vg“]@ + A>g Q
X

+ /X [<T§?JL§;A, vgﬂ>g + (LA, A)g] Q.

By bi-degree reasons V;?A = 0, which means (gA,0) € Fyqo. We infer
V;”E?A = 0 thanks to the identity (17.1). Then the property (12.2) implies

IS LIA = 0, (17.3)

Tx,s
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by bi-degree reasons. Integrating by parts further and using the weighted com-
plex Bochner identities (13.8), (13.9) we obtain

/(ﬁ?@,@)gﬂ - /<vg(A — M), 07 0, VT) Q
X X g
+ / <V!J7J(A _Q]I)waaTx J8TXJ g,J@> Q
X g9

+ / (£34,4) O
X

1
= 7/ (Vg(A] —2I)7,Vy A7) Q
2 /x A g

+ %/X<Vg,J(A‘g’—2H)E,vg7Jm> Q

g
+ / (£34,4) Q.
X

Using the integration by parts formulas (20.4) and (20.3) in the subsection 20.2
of the appendix A, we deduce

Q
/X (£20,0) ©

/ AY —2M)r - AT ;70

+ 4/ AQ (Ag —2I)r - ASJTQ
+ / AY S (AF =20y - (AS ) — 2190
+ / A8 AL (A2 =20y - (AL, — 20)9Q

+ / (£34,4) Q.
X
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We observe now that the commutation identity (15.6) implies

1
/<£§9,9>99 = 4/(A“—2]1)AQJT A2 70
X X

1
+ 1/)((Ag —2]I)A T AQ 1 JTQ

1 Q Q TASQ oM\
+ Z/X(Ag — )AL 4 - (A, —20)y0

1

T /X (A2 —2DAT G- (A2, — 2M)p0

Q
+ /X <£g A, A>g Q.
Completing the square we obtain

/ (£36,0) i / (AF —2D)AJ ;7 - AT ;70
X X

1 e —
+ Z/X(Ag—zﬂ)Agﬂ-Ag{ﬂQ

1 -
+ 7 /X(Af; —2I)(AJ ; — 2 - (AL, — 2D)yQ2

1

+ 1/}(@3 —20)(AD, —20)¢ - (AL, — 20)y0

1 - @
+ 3 /X(A;2 — 20 - (A, — 20902

1 _
+ 5/X(A_E} —2I)¢ - (A, — 2D

+ / (L3A,4) Q.
X
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Using the equation (15.3) we infer

1 - P
/X (£50,0),Q = i /X(A;? — 20) (Agﬁﬂ + Agﬂ) : (Agﬂ - A;{Jr) Q

X

+ [ 1@, - mupo
{

v [ (B G20 - BT a5, - 2] 0

+ / (£34,4) @
X

- /X (A9 — mAZr - AZr + (A 7P+ (£04,4),| 0

i o

We observe now that the operator B;Z’ g is L3-anti-adjoint. This implies in
particular

/ AgT-BﬁJTQ = 0,

X

and

- 7/X {Bng-AgJT—BgJ@-AgJT} Q

i .
5/X v A2,BE 7~ G- AF,BY 7|0

i — _
) /X {A;z,ﬂ? - Agl,ﬂ/)} B;Z,JTQ

—~ /X (AT + B jib1) By ;74
thanks to the commutation identity (15.6). Thus

Q Q Q Q Q 2 Q

/X (£20,0), 0 = /X (A% ~DAGr- AZ7 + |BE 712 + (£54,4) | 0
- / (A + B jib1) By ;702
X

_ Q Q Q Q
= /X[(Ag ~DAPT- Afr +(£54,4) | 0

- 2 @9 -1 BY,0,
X
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thanks to the second equation in (15.9). Using again the second equation in
(15.9) we expand the term

—2/ (A‘; — ey - Bgﬂa 2/ (AT — )y - (A§2 — 2M)1py Q)
X X

- 2/ (AF —T)ipy - By ;119
X

/ [1(A2 = 2ma|” + AZws - (A7 — 20y ©

X
2 / o (A2 — T)B2 1,0
X

= [ AT 202 4 (B2 b v
X
thanks to the expression (15.10). We observe further that the formula
Py, = (A] 20+ (By,)?, (17.4)

hold thanks to the commutation identity (15.6). We conclude
Q Q Q Q Q Q
/X<£9 9’9>gQ - /X {(Ag —DAGT - AGT + Pyl - hs + <£9A’A>g} 2,

which implies the required formula for the variations (v, V) € F (0).
STEP III. We compute now the stability integral involving A. The trivial
identity

LIA = LA+ Vyf-V4A,
combined with the formula (14.9) implies

LIA = 207, ,07 A+ [Ric*(g), A] + Vg f~VyA,

since gTX“,A = 0. Integrating by parts we deduce

/(cffA,A>gQ = /[2<8TX“,6;"X,JA,A> +<ng—\VgA,A)g]Q
X X g

7*9 7*919 1 2
/X [2 (97, A, 8TX7JA>g +5Vaf. |A|g} 0

1 S,
5/XAgf|A|gQ

2
/ FlaPe,
X
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since E*Tg)ﬁ]A = 0 and (J,g) is a Kéhler-Ricci-Soliton. (This last identity has
been obtained by Hall-Murphy [Ha-Mu2] using a different integration by parts
method.)

We show now the second variation formula corresponding to the particular
case (v,V) € IFg{Q [0]. With this assumption hold the relation ¢ = —7. Thus
we rearrange the expression

1
B o= g [ (a8 -Daf -2 (A7 -2me0
1
— 5/}((A?—H)A?@~A?@Q
1
_ i/x[_4(A;2_H)A;2¢-¢+4(A;2_]1)¢.¢]Q

= —2/(A?—]I)2g0~g09
X

2

= 72/ (AT —T)p|" Q,
X

which implies the required formula in the particular case (v, V) € IF;Q [0].

Let A := A?J — 2T and observe that [A, A] = f2i[A§,B£‘?’J] = 0, thanks
to (15.6). Then the statement concerning the operator Py ; follows from the
elementary lemma below. O

Lemma 19 Let H := L3(X,C)g and A,B : D C H — H be closed densely
defined linear operators such that 0 < A= A*, 0 < B=B*,[A,B]=0. If A
and B are differential operators of same order with A elliptic then AB > 0. In
particular if [A, A] = 0 then AA > 0.

Proof Let Ey, (A) C H be the eigenspace of A corresponding to an eigen-
value Ay € R>o. Then the identity [A, B] = 0 implies that the restriction
B : E),(A) — E\,(A) is well defined and represents a non-negative self-
adjoint operator. We deduce by the spectral theorem in finite dimensions the
existence of an orthonormal basis (ex ;)ier, C E,(A) such that Bey; = ug i€k,
with pr; € Ryo. Moreover Aer; = Arer,;. We consider a strictly monotone
increasing parametrization (Ag)r. Then any uw € H writes as

T
k>01€l}
¢k, € C. In particular for u € C*°(X, C)o hold the expressions

Au = ZZ)\kck,lek,h

k>0 1€,

Bu = E E ke, 1Ck, 1€k, 15

k>01€ly,
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and

(ABu,u)q = (Bu,Au)q= Z Z Ak fbk,l |Ck,l|2 = 0.
k>01ely,

The inequality in the general case u € D follows from the density of the smoth
functions in the graph topology of A. In order to see that A > 0 we observe the
trivial equalities

0 < /Au-ﬂQ:/u-ﬂQ:/Aﬂ-uQ:/flv-@Q,
X X X X

with v := w. In order to show its self-adjointness we observe also the trivial

equalities
/Au-m = /f-faaz/Aa-uQ:/u-TvQ.
X X X X

We deduce the following corollary of proposition 1.
Corollary 4 In the setting of proposition 1 assume (v, V) € IFQ{Q [0] with A, =
0. Then
d2
2|,y
with equality if and only if (v, V) = (0,0).

W(g, ) < 0,

We notice indeed that the equality hold if and only if ¢ = 0.

17.1 The Kahler-Einstein case

In the Kéhler-Einstein case the complex operator Ag s reduces to the real op-
erator Af}. Let

Ag = KerR(Ag — 211) C COO(Xa ]R)Ov

and let A;- C C*(X,R)o be its L2-orthogonal with respect to the measure dV.
We observe the decomposition AS; 7 = Ag@iAy , which implies the decomposition

QL AL Al
Agy = Ay @iy,

and thus the identity IE?,J = A;. With the notations of lemma 16 let ® :=
(A; — 2D, and ¥ := (A, — 2I)p. Then the second variation formulas in
proposition 1 reduces to

2

ﬁpw(gt’gt) = VaDW(g,Q)(v,V;0,V)

1
= 2Vol,(X) /X[(Ag —DP- 0 — (A, — D)V - V]dV,
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in the case (v,V) € F;(0) and to

d2
E| W(gtaﬂt) = VG'DW(97Q)(Uv V;U, V)

2
= Vol / ‘A —lI)\I/| avy =20,
in the case (v, V) € Fy [0], with equality if and only if v} € H' (Tx ;).
Proof of step II in the Kahler-Einstein case.
The most difficult part in the proof of proposition 1 is the computation of

the stability integral
Q
/ <£g 0, 0>g Q,
b'e

in step II of the proof. In the Kéhler-Einstein case the argument is much more
simple. We include the details for readers convenience.

We remind first the isomorphism g~' : S3T% ~ End,(Tx). We have the
g-orthogonal spiting

End,(Tx) = E’ J Py E;'J,
E;J = Endg(Tx) nCoc*> (X, T)*(,J X TXJ) s
E;/’J = Endg<Tx) n COO (X, T;()iJ [029] TX”]) .
We observe that if @ € A{Tx then holds the identity o, = —Jaj, where
af = w 'a. We define also the vector bundle
AL = AVTE AN,
and we notice the isomorphism w™ A1 Lo~ E;, ;. Moreover the identity (3.4)
combined with the properties (12. 1) and (12 2) 1mphes that the maps
Ly :C™(X,E, ;) — C*(X,E, ), (17.5)
Ly :C™ (X, Ey ;) — C™(X,E] ), (17.6)

are well defined. We observe also that by (12.5) and (20.7) we deduce the
formula

wﬁ?az = A?a + 2Ry * a, (17.7)

for all @ € C*>°(X, Ab’%a)- Notice indeed that the endomorphism Jea, is g-anti-
symmetric thanks to the J-linearity of o). We deduce using (17.7) and the
identity Tr, o = Trg o,

Tr,, (A?a + 2R * a) = Trg (E;za:,) .
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This combined with the identity (3.10), which in our case rewrites as
Trr (Rg x ) = Trr [Ric™(g)ag],
implies that in the Einstein case hold the trace formula
Tr, (Aga+ 2R, * o) = (Ay — 2I) Ty, o (17.8)
We observe also the identity
<a’/3>g = <O‘:’ﬁ:z>g ) (17.9)
for all o, 5 € AIIIIR Indeed we consider the equalities
0.8, = {a5.5),
= Ten 0337
= T [o5;]
= TI‘IR [JO(ZJB:;}
= Trg[o}A]]
= <O‘Zn B:)>g N
We deduce by the identity (20.6) in the appendix and by the Stokes theorem

that over a compact Kahler manifold if a, 8 € C*(X, A},ﬁ%), da =df =0
satisfy {a}, =0, or {8}, = 0 then

2/X<a,B>g dVg:/XTrwaTrwﬂdVg. (17.10)

(Notice indeed the identity {(c, B)g = (o, ), foralla,p e AlJ%R) We decompose
now the endomorphism section ¢; = A, + A’} and we estimate the integral

[ iegeo,0 = [ (290,00

_ /X (g, Ay), + (L4547 | o

The last equality hold thanks to the identity (12.7). Let a := wA’; and assume
{a}, = 0. Using the identity (20.10) we obtain

Aga +2Rgxa = (Afig —2l)a = dV 2a - 2a,
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and thus {AJa + 2R, * a}d = 0. Then the identities (17.9), (17.7), (17.10) and
(17.8) imply
/X (L, A7, Af]>g av, = /X (Aga+ 2R, x a,a)  dV,

1
= §/X(Ag—2H)Trwa~Trwodeg>0,

since A\1(Ay) > 2 in the Kéhler-Einstein case. (Notice that the condition
Jx Try, 2dVy = 0 hold thanks to the assumption {a}, = 0.) In the set up

of lemma 16 we have a = i0;0 ;7 and
Al = Ory Ve + A,
with ¢ € Agl and A € Hg’l (T'x.s). Thus by the previous computation

1
/ (L A ALY dVy = */(AQ—QH)AQT-AgTdVg.
X g 2 /x

On the other hand formula (14.9) implies in the Kéhler-Einstein case
LLAG = 2Ap) A% =201 07 A,
since ng, , A, = 0. Integrating by parts we deduce
/ (L Al ALY dV, = 2/
X b'e

In the Kéhler-Einstein case the complex Bochner type formula (13.9) combined
with the equation (15.3) implies

a*g "
8TX,JAJ

2 ey = 2
vy =2 [ |7, 9re, V0] av,
g X g9

QE*T;JETX,Jng = Vg(Ag —2D)y = —VgAgT.
We obtain
1 1
/ (L AL AL AV, = 5/ Vo AgTl2dV, = 5/ AZr - AgTdV,
X X X

and thus the required formula

/X <£gﬁ,0>g av, = /X(Ag —DA,7 - Ay7rdV, > 0.

We notice also that the latter implies the statement of theorem 2. Indeed in
the equality case holds Ay7 = 0 since A\;(Ay) > 2. Then the equation (15.3)
implies ¢ = 0. The conclusion follows from the decomposition identity (15.5).

82



Remark 3 We consider the particular case of a smooth curve (g¢, %), C Su
with go Kéhler-Einstein metric. Time deriving twice the expression

n

W(ge, %) = 2/ log (“’) Q, — 2logn!,
« Q

t

2 ..
Qo — 2/ log <QO> Qo
X w"

2
QO)

we infer

d? .
W) = -2 [ |%
X

ﬁh:o
- —2/ ‘Qg
X

thanks to the Ké&hler-Einstein condition. Then a trivial change of variables
allows to deduce our previous second variation formula in the particular case
(90,2) € Fyp g, [0].

17.2 The case of variations in the direction T},

Proposition 2 Let (X, J,g) be a compact Kihler-Ricci-Soliton and let Q@ > 0
be the unique smooth volume form such that gJ = Ric;(Q) and fX Q=1. Let
also (g¢, U)em C M X Vy be a smooth curve with (go,20) = (g,$) and with
(90,) = (v,V) € ’]I‘g’ﬂ. Then with respect to the decomposition

’UZ = ETX,JVQ)JJ + A,

with unique ¥ € Agj and A € ’Hg’;z (T'x,s), hold the second variation formula

d2

ﬁ‘ W(gt,%) = VeDW(g,Q)(v,V;0,V)
t=0

1
”/X [P;?JRew.Rez/; +\A|5F} Q,

2

where
P_«?,J = (A?,J - Q]I)(A?,J —20),

is a non-negative self-adjoint real elliptic operator with respect to the L3 -hermitian
product. Moreover if (v, V) € ]F;’Q [0] then the previous formula writes as

d2
dt2| W(gtvgt) = VGDW(gaQ)(U7V;Ua V)
t=0
1 *
= _5/X [4|VQ|2 + Py Imy - Imep + A2 F| Q.
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Proof Step I. Reconsidering a computation in the poof of step II of the

proposition 1 we see that

/X <£§2v,v>g Q

Using the identity (12.9)
Q —

/X <£g v,v)g Q =

+

Using the identity (17.3),
complex Bochner identity

Q _
/X <£gv,v>gQ =

+

Using the integration by
appendix A we infer

/X <£§2v,v>g Q

J
for all v € ]1)97[0].

for all variations v € ]Dg,[o] holds the identity
= /X <[’§725TX,ng,JE7 ETX“]VL(],JE + A>g Q

+ / (L3 A, 01y Vot +A) Q.
X .
and the property (12.5) we deduce

[ Or 9085 = 205,51, 9,07+ 4),
X

/ Ka;i;“JLgA,vg,J@ +(LJA,A) ]Q
X ’ g g

integrating by parts further and using the weighted
(13.9) we obtain

/ <vg7J(Ag — 2T @,é;g?ﬁm,vg,‘]@ Q
X g

Q
/X (£24,4) @

1 7 -
> /X (Vs (A2 = 20) 3, ¥, (AT, - 211)1/)>g 0

Q
/X (£g4,4) Q.

parts formula (20.3) in the subsection 20.2 of the

1 -
= E/XAg,J(A;?—QJI)zp.(AgJ—zﬂWQ

1
+ Z/}(AgJ(Ag—2H)¢~(AgJ—2H)wQ

Q
+ /X (LA 4) Q (17.11)

STEP II We show first the variation formula in the case (v, V) € T [0]
since the proof is simpler. Using the expression (16.3) for the space IFQ{Q[O]
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inside the identity (17.11) we deduce the equalities

/(z:_i}v,v)gﬁ = —/(Ag—zﬂ)Re(A;{m)-V{;Q
X X
Q
4 /X (£24,4) ©
= 7/ (A —2I) (A1 + B o) - Vi3 Q
X

Q
+ /X (Ly4,4) Q.
Let write ¢ = 91 + 132, with 1; real valued functions. Then the condition in

the expression (16.3) rewrites as

(AR —2T) 4y + BE  4py = —2V5, (17.12)

(A —2T) ¢y — B 4y = 0. (17.13)
We use now the condition (17.12) in the formula
2

*Zﬁl W(gt, Q%) = —2VeDW(g,Q)(v,V;0v,V)
t=0

/X {(ﬁgv,@g —2(A? — 2TV - Vgg} Q
— 2 [ @9 -2 vi0
X

Q
+ /X <,Cg A,A>g Q.
Using again the condition (17.12), we expand the integral

-2 /X (AY — 2D - V3 = /X (AF = 2D)1 - |(AF - 21) Y1 + BY ;] @
_ /X U1 [(A2 = 2P, + B2, (A2 — 2M) 4] ©

2
= [ w[ag -2+ (B3))" v @
X
thanks to the identities (15.6) and (17.13). Using the formula (17.4), we infer
d2

a7, W) = VeDW(g. 9@, Viv,V)
1 Q Q
= - [Pg7J¢1.¢1+<£gA,A>g] Q.
X
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Using again the condition (17.12) and the commutation identity (15.6) we ex-
pand the integral

/4\1/5\29
X
= /X (A2 = 2myun |+ [ B j0s|* + 2(AT = 2D - BY 0] @

= /X (A% = 2121 - g1 — (B2 - o + 201 - BY (AT - 21455 |

thanks to the fact that the operator Bg%J is L}-anti-adjoint. Using again this
fact and the condition (17.13) we deduce

/ 201 - B ;(AY — 21102
X

/ 1 - (B 7)1
X

- / B§’,J Py - (Aif — 21202
X

[ [0 00— (87— 2w (67 - 2w 2] 0,
and thus
/ g = / {ng,zﬂ/h py — Py '%} Q.
X X

We infer the second variation formula

d2

@Ifow(gt,m) = VeDW(g,Q)(v,V;v, V)

1
”/X [4|V5|2 + P2y by +<£§A,A>g] Q.

2

The conclusion follows from the computation in the beginning of step III in the
proof of the proposition 1.

STEP III. We show now the second variation formula in the more general
case of variations (v,V) € ’]I‘;Q. We observe first that the general expression
of VZW(g,2) obtained at the end of the proof of lemma 7 implies that over a
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shrinking-Ricci-Soliton point holds the variation formula
2

—2— Q
dt2 \t:()W(gt’ t)

= _QVGDW(ng)(va;va)
Q
_ /X<£gv—Lv;%;+ng§g,u>gQ
- 2/ {(Af} — 2DV — div? (V20] + Vo V) } Vi Q
X
- /X [(£80,0), 227 — 21V - vg] ©
- 2/ <vg (Viow; +V,V3) 7U;> Q
X

g

- 2/ (Vi + VoVa , V,oVi) ©
X g

2
= /X [<L§v,v>g —2(AT -2V Vs —2 ’V;“v; + V, Vg J Q,
for arbitrary directions (v, V) € Taqxy,. Using now the fact that in the case
(v,V) € T hold the expressions Ry = —2V(5, (we use here the definitions

(16.4), (16.5)) and (16.7) we obtain
—2VGDW(Q, Q)(”: V7 v, V)
0 Lo 1 2
=/ (Lyv,v), — 3By 2Ry - Ry — o [Voly[y| 2

for all (v,V) € 'Jl‘g’Q. Thanks to the commutation identity (15.6) we can rewrite
the identity (17.11) as

/X [(£v,0), — (84, 4) | @

1 -
= 5 /X(A_gf —2)AJ j1p - (AL, — 21902
1 P
+ 7 /X(Afg2 —2)AY - (AT ; — 210,

Adding and subtracting 2¢ to the factor Ag ;4 and respectively 21 to the factor
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A‘; J%, we infer

/X [(£v,0), = (84, 4) | @

- ; /X (A2 —2D)(A2, — 2Dy - (AT, — 2P0
+ 1 [ (a8 -T2 (a7, - M
+ 3 [ (a8 —omy- 7, =200
+ %/X(A?—2]I)E~(A2J—2H)w9.

We deduce the equalities

—2VGDW(9, Q)(Uv V; v, V)
1 1
/X [(Ag = M)Ay — M) P+ S(AF =AMLy - Iy — o vgfw@] 0
Q
/X (£34,4) @

/X { [ngi, —iBg (AL = 21) [ — Iy - Iy + <£§’A,A>g} Q.

Using the expression

Iy = (A] —20) 4y — By i,

we find the formula

72VGDW(Q> Q)(Uv V7 v, V)
= [ [P - imgsan —om - @22 v-vo
- / [[(Ag — 2M)o|” + | B2y |* — 2(A = 21) ¢by - B, 4 | Q
X

+ /(L?A,A> Q.
X g

The fact that the operator fo ; is L}-anti-adjoint combined with the commu-
tation identity (15.6) implies that B (A — 2I) is also Lg-anti-adjoint. We
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deduce in particular the identity

/X By (AF =209 -4, = 0,
and thus the equality
—2VeDW(g, Q) (v,V;0,V)

= /)([P£J¢1'¢1+P§?J¢2'¢2}Q
b [ [BRAas -2 va - BT — 2] 0
X
- /[ )21 -1+ (Bg ) s - %]
X
- /X[| 2 oM)y|” +|BS |’ - 2(A0 211)%35}%]9

+ /X (L34,4) Q.

Using the fact that the operator Bf; is L-anti-adjoint and the commutation
identity (15.6) we can simplify in order to obtam the required variation formula.
O

18 Positivity of the metric G, over the space
T

Lemma 20 For any (g,) € S,, the restriction of the symmetric form G4 to
the vector space ’JT;}Q, with J 1= g 'w, is positive definite.

Proof Let (u,U),(v,V) € ’II‘g{Q. Using the expression (16.6) for the space
’I‘g‘]ﬂ we have

up = Ory,Vg P+ A,
Uy = Re[(A;{J—znyp
and
’U; = ETX,JVQ,J@-FB,
—-2V5 = Re| (A, —2D)y|,
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with unique ¢, 9 € Az’j and A, B € ’Hg:;) (T'x,7). We decompose now the term

Gga(u,U;v,V)

/X [<u,v>g U - V;;} Q

/ |:<8TX,JVQ:J @, ETX,.IV‘91J@> + <A7 B>g:| Q
X

g
1

. /X Re [ (A%, — 21| Re [ (AT, — 2] 0.

Integrating by parts and using the weighted complex Bochner formula (13.9) we
transform the integral

o= [ (0r,V0s @000, V0i9) 0

= / <7;1535Tx,ng,J¢a vg,JE> Q
X g

1

= 5 /X <V97J(A?J - 2]1)@ ,vg,J¢> Q.
g

Using the integration by parts formula (20.4) in the subsection 20.2 of the
appendix we deduce

1 _
n o= Z/X (A2 ,(A%, —2M)p - § + A7, (AT, = 2Mp- v] 0

1
= 1 /X [(A?,J —2Mp - AL ;9 + (A, —2D)p- A2J¢} Q.
Adding and subtracting 21 to the factor m and respectively 21 to the factor

Q .
Ay y, we infer

no= g[8 e T+ B, 2 ]
+ i/x (A2, - My (AT, = 2Dy + (AT, —Mp- (AL, - My | Q
= 3/ (@8 —me 7+ (af, —2mu] 0
+ i /X :(Ag,J—QlI)go (AT 2Dy +(A§7(,—2H)¢'(A3J—2H)z/)] Q.
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We deduce the general formula

G97Q(U7U;U;V)
- /X{; |:(A§€J72H)<P 4+ (A, — 2Dy .¢] +<A,B>g}ﬂ

¥ %/X Im [ (A2, - 2Mp| m | (AZ, — 21| @.

In particular

Goa(u,Usuw,U) = /X (a2, -2y -5 +14P7]

%/X{Im[(Ag{J—zﬂ)@”QQ > 0,

with equality if and only if ¢ =0 and A =0, i.e. (u,U) = (0,0), thanks to the
variational characterization of the first eigenvalue \; (Ag J) > 2 of the elliptic

_|_

operator Ag - O

Corollary 5 For any (g,92) € S,, hold the identity
Kerg (A] — 2I) = Kerg (A7, — 21I), (18.1)
with J = g~ w.

Proof Let u € CF(X,R)o and (¢;)ter C Symp”(X,w) the 1-parameter sub-
group generated by the symplectic vector field £ := (du)}, = —JVg u. We set
Ji = i, gt = pig, Q= ;) and we compute §o = L¢g and Qo = L€
The expression of the tangent space to the symplectic orbit [g, (2], in the proof
of lemma 18 implies

a6 = —QJETX)JVgu,
QS = —B;l"]u.

Then the weighted complex Bochner formula (13.9) implies

g;i(QJgé + V!JQ(*J = _2J5;Z?J5TX,JVQU + ngS

= —JVy(AY —2D)u+ VB ju+ V0

= —JV4(AF - 2D)u.
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We deduce that (go, ) € I o [0] if and only if (A — 2I)u = 0. On the other
hand the (strict) positivity of the metric G4 o over Tg{ﬂ D Ty, .(g,0) implies

1L
Tig,a, (9.2 N T[g,?l]w,(g,ﬂ) = 0
Then lemma 18 implies

1
Tig. 0.9, N T[g,%]w,(g,ﬂ) = Tiga),.(e.2"N F‘;,sz [0] = {0},

So if (go, Q) € IF;Q 0] then (go, Q) = (0,0). We infer the inclusion
KerR(Az2 —2I) C Kerg BE?,J’

and thus the required identity (18.1). O

18.1 Double splitting of the space T;Q

Let H*, with H® = L2, be a Sobolev space of sections over X. For any subset S
of smooth sections over X we denote with H*S its closure with respect to the
H*-topology. The pseudo-Riemannian metric Gy, is obviously continuous with
respect to the L2-topology. At the moment we are unable to say if the topology
induced by Gy o over L*T? , is equivalent with the L-topology. Nevertheless
we can show the following basic decomposition result

Corollary 6 For any (g,Q) € S,, holds the decomposition identity
LT = L*Tjgq), o) ©c LTy o[0],
with J := g~ w.
Proof We set
Al = Kerg(AJ — 2I),

and let A?ﬁ‘ C L3 (X,R)o be its L2-orthogonal with respect to the measure 2.
Then corollary 5 and its proof shows that the map

Q,
X: Ag,ﬁ NCT(X,R)o — Ty (0.9

p (2w ng,ng% (B?,J@) Q)’

is an isomorphism. We notice also that the expression of the metric G4 ob-
tained at the end of the proof of lemma 20 hold true for arbitrary functions ®
and . So we put (u,U) := x (¢) and & = ¥ = —2ip in this formula. Using
the fact that the operator Bg g is L3-anti-adjoint and the expression

Im[(A;{fﬂ)@} = —2(A? 2Dy,
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we infer

Gyou,U;u,U) = 2/ [|(A§ —2H)¢|2+2(A‘; —2)p w} y)
X

= 7ga(pp) = 0,

(with equality if and only if ¢ = 0). We remind now that the proof of the
weighted Bochner formula (13.9) shows the identity

—2div® 975" 9r, ,V, = AXAL-20)— (BY )%
Thus the operator
(5TX,JVQ)

is elliptic. This implies (see for example [Ebi]) that the image

*g,

Q . Q5*%¢.Q &
8TX”,Vg = —div 6TXJ8TX”,VQ,
Dry, Vo [HAX,R) | € 12,
is closed in the L2-topology. We infer that the map
Do, Ve AMENHA(X,R) — 01y, VY, [HQ(X, IR)] c 12,

is a topological isomorphism. We deduce that the extension in the sense of
distributions

XAJR NHA(X,R) —  L*Tgqp (g0

of the map x is also a topological isomorphism and a (v4.0, G4 q)-isometry. The
fact that the map

Q A0, L Q,L
A —20: AR NH(X,R) — AR,
is a topological isomorphism provides the estimate
2
walew) > 2 [ |@9-2m0
b'e
> 2(AF —2D) 7172 ol
Then the Lax-Milgram theorem implies that the map
Yo APR NHAXR) — [ASR 0HA(XR) |

is a topological isomorphism. (The sign x here denotes the topological dual).
We infer that the restricted map

Goo: LTy o — [LTea,wo]
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is also a topological isomorphism thanks to the fact that the extended map x
is a (74,0, Gg,0)-isometry. Applying the elementary lemma 21 below to the
spaces E := L? (X, SQT)*() ® L (X,R), and V := LQT[g’Q]w’(!LQ) we deduce the
G-orthogonal decomposition

2 2 2 2 2L
L (X,S TX) EBLQ (X, R)O = L T[Q’Q]w(g’g) @® L T[g,cf;l]w(g,Q)’
and thus
2mJ 2 2L 2mJ
LT, = [Ty g0 ® [L TE o0 L Tg,g}
L J
= LTy0), g0 ®L° [T[g,?z}w,(g,m n Tg,n} :
Then the conclusion follows from the identity (1.14). O

Lemma 21 Let E be a real Banach space, E* its topological dual and G :
ExFE — R be a topologically non degenerate bilinear form, i.e. G : E — E* is
an isomorphism. If there exists a closed subspace V- C E such that the restriction
G :V xV — R is also topologically non degenerate then E =V @ V+6,

Proof Let j: V——FE be the canonical inclusion and notice the trivial identity
Vit = {a€E*|a-v=0YveV}=Kerj*

By assumption for any element e € E there exists a unique v € V such that
j* (e=G) = j* (v=G). Thus (e — v)=G € V1. By definition the restriction
G : V+é — V4 provides an isomorphism. We conclude e — v € V46, O

We notice that the condition V NV1¢ = {0} is equivalent to Ker(G : V —
V*) = {0} but in general not sufficient to insure the surjectivity of G : V. — V*.

18.2 Triple splitting of the space Tig

By abuse of notations we will denote by Gy o the scalar product over AZ’JL cC™®
induced by the isomorphism

n AS;j_ D ,H(g):i(LZ (TX’J) — T;,Q
_ _ 1 o

(W, 4) — (9(0nc,Voub +A4) ,—3Re[(A7, —2Dw] Q).

Explicitly

Goalew) = 3 [ (A2, =2Dp T + (A2, 2w 3]0

DN =

/X Im [ (A2, - 211)4 Im [ (A2, - 211)14 Q.

N | =
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By abuse of notations also we will consider from now on A;z”ﬁ‘ C C*. We
introduce the vector space

Elo = {ueAQ | (A2, —2Mju € AT} MO (X]R)}

and we observe that the expression (16.3) for the space ¢, [0] shows that the
map 7 restricts to the isomorphism

n Bl g@Hy, (Txy) — FJolo].

The subspaces IE;Q[O] = nIE o and ’Hg o(Tx,y) C ]FJ o [0] (embedded via
the previous isomorphism) are G- orthogonal thanks to the expression of the
restriction of G over IF;Q [0] computed in the proof of lemma 20. We deduce
the G-orthogonal decomposition

Fyal0l = Ejo[0)@c Hyq (Tx.)-
Let now
(I)g O = (IEQ Q) mAS;j_,

and observe that the decomposition in corollary 6 implies
2 2mJ le 2
LTg0, 00 = [L Fg,sz[O]} NL*Tyq

= Folo)te n 2T,
and thus
Tig0), (0.0 = ]Fg,ﬂ [0] N Tg Q-
We deduce that the map 7 restricts to a G-isometry
1:050 — a9
Furthermore the decomposition in corollary 6 implies also the G-orthogonal
decomposition
H2AD S = H2O) g e HE] (18.2)
since 7 extends to an isomorphism
n : H2AY 0T OH o (Txy) — LT, (18.3)
Moreover the decomposition statement in corollary 6 implies the triple splitting
0,1
LQTQ Q= LQT[g,Q]ws(Q’Q) Ye] LzE;Q[O] ®a Hg,ﬂ (TX’J) . (18.4)

We observe now the following elementary lemma.
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Lemma 22 Let T : D C L? (X,C) — L*(X,C) be a closed densely defined
L3, -self-adjoint operator such that [T, T] = 0. Then

Ker(TT)NL*(X,R) = {Reu|u€KerT}.
Proof The assumption [T, T] = 0 implies that the restriction
T:KerT — Ker T,

is well defined. This combined with the fact that T is also L2-self-adjoint implies
that the restriction

T:Dn(KeeT): — (KerT)™,

is also well defined. The inclusion Ker(TT) 2 Ker T +Ker T is obvious. In order
to show the reverse inclusion let u € Ker(TT), i.e. Tu € KerT, and consider
the decomposition u = u; + uz with u; € KerT and uy € (KerT)*. Then
Tu € Ker T if and only if Tus € Ker T since Tu, € KerT. But Tus € Ker T if
and only if Tug = 0 since Tuy € (Ker T')*. We infer the reverse inclusion. Thus

Ker(TT) = {u+7|u,veKerT},

which implies the required conclusion. O

We remind that if (g,Q) € S, is a Kéhler-Ricci-Soliton with J := g~1w then
AY;—2L A, —21| = O,

which allows to apply the previous lemma to the Lg-self-adjoint operator ngf -
Thus

KerPgS?J NCF (X,R), = {Reu|ue Ag’J} =: ReAgJ.
The finiteness theorem for elliptic operators implies
Q 0o Q + oo Q, 1 oo
P2,CF (X, R), = (ReAgyJ) NCE (X,R)y 2 A% N Cg (X, R), -

The last inclusion is obvious. The inclusion Pgs? ;08 (X,R), C A?’fﬂC& (X,R),
is also obvious. We conclude

1
PCE (X,R) = AS7 NCF (X, R)y = (ReA$ ;) NCF (X, R),. (18.5)
Lemma 23 If (9,Q) € S, is a Kahler-Ricci-Soliton then holds the identity

J
(Dg,ﬂ

{w € A% | P2, Rey = o},

with J == g~ 'w.
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Proof We notice that for any ¢ € IE;Q and ¢ € (Dg’ﬂ holds the identity

0 = Ggo (w,w)z/X(A?,J—zﬂprem.

We infer
0lg = {z/) € A%} |Rey € [Agj nog (X, R)Or}
= {veady IRev eReA?,},
thanks to (18.5). O

19 Infinitesimal properties of the function H

We observe that lemma 5 implies; (g,2) € S, is a Kahler-Ricci-Soliton if and
only if H, o = 0. Furthermore the identity (4.18) rewrites as

2H, o = —(A?; —2D)F € ATy NCF (X, R),,
for all (¢,Q) € S,,. We show now the following fact.
Lemma 24 If (¢,Q) € S, is a Kahler-Ricci-Soliton then the linear map
DyoH :EJ 0] — AJ7 NCF (X, R),, (19.1)

with J := g~ 'w, is well defined and represents an isomorphism of real vector
spaces.

Proof The identity 2H o = 2H, o — W (g,{) combined with the basic varia-
tion formula (1.5) implies

2Dy oH (v, V) = (AJ -2V,

for all (v,V) € IFy o over a shrinking Ricci soliton point (g, 2). In our Kéhler-
Ricci soliton set up the latter rewrites as

2D, oH (v,V) = —%(AQ —2I)(AY ; — 2D)by, (19.2)

9

for all (v, V) € IF;Q [0]. The commutation identity
Q Q _

[Ag — 2T, A?, — 21| =0,

implies the inclusion

(AJ —2D)AY ; C AT, (19.3)
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and thus
(AT —2M)AS C ALy (19.4)

Then the identity (19.2) shows that the map (19.1) is well defined. We will
deduce that it is an isomorphism if we show that the map

A —21: AP NCF (X R), — Ay NCE (X, R),, (19.5)

is an isomorphism. Indeed this is the case. The injectivity of (19.5) follows from
the inclusion
CAYr € AY

g,

which holds thanks to the identity (18.1). This inclusion implies also
Q1 Q1
CAyR = (CAJR)" 2 Ay, (19.6)
and thus
Q, L Q, L oo
Ajr 20,7 NCT (X R), -
We use now the obvious fact that
Q AL QL
Ay =2l ARy — AR,
is an isomorphism. Thus for any f € Ai}” JL NCF (X,R), there exists a unique
NS A?E such that
(AT - 2D)u = f.

We decompose u = u1 + ug, with u; € A?’J and uy € Agj‘. Then the inclusions
(19.3) and (19.4) imply the L3-orthogonal decomposition

(AT —2D)uy + (AF — 2T)us = f.

We deduce u; € @A?’R. But ug € (DA?’EJ{‘ thanks to the inclusion (19.6). We

infer u; = 0 since u € A;z’ﬁ. Thus
u=1ug € Ag} NCy (X, R),-

We obtain the surjectivity of the map (19.5) and thus the required conclusion.
O

Lemma 25 If (9,9Q) € S, is a Kahler-Ricci-Soliton then hold the identity
Ker DgoH N'T) o = Tiyal 0 P Hog (Tx.1), (19.7)

with J == g~ 'w.
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Proof With the notations in the proof of lemma 18, the basic variation formula
(1.5) combined with the identities (16.6) and (16.7) implies that for all (v, V) €
’Jl’iQ over a Kéhler-Ricci-Soliton point (J, g, ) hold the equalities

1 1 *
2Dg,(lﬂ(U,V) = _5(A2_2H)R¢+§(LJVHI¢Q>Q

1 1
= —5(Ay = 2D Ry + 5By 1y

= Lne[ias - Tag, 7y |

1 _

= —3Re[P2Y]
1 Q

= 7§Pg,JRei/),

since PS?; is a real operator in our Kéhler-Ricci-Soliton case. Then lemma 23
implies

Ker Dy, oH N ’Jl“_;iQ ~ (l);iQ le. HS:% (Tx,1),

i.e. the required conclusion. O

Proof of the main theorem 1
Proof The inequality in the statement follows immediately from proposition
2. If equality holds then obviously A & ’H,gféz (T'x,7), and

/PgJRe¢-Re¢Q = 0.
X

Then the spectral theorem applied to the non-negative L3-self-adjoint real el-
liptic operator P;?; implies Py’; Ret) = 0. Thus the conclusion

(’U, V) S T[g,g]w(g,g) Da Hg:;l (TXJ)O = Ker Dg_rgﬂ N T;:?p

follows from lemma 23 and the identity (19.7). In order to show the inclusion
(1.21) we observe that if (g¢, ©2),cg C KRS, is a smooth curve with (go, o) =

¢,9Q) and with (go, Q) = (v, V) then holds the identity H, o = 0 and thus
g,
(v,V) € Ker Dy oH N'T} o = Tl (0.0 Dc Hog, (Tx.)

thanks to the identity (19.7). On the other side if we set W; := W (g, ;) then
W, = 0 and thus

o:woz/ A FQ,
X

thanks to proposition 2 and lemma 23. We conclude the required inclusion. [J

99



20 Appendix A

20.1 The first variation of Perelman’s V¥V functional

We give a short proof of Perelman’s first variation formula [Per] for the W
functional based on the identity (3.2). Let (g¢, ) € M X V; be a smooth
family and set f; := log %. Then

d d

£W(Qt79t) = 3 X[TYIR(Qt_lht) + 2f]

[ fmew (a4 b))+ T2
X
+ / [Trg, he + 2fi)

X

J,

+ / [Trgt ht + th] Qt-
X

Q

_ <gt, ht>gt + <gt, @ Rngt (Qt)> — 2Qt

gt

Using the variation formula (3.2) and integrating by parts we infer

/X <gt’dt Rlcgt(ﬂt)>g Q: /X [— §<9t,vg?pgt9t>gt +Atht:| Q

t

1 .
— | 12(v0,90.Dg.dt) . + (V08 V,, Q
/)([2< 9:9t: Dg, 1) g, <g t gft>gj t

_ 7/ QA% 1,0,
b'e
which implies Perelman’s first variation formula
d . -
W) = = [ [, - 20 - )] 2
X

= _/ |:<gt7ht>gt - 2Q:Etj| Qt7
X
since [ 0, = 0.

20.2 Basic complex identities

We provide a useful expression of the hermitian product (-,-), on T% ®gr C,
which is the sesquilinear extension of the dual of g. We observe first that for
any £ € Tx ®r C and any o € Ty, ®g C hold the elementary equalities

0 = &(anw™)=(a-Hw" —a A (E&-w™).
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We obtain the formula

(- Ew™ =na A (E~w) Aw" ™1, (20.1)

and thus
200- & =Ty, [a A (Ew)]. (20.2)
Using (20.2) we deduce that for all o, 8 € T% ®@r C hold the equalities
2(a,8), = 2a-F =T [an(Fw)],

where B; := ¢~ . Then the identity 5.J = —B;‘—«y implies the formula

2(a, B), = —Tr,[an(BJ)].
Thus in the case a, 8 € AlJ’OT)*( we deduce the identities

2( ), = T, (ianp),

(.8), = (@B),-

We show now the following integration by parts formulas

Lemma 26 For any u,v € C*(X,C) holds the integration by parts identity

/X [A?ﬁ,u e AgJu : v} Q= 2/ 9(Vg,5T, Vg, 50)82 (20.3)

X

If u € C*(X,R) then holds also the integration by parts identity

/X {ASJU v+ A7 ju- E} N=2 /X 9(Vau, V4 jv)QQ. (20.4)

Proof Using the complex decomposition (13.2) and the fact that hermitian
product (-,-)  on Tk ®g C is the sesquilinear extension of the dual of g, we
deduce

g(Vg,Ju,Vg,Jv) = <8Jﬂ+5ju,315+5JU>g

= <8Jﬂ+5JU,aJ@+5JU>w

<8Jﬂ, 6]@>w + <5JU7 5]'[}>w

= (0su,0,0), + (0su, 0 0),,.

Integrating by parts and taking the conjugate we infer the identity

2/ g(Vg,gu, Vg ju)d = / [Agjﬂ “v+ A?Jﬂ . i} Q. (20.5)
X X
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Replacing v with @, v with 7 in (20.5) we obtain (20.3). In the case u €
C*(X,R) formula (20.5) implies directly (20.4). O

We show now that for all a, 8 € AY'T% N AR T% holds the identity

aABAw?

dn(n —1) —
w

=Tr,aTr, 8 —2(, ), - (20.6)

Indeed we consider the local expressions
i . . _ ) _
wzgzkjc;:,uz, a:z;akfgmcz‘, 5:z;ﬂkz<:m*,

and we set

U:=aAf = Z 1, Bty G NGy NGOG
k1,k2,l1,l2

= Z Vi r Cie AT

|K|=|L|=2

where K = (k1,k2), 1 < k1 < ky < n and the same holds for L. Explicitly the
coefficients Wy ;, are given by the expression

Vi, L = 1, Bryly T Okyly Bri 1y — ¥y 1Pl — Ol Bl
We conclude the identity
U A w2
dn(n —1)——— = 16 S ULL =16 By — 16 oy
|L|=2 k,l el

= Tr,aTr, 8 —2{(a,p)

w "

20.3 Action of the curvature on alternating 2-forms

We observe that as in the symmetric case we can define an action of the curvature
operator over alternating 2-forms as follows

(Rgxa)(&mn) = —Trgla(Ry (& )n,-)],

for any o € A*T%. The tensor R, * « is anti-symmetric. In fact let (ex)x be a
g(x)-orthonormal base of T’x , and consider the local expression ay = A ke ey,
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with Al,k = _Ak,l~ Then

(Rg*xa)(&n) = —g(aiRy(& er)n,ex)
= g (Ry(& er)n, ex)
= Ry(& er aer,n)
= Ry(&, e, Aprer,n)
= —Ry(&, Agsex,e,n)
= —Ry(§azer,ern)
= —Ry(n e, a)er§)

= _(Rg *Oé)(’l’],g),

thanks to the symmetry properties of the curvature form. We observe also that
the previous computation shows the identity

(Rg * Oé)(f, 77) = 7R9(£a €k, 1, O‘;ek)
= —9(Ry(& er)ayer,n)
= —9((Rgxaj)&n),

i.e.

(Rg*a)y = =Ry * ay. (20.7)
On the other hand using the algebraic Bianchi identity we obtain the equalities

(Rgxa)(&,m) = —g(a;Ry(& ex)n,er)
= g(ogRy(er, )¢ ex) + g (ayRg(n,E)ex, ex)
= —g(ayRy(n,er)é ex) — g (Ro(n, e, ager)
= (Rgxa)(n,&) + g (Ry(n, e, ex)
= —(Ryxa)(&n) — Trr [Ry(&n)ay]
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and thus the formula

(Ry *0)(€n) = — Trr [Ry(6m)a] (20,8

We assume further that (X, J, g) is Kéhler and « is J-anti-invariant. In this case
ay = Ais J-anti-linear and so is the endomorphism R, (£, n)a;. We deduce

Rgxa=0, ie. RyxA=0. (20.9)

thanks to the identity (20.7).
20.4 Weighted Weitzenbock formula for alternating 2-forms
We show the weighted Weitzenbock type formula

Aﬁga = A?a + 2R, * a + aRicy () + Ricy (Q)ay, (20.10)

for any alternating 2-form « over a Riemannian manifold. For this purpose
we fix an arbitrary point zy and we choose the vector fields £ and 7 such that
0 = Vg&(zo) = Vgn(zo). Let (ex)r be a g-orthonormal local frame such that
Vger(xo) = 0. Then at the point x¢ holds the identities

dV;oz(g, n = vg,ﬁv;a i/ VW,VZ@ 23
= Ve [VZa ) 77] — Vg [V;a ) d
= —Vge [Vg,eka(eka n)] + Vg [vg75ka(ek7 £)]

= _vg’ivg’eka(ekv 77) + vg,nvg,eka(eka 5)7

and

VZdOé(f,?’]) = _vg,ekda(eng?n)
== _vg,ek [da(ekagan)]
= _vgﬁek [vg7€ka(£a 77) - vg7£a(€k, 77) + vgﬂ'la(ek’ g)]

- 7vgyek vg,eka(g’ 77) + vg,ekvgéa(eka 77) - vg,ek ngo‘(ekv 5)

We remind now that for any vector fields p, ¢ such that [u, ¢](z¢) = 0 holds the
identity at the point zg

VguVaca—=Vg Vg = Ry(C pu)ma,
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where the contraction operation T— : A>T% — A*T% associated to an endo-
morphism 7' € End(Tx) is defined by the formula

(T—a)(&n) = a(T&n)+ (&, Tn).
We deduce
(vg,ekvgéa - vg,ﬁvg,ek) (exsn) = « (Rg(fa ex)e,n) + a(er, Rg(f, ex)n)
= [aRic(g) + (Rg * )] (§,n),
and also
(vgmvg,eka - vg,ekvg,na) (ex,€) = —[aRic"(g) + (Rg *a)] (n,€)

= —g(agRic"(g)n,€) + (Rg * a)(&,n)

= g(nRic*(g)ag) + (Rg * a)(&,n)

= [Ric(g)ag + (Ry * a)] (&m).
Summing up the terms dV;a(€, ) and V;da(€,n) and using these last identities
we infer the formula (20.10) in the case Q = CdV}. In order to obtain the general
case we observe the decompositions

dVita = dVia+d(V,f-a),

Vytda = Vida+V,f-da,
and the identities at the point xg,

d(Vgf=a)(&n) = Vge(Vofa) n—Vy,(Vgfoa)- £
= Vel laVgfin)] = Vgu[a(Vyf, &)l
= Vgea(Vyf,n) +a(V2efn)
— Vu(Vef &) — (Vi f,€)
= Vgea(Vyf,n) +a(Viefn)
= Vgna(Vyf.§) — Vgdfay(&m),

(ngﬂda)(é,n) = (ngﬁvga)(f,n) - ngia(vgfa n) + vgma(vgfy £).

Summing up we infer the required formula (20.10).
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21 Appendix B

21.1 Reformulation of the weighted complex Bochner iden-
tity (13.9)

We define the complex operator
Q — AQ
Ag_y =AY,

With this notation the weighted complex Bochner type identity (13.9) rewrites
also as

20T IV u = VY, (AY_; - 2D,

for all uw € C*(X,C). We show now that the fundamental identity (13.9)
implies an other important formula. We need a few preliminaries.

Lemma 27 For any u,v € C*(X,C) holds the integration by parts identity

/ A?_’ﬁ,u -0Q) = 2/ (Vg,gu, Vg gv) Q.
X X
Proof We define the complex components of the g-gradient as

V;:gu = (Vgu)ljoEC’C’O(X,T;(”OJ)7

Voiu = (Veu)j' € C¥(X,Ty)).
With these notations holds the decomposition formula
Vosu=V,5u+ Vo (21.1)
We observe that for all £, 7 € T'x holds the identity
{€my, =h&n) = 2w ).
This combined with (21.1) implies
(Vg,gu, Vg gv) = in(VSfjﬁ, V;(}u)

We observe now that the complex spiting of the g-gradient

_ 1,0 0,1
Vou = V u+V u
implies the identities
1,0 _ 7
Vg”,u—'w = 40 u,
0,1 .
Vyjunw = —i0ju.
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Using this and the identity (20.2) we deduce
(Vg gu,Vgjv), = 20,0- Vg Ju

= {8ﬂ) A (Vg Ju—w)]
= Tr, [iaﬁ/\a;u]

= 2 <a]f, a]ﬂ>w
We infer the equalities

/ <vg7Ju7 Vg7J’l]>w Q = 2/ <6Jﬂ’ an>w Q
X X

= / A?ﬁ,ﬂmﬂ
X
X ;

We equip CF (X, C)o with the L3-product (13.1) and the space
C>®(X ,A0 'T% @¢ Tx.7) with the L%Q—hermltlan product (11.1). Then the
formal adjoint of HS:}, with respect to such products

O

(HOL)r - O (X, A9 T} ©c Tx,g) — C&(X, T,

10w A) 0 = /u~7—l0’1 e AQ,
/_X< g,J > x ( g,,])

satisfies the identity

(nglj)*w’n = V;szzaTX e
Moreover lemma implies the identity
A&—J = VZ:UJQVQJ
Then the complex Bochner type identity (13.9) implies
2AHYL) O HY T = 2V 0" Ory Vg T

A?’J(A?,J - 2:[[)1)7
or in other terms

2Hy ) Hyu =AY (A7, 2D,
for all w € C*(X,C).
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21.2 A Poisson structure on the first eigenspace of A?J

For any complex valued function v and symplectic form w we define the complex
vector field

(du);, = wldu=-JVu,
and the Poisson bracket
{u,v}, = dv-(du), = —w((du)g, (dv)g).

We define the Poisson bracket over the space CF (X, C) as

{u,v}%Q = {u,v}wf/X{u,v}wQ.

With these notations holds the following lemma (see also [Fut], [Gau]).

Lemma 28 Let (X,J) be a Fano manifold and let g be a J-invariant Kdhler
metric such that w := gJ € 2meq (X, [J]). Let also @ > 0 be the unique smooth
volume form with [ Q =1 such that Ric;(Q) = w.

A) Then the map

v (Ker(AZ, =20 i{bon) — (HOOG D) [4)

u — Vg4 u,

1s well defined and it represents an isomorphism of complex lie algebras.

B) The first eigenvalue Al(A?’(,) of the operator Ag", satisfies the estimate
Al(A?’J) > 2, with equality in the case H*(X,Tx ;) # 0.

C) If we set Kill, := Lie(Isomg) then the map

JVg : Kerg (AY — 2I) — Killg, (21.2)

1s well defined and it represents an isomorphism of real vector spaces.
D) The hermitian form

(u,v) +— / i{u,v},Q,
X
over Ker(AgJ —2M) is non-negative and let (1) C Rxo, po = 0, be its

spectrum with respect to the LZ-product. If g is a J-invariant Kdihler-Ricci
soliton then holds the decomposition

N
HO(XaTX,J) = @‘/uja
=0
V;Lj = {g € HO(Xv TX,J) | [ngv 5] = ﬂjg}v
Vo = Kill,®JKill, .
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Proof Step A. In this step we show the statement A. The fact that y is an
isomorphism follows from corollary 1. We show now that y is also a morphism
of complex Lie algebras. Let

Ki = Ker(A],,;—2I).

For any ¢ € H°(X,Tx.s) we denote u¢ := x~1(¢) € K_ and we decompose

ut = uf + iuS, with uf € CF(X,R)o. For any u,v € K_ = K, we set

&:=V,u, n:=V, v and as in [Gau] we observe the identities
Liggyw = Lelpw — LyLew
= 2L5i8J5Ju717 — 2L77ia]5ju§
= 2i0;0, (51/17 - nu%) ,

since £, n are holomorphic. We infer that for some constant C; € R holds the
identities

u[f’n] +C = &l - n.u%
= &uv—nu
= g(Vgv1,Vgur + JVgus)
= 9(Vgu1,Vgu1 + JVgu2)
= g(Vgv1,JVgus) — g(Vgur, JV4v2)

= w(Vgua, Vgev1) —w(Vgve, Vgur)

w (JVguz, JVgv1) + w(JVgur, JV4vs)

= w((dug)}, (dv1)5) +w((dur)f, (dv2)7,)

- {ul?vQ}w - {U27’01}w :
On the other hand

u[2€m] _ _ulJ[E,n]:_u[l&Jn]

)
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since ¢ is holomorphic. We infer that for some constant Cy € R holds the
identities

oy = g+ nad
=l 4+ Jnad
= w4+ Jnauy
= g(Vgva, Vaur + JVuz)
+  g(Vgur, JVgv1 — Vgus)
= g(Vgva, JVgus) + g (Vgui, JV4v1)
= w(Vgua, Vgev2) + w (Vgui, Vgur)
= w(JVgug, JVyv2) —w (JVgui, JV4u1)
= w((duz)g, (dv2)g) —w ((dur)g, (dv1)g)

= A{uw, v}, —{uz,va},
We conclude that for all u,v € K_ holds the identity
Vgt {u, U}w,Q = [vg,«]uv vg,JU] )

which shows that i {-,-}_ (, is a complex Lie algebra product over IK_ and that
the map x is a morphisnf of complex Lie algebras.

Step B,C. The statements B and C follow from corollary 1 and the remark-
able identity (18.1).

Step D. We show now the statement D. We observe first that for all u,v €
C*>°(X, C) holds the identity

/i{u,v}wQ = —/ iB?ﬂtWQ.
X X '
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Indeed thanks to the computations in step A we deduce

i{u,v},Q = — [ [{ur,vo}, + {u2,v1}, ]
A .

- Z/X Hurs o}, —{uz, 02}, ] 2

/X (V01,09 guz),, + (Vgur, T g02), | ©

b (VeI ), + (T, T 0), |
X

Integrating by parts we infer

/i{u,v}wﬂ = /[vny;JquurB;%ng]Q
X X

+ Z/ [UQ'B&JUQ“FUl'B‘?’JUl]Q
X

/ [BgJul - Vg +B§Juz -vl] Q

X

— Z/ [B;%Jul'vl—BgﬁJUQ-vg]Q
X

0
—/ iBy ju- v,
X

thanks to the fact that B?J is L3 -anti-adjoint. Thus if u € K_

/ i{u,a},Q = / (AF — 2D)u - a2 > 0.

X X

The Kéhler-Ricci-Soliton assumption implies the commutation identity
[A?’J, AS;’_J] == O.

We infer that
Al -2l Ko — K, (21.3)

is a well defined non-negative L3-self-adjoint operator and let ()\j)j-vzo C Ry,
Ao = 0 be it’s spectrum. Notice also that by definition of IK_ this operator
coincides with the operator

—2iBy; K- — K_.

Thus v € IK_ is an eigen-vector corresponding to the eigenvalue A; if and only
if u € IK_ satisfies

(JVgf)u = %zu
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This rewrites as

A

i{f, “}w,Q L,
and is equivalent to the equation
Aj
[ng, ngju] = ?V‘%JU.

Notice also that the kernel of (21.3) is given by the identity

K, NK_. = Ky JKg,

Kr = Kerg(Af,, —2I).

We deduce the required conclusion with p; = A;/2.

O

21.3 Consequences of the Bochner-Kodaira-Nakano for-

mula

The holomorphic and antiholomorphic Hodge Laplacian operators are related
by the Bochner-Kodaira-Nakano identity. At the level of T'x-valued 1-forms it

reduces to the identity

1
A;;(],gA = ArJJﬂX,gA + 6 (JRg A A) (w* A .)’

(21.4)

where w* = w™! € C*>(X, AlJ’lTX NA%Tx) is the dual element associated to w.

If in holomorphic coordinates w writes as
{ _
w = iwk,[dzk Ndz,

then

L0 0
* = 2iwbF A =
n R PR T

The factor 1/6 in front of the last term on the right hand side of (21.4) is due

to the convention

VIA.. AU, = E EoVoy &+ D Vg,
o€S,

We explicit the latter term. For this purpose we observe first that for any

a € AY'T% @¢ E holds the identity

Trya = —TrgaJ,-)].
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We infer the expressions

SRy A A" AE)

gk 9O
(JRg N A) (21w 9o 8zl’€>

_ _%mumgw)(-,-,m

1
= IRy AA)(Jex, ex,8),

for an arbitrary g-orthonormal real frame (ey),. We explicit the exterior product
using the J-invariant properties of the curvature operator. We obtain

(JRy A A)(Jex, ex, £)
= JR,(Jex, ex) AL — TRy (Jex, &) Aey, + TRy (ex, €) Adey,
= —Tr,(JRY)AE — Ry(Jex, &) JAey + Ry(ex, &) JAJex
—  —2Ric* ()AL + Ry (&, Jer)JAey — [Ry % (JAJ) €

= —2Ric"(g)A{ — Ry(&, i) JATn, — [Rg * (JAJT)] &,
where 7y, := Jeg. But (ng)g is also a g-orthonormal real frame. We infer
(JRyNA)(Jeg, e, &) = —2Ric™(9)AE —2[Ry x (JAJ)]E.

We deduce that the Bochner-Kodaira-Nakano identity rewrites at the level of
T'x-valued 1-forms as

Apl A=Af  A—-Ric*(9)A— Ry (A] - AY), (21.5)

where A’; and A’} are respectively the J-linear and J-anti-linear parts of A.
Using the Weitzenbock type formula in lemma 3 with Q = C'dV; we infer

LIA = AJA+V,f-V,A—2R,x A

Ary ,A—TRg* A— ARic™(g) + V,f-V, A

= (&, +A7] ) A= Ry+ A~ ARic*(g) + V, [~V A,
Using the Bochner-Kodaira-Nakano identity (21.5) we deduce the formulas
LJA = 2A7,  A—Ric*(9)A— ARic*(g) — 2Ry x A 4+ V, [=V, 4,

LyA = 2A77 A+Ric*(9)A— ARic(g) — 2Ry * Ay + Vo f =V, A,
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and thus the identities

LJA; =207 Al —Ric*(g)A; — A Ric*(9) + V[~V AY, (21.6)
LoAG =205 Al +Ric*(9)A] — A Ric*(g) + V, f-V,A7. (21.7)

We point out that one can obtain directly these formulas by using the methods
in the proof of identities (14.2), (14.5) and (14.6). We remind now that the
properties (12.1) and (12.2) imply that A € Ker £, if and only if A’; € Ker £,
and A’ € Ker£,. Thus if A € Ker £, we infer thanks to the identity (21.6)
with Q = CdV,,

0 = /X (L Al ALY dv,

2 [ [(ad, 5 a5) i (o) 45, 450, | av,

Using the identity between Riemannian and hermitian norms of T'x-valued forms
we obtain

Q/X <A%XYQAZ,,A§>Q dv,

2 /X <A;}XYQA’J, Af,>w dv,

2 2
= / |:2 8;; JA{] + ‘8%)( JAC] :|qu
X ’ w ’ w
% 2 2
_ / [2 o Al + |og. a4y ]dvg.
X ! g ’ g
We deduce
2 2
/ [2 o ALl + \ag,XJA{, — 2 (Ric*(g) {,,A/J>g} dv, =0. (218
X ’ g ’ g

Assume from now on the Kéhler-Einstein condition Ric(g) = Ag, A = £1,0.
The identity (21.7) with Q = CdV, implies in this case

_ —J
LA = QATX&A’J’,
and thus
KerL,NC™ (X, Tx _,®Tx,;) = HY' (Tx.s).
Let now A € Ker V} and observe that for be-degree reasons holds the decom-
position
0=V;A = V}X,gAf] + V*TX’gAf}

_ *g / a*g "
- 8TxJ J + aTX,JAJ'
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Thus if A € KerV; N Ker £, then 5;;‘] A’} = 0 and thus 9;% A’; = 0 which

implies
/|l
X

thanks to (21.8). We will still denote by £, the analogue operator over C*° (X7 SI%{T)*().
We infer that if A # 0 then holds the identity

— 2(Ric*(g)A}, A),| dVy = 0,

2
g

Ker V; NKer £, ﬂ]D; ={velC>®(X,S%T%) | v="17, v, € 7-[2’1 (Tx,7)}
i.e. there exists an isomorphism

Ker Vi NKer£L,ND; — HY' (Tx )

*
v Ug.

But H)' (T, 1)y = Hy' (Tx,s), thanks to lemma 14. We conclude the follow-
ing fact.

Sm

Lemma 29 Over any compact non Ricci flat Kahler-Einstein manifold (X, J, g)
there exists the canonical isomorphism

KerViNKer£,ND) — H"'(X,Tx,;)~H'(X,0(Tx,s))
v {v;}.

This result was proved by [D-W-W2] in the negative Kéhler-Einstein case
Ric(g) = —g.

21.4 Polarised deformations of Fano manifolds

In this subsection we review a few basic facts on deformation theory which
clarifies the Fano set up in the paper. In particular we wish the readers would
avoid the frequent inaccuracies we found in the application of this theory to
Kahler geometry.

21.4.1 The Maurer-Cartan equation

Let (V, Jo) be a complex vector space of dimension n. We remind that the data
of a complex structure J over V is equivalent with a n-dimensional complex
subspace data I' C CV := V ®g C such that ' NT = {0}. A complex structure
J over V is called Jy-compatible if the projection map

0,1, 1,0,1 0,1
A 2V ’ VJO )

is surjective, i.e. a C-isomorphism. This is equivalent to the condition V})’l N
V}O’O = {0}, which in its turn is equivalent to the existence of a C-linear map
0: VJOO’1 — VJ1<;O such that

Vit o= @+ o)V
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If we set = (6 + 6); € End_j, (V) then the condition V;’l N VJO’1 = {0} is
equivalent to say I+ u € GLg (V). Notice that we can obtain 6 by the formula
0 = po .WS’Ul, with ug € Ende(CV) the natural complexification of p. If we
denote by J(V, Jy) the set of Jy-compatible complex structures over V' and if
we set

C\V,Jo) = {weEnd_y;(V)|I+ueGLgr(V)},
we infer the existence of a bijection, called the Caley transform (see [Gau])

x:C(V,Jo) — TV, Jo)
po— Ji= I+ p)Jo(T+ p)t

pwi=(Jo+J)HJo—J) +—

Notice indeed that J(V, Jy) is the sub-set of the complex structures such that
Jo+ J € GLg (V). We observe that for any p € C(V,Jy) as above I — p €
GLR (V). Indeed

—JoJ = (L— )@ +p)~ "
Thus p € End_;, (V) satisfies I + p € GLg(V) if and only if
(I—p?) = (I—p)I+ p) € GLy (V)
This last condition is equivalent with
(L= p?) = (Tyz0 = 00) € GLo(V,,°).

We assume from now on that (X, Jy) is a compact complex manifold and let
J (X, Jo) be the set of Jp-compatible smooth almost complex structures. For
any J € J(X,Jp) let

=0, C®(X, ATk @c Ty, ), (Lpzo, —00) € GLg(Tx%,),

be the corresponding Caley transform. We show that the subset Jint (X, Jo) of
integrable almost complex structures is given by the Maurer-Cartan equation

= 1
Do 0+ =16,6] =0, (21.9)
X,Jo 2

where for any «, § € C°(X, A?,’;T)*( Q¢ T)l(’f)JO) we define the exterior differential
Lie product

[0,8] € C®(X, A} Tx @c TyY,),
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of degree d = deg a 4+ deg 8 by the formula

(@, 81 = > erlal&)B(&n)],

|I|=deg «
for all ¢ € O(T )0(’71‘,0)”. Notice that this formula defines a priori only an element
[0.8] € Altp(O(Tx)y,); C=(Tx,)-

However we can define pointwise the section [a, 8] as follows. For any v €
0,1
(TX,Jo,m)Xd
[OL,B] (U) = [O‘aﬁ] (g)\m

with ¢ € O(T'yY )*¢ such that ¢ = v. This is well defined by the O-linearity
of [, B]. Indeed the coefficients of ¢ with respect to the local frame ((x)7_; C
o(U, Tg,’,lJo), with ¢; := %, and Jyp-holomorphic coordinates (z1,..., 2,), are
Jo-anti-holomorphic functions which value at the point z is uniquely determined
by v. The section [a, 3] is smooth since its coefficients with respect to the frame
(Ck)p_, are smooth functions.

Notice now that (I+6)((x), k= 1,...,n, is a local frame of the bundle T)O(’}J
over an open set U. Then the integrability of J is equivalent to the condition

[(T+6)(Ck), (L+6)(Q)] € C=(U, T ), (21.10)
since the torsion form 7; € C*°(X, A?,;)QT)*( ®¢ le(’,OJO) of J satisfies

77 (M4 6) (), (T+0)(&) = [M@+6)(G), T+0)(&)]".

We observe also the identities

[(T+60)(C), M+ 0)()] = [Ce,0(Q)] + [0(Ck), G + [0(Ck),0(8)]

1

= [(k, 0(Q)] 1J;0 — [, 0(¢k)] IJ’OO +3 [0,6] (Ck, )

_ 1 o
= (B 0+ 510.01) .0 € CxO.TE).

We have T;J(’i,ﬁT)l(’g,U = 0x by the Jy-compatibility of J. We infer that if (21.10)
holds then also (21.9) holds true and

[(T40)(Ck), X+ 0)(Q)] = o

On the other hand if (21.9) is satisfied then the previous identity is satisfied and
thus (21.10) holds true.
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Remark 4 For any «,8 € C®(X, A?,;:T)*( Q¢ Tx,j,) we define the exterior
differential Lie product

[, 8] € C®(X, A} T% @c Tx, 1),

of degree d = deg o + deg 8 by the formula

[a’ﬁ] = [ﬂ-yo 'acvﬂ-}ﬁ : 6@] + [71'}’0 : acaﬂ'i’o . ﬂq; .

Then the Maurer-Cartan equation (21.9) can be rewritten in the equivalent form

— 1
8Tx,JO W+ 5 [M?N] = 0,
since
ng,Jo o= gT)l(’ff]O 0+ 7T)1(’10J0 0,
(] = [0,0]+1[0,0].

Let now B C CP be the unitary open ball and observe that, by a refinement
of Ehresmann theorem for any proper holomorphic submersion 7 : X — B of
a complex manifold X onto B with central fibre (X, Jy) = 7~1(0) there exists a
smooth map ¢ : X — X such that the map

(p,m): X — X x B,

is a diffeomorphism with ¢, = Ix and with ¢~ (z) C X complex sub-variety
for all x € X.
Let now 6 := (0y)iep C C=(X, AT @¢ Ty%,) with 6o = 0 and

det(I[T)l(,,(?]O - 9t9t) # O,

be a smooth family of Jy-compatible complex structures. We observe that the
almost complex manifold

X = (%0 = |]x6),

teB

is a complex one if and only if 0; satisfies the Maurer-Cartan equation (21.9)
for all ¢ € B and the map

teB +—— O(x)c€ Agl)lT;(,x ®r TJl(%oﬂ’

is holomorphic for all x € X. Indeed the distribution Tg"‘lg is integrable if and
only if its local generators 7, := % cr=1,....p, T+ 0)(C), k=1,...,n,
satisfy the conditions

(7o, (L4 60,)(C)] € C=(U,TY,), (21.11)
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and
[T+ 6,)(Go). (T+8)(Q)] € C(U,TYY,). (21.12)

The latter is equivalent with the Maurer-Cartan equation (21.9). Let 6; =
Hf lg:,j ® (; be the local expression of §;. Then the identity

[77—7‘7 (H + et)(gk)] = %r-ef)lg € COO<U= T%,{Io)u

combined with the property T;J(’zf N T)I(’B]O = Ox, shows that (21.11) holds true
if and only if the map t — 0 is holomorphic.

For any p € X a coordinate chart of X in a open neighborhood U, x B of
(p,0) is given by a smooth function f : U, x B — C" x CP such that

a,f + 9,f6 =0
d,f = 0

det (df) # 0.
In order to produce such family 6 we need to remind a few basic facts about
Hodge theory.
21.4.2 Basic facts about Hodge theory and d-equations

Let w be a hermitian metric over X and let (E,dg, h) be a hermitian holomor-
phic vector bundle over it. We define the anti-holomorphic Hodge Laplacian

A% = 5E52+5*E‘5Ea

acting on the sections of AT} ®¢ E. Let EPI(E) := C(X,A\}T% @¢ E)
and set

HPYE) = KerALNé&EPI(E).
We remind the L?-Hodge decomposition
EPUE) = HPIUE)®IpEP I Y (E) ® 9zEPTL(E).

We observe that if there exists two subspaces L,V C C*°(X, E) such that the
L2-decomposition

C*(X,E) = L&V,

holds then L and V are closed subspaces of C°°(X, E). Indeed L = V' and
V = L' by the L?-decomposition. The same consideration holds for the Sobolev
spaces W¥*(X,E). Thus the L?-Hodge decomposition implies that the spaces
0pEP1~Y(E) and 8,EP7TL(E) are closed in the smooth topology. We infer the
L?-decomposition

EPIE) = [KerdpNEPIUE)] @ ,EP 1T (E),
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and thus
Kerdp NEPI(E) = HPUE)®OpEP Y (E).
An other way to see this decomposition is the following. Let
Hg:EPY(E) — HPYUE),

be the L?-projection operator over HP4(E). For any a € EP9(E) there exists
B € EP97H(E) and v € EP9T(E) such that

o« = Hpa+0pf+0gy.
Now if ga = 0 then EEEE'Y =0, ie 5*}37 =0. Let
WPIUE) .= WHX,AD T} ¢ E).
We remind that the Green operator
Gp:WPUE) — ARWHL(E),

is defined by the identity I = Hg+A%LGE. The latter implies Ker G = Ker A7,
and the L?-orthogonal decomposition

o = Hga+050yGpa+ 0,05Gpa.

We show now the identity 05Gr = GrOg. Indeed EE—differentiating the iden-
tity defining Gg we infer

EEOZ = EEA%GEQZA%EEGEQ

Applying the same identity to dpa we obtain dpa = AL GEdpa, since Hpdp =
0 by orthogonality. Thus

A%v (EEGEOé — GEEEOZ) = 0.

The fact that by definition Gg W (E) = A%W,f’&(E) implies the existence of
B e WP (E) and v € WETE(E) such that

GEOé = A%ﬂ,

GEgEOé = 3/5’}/.
We deduce
gEGECk — GEEEOZ = A/L{? (gEﬁ — ’Y) = 0,

thanks to the orthogonality of the Kernel and image of A’.

We observe finally that the equation dpa = 3 admits a solution if and only
if 0g8 = 0 and HgB = 0. In this case the unique solution of minimal L?-norm
is given by o = 9,G .
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21.4.3 The equation of holomorphic maps
For any smooth map f : (X, Jx) — (Y, Jy) we define the operators

20, , f = df—(Jyof) df-Jx€C (X,A}jT;; ® f*Ty,Jy),

29, . f df + (Jy o f) - df - Tx € O (X, A0 Tx @ [Ty, )

and we notice the elementary identities

1,0 1,0 0,1 0,1
8‘,X,Jyf = 7w -df o+ df Ty

1,0 0,1 0,1 1,0
vjnyyf wyodf e Ayt df T

The map f is called holomorphic if (Jy o f) - df = df - Jx. We deduce that the
map f is holomorphic if and only if 0 sx.ayJ = 0, thus if and only if

7T§1/’0 -df - 71'?(’1 = 0.
We infer that a map f : (X, J,) — (Y, Jy) is holomorphic if and only if
1,0 _
T df‘T)o(,lego = 0.
The identity
TXy, = (7?(,);1 + 90) CTx,
implies that f: (X, J,) — (Y, Jy) is holomorphic if and only if
1,0 0,1 _
m0df (10 p) = 0,
This last condition rewrites as

_ 3 0,1 1,0 1,0
0 = 0 f'ﬂ'JO + ~df-7TJO-<p

Jo,Jy

5JO,JYf : 779;1 +aJ0,Jyf C .
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We explicit the latter condition in the case of a smooth map
f:(X,J,) — (X, Jp). Indeed

0 = 20, ,,f 75" +20, ,f ¢
= [I—i(Joo )] (df -n5' +df - )
= [[—i(Jpo )] -my" - (df 7% +df - )
+ [I—i(Jpo )] -al:t - (df -7t +df - )
= L—i(po ] -7y (@, f+0,.f )

T+ =i (eo f)] 7% (0, f 4D, S 9)

We explicit at this point the expression of Jy. For this purpose let y := 6 +6
and decompose the identity

Jo = Jo(T—p)(@+p)"
= Jo(I-p)? (H—Hz)_l
= Jo(I—2u+p?) (H_Nz)_l

—  Jo (T—20—20+60+06) (T—66—66) .
Decomposing in types we infer

Jg = 1 (Hl,o + 9?) (HLO — 95)_1 + Qig(ﬂl,o - 9?)_1

— 2i0(Tp1 — 00)™ —i(To1 + 00)(To1 — 06)~ .
Let A := 00. Using the trivial identity

I+ A)@—- A "'=1+2401 - 4",
we conclude the expression

Jo = il +2i00(T, 0 — 00)~" +2i0(T; o — 06)

1,0( 71,0 1,0 (70,1
ce (TXJO) ce (TXJO

— 2i0(Tpy — 00)" " — iy, — 2i00(To, — 00)~*.

0,1(p1,0 0,1(p0,1
€& (TXyJo) €& (TX,JO
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For notation simplicity we identify Jy = Jy o f and thus 8 = 0 o f. Using the
previous expression we infer the equalities

1 _ _ _ _
§ []I — i (J.g o f)] -F‘?(’)O = ]Il,O + 99(H1’0 — 99)_1 + 9(]11’0 — 99)_1

= (Lio—00)"' +0(I0—00)"",

% [M—i(Joof)] a0t = —0(Los—6060)"" —66(Lo, —06)".
The second equality follows from the trivial identity
I+ A - A =@@- A",
We deduce that the holomorphy condition for f writes in the form

0 = 5‘J[],Jef'ﬂ-?;)l_|'a/'0,‘19f'90
= (Mo—00)"" (0, f+0,f ) —0lo1—00)"- (3, f+0, [ )

+ g(]ILO - 95)_1 : (5Jof + aJof ' 90) - 59(110,1 _99)_1 ' (8J0f +5Jof . 30)'

The fact that the second line is composed by elements in £%1 (T )1(7(‘)]0) and the

third by elements in £%! (T;)(’}JO) implies that the holomorphy condition for f

is equivalent to the equations

(Tio—00)"" - (9, f+0,,f¢)

Q(H()A’l — 59)_1 . (aJOf + 5']0‘][ . (,0),

a(ﬂl,o - 95)_1 ' (5Jof + aJO-f : 90) = 59(]10,1 _59)_1 : (8J0f +5Jof ! 4,0)-

But the last one is obtained multiplying both sides of the first with §. We infer
that the holomorphy condition for f writes as

w00, f+0,fv = (lio—00)0(To1 —00)""- (9, f+0,,f-¢)
We notice now the identity
0 = (Lio—00)0(Tp, —00)"".
The latter follows decomposing the trivial identity
po= (=) (=)

We conclude finally that the map f : (X, J,) — (X, Jp) is holomorphic if and
only if

T 0y f+0,, 00 = (00 F) (B, f +0,,f ).
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For any f € Diff (X) sufficiently close to the identity in C'-norm, the almost
complex structure f*.Jp is Jy-compatible, i.e. det (Jy + f*Jy) # 0. Thus there
exists a unique form 67 such that f*Jp = Jp,.

By definition the map f : (X, Jy,) — (X, Jp) is holomorphic. We conclude
that 0 is given by the formula

w00, f=(00f)- 0, f=~10,f—(00f) 0, f] b (21.13)
and thus
O = —[0,f = @0 N) Do ]y, |75 80 f = (0000, 1],
as long as

[0,/ =00 £)- 3, f] oo € GL (TX5,).

X,Jo

Adding the complex conjugate we infer
wf = o f)0,f = —[0,,f—(uof)-0,fl ns (21.14)
and thus
pro= [0, f = (o )-8, 017 [0, f = (o f)-0,,f].
as long as

0, f —(wof)-9,,f € GL(Ix).

21.4.4 The Kuranishi space of a compact complex manifold

Let (X, J) be a complex manifold and consider

E{]/ = T)*Q_'] ® TX,J7
", = Bndy(Tx)N EY,
1
¢ = {ne £E) | 0+ m € GLy (1) Fr w3 s =0}

Then the Caley transform (see [Gau]) provides a bijection

CalJ : CJ —  Jint
po— Ji= 0+ p)Jo(T+p)t
=(Jo+ ) NIy —=J) «— J
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For notations convenience we will restrict our considerations to the Fano case
even if the result that will follow and its argument holds for a general compact
complex manifold. For any polarized Fano manifold (X, J,w) we define also the
sub-set of ()-divergence free tensors in C;

Cf}f;’ = {MECJlg;Z;S?JM:O}.

We denote by H° (TXJ)L NWi (Tx,s) the L7 o-orthogonal space to the space of
holomorphic vector fields of type (1,0) inside Wy (T'x,s). For any &€ € £ (Tx )
of sufficiently small norm the map e (¢) : X — X defined by

€ (f)x = €XPy oy (&)

is a smooth diffeomorphism. For readers convenience we provide a proof (in the
Fano case) of the following fundamental result due to Kuranishi [Kur].

Theorem 3 (The Kuranishi space K;,4.) For any polarized Fano manifold
(X, J,w) and any integer k > n+ 1 with n := dim, X there exists;

(A) €,6 € R, a complex analytic subset Kj4 C "Hgib (Tx,;) N BY(0),
0 € Ky,g and a holomorphic embedding

0,1
- ngél (TX,J) N Bg (0) - B;/Vk (Tx, ) (0) 7

with py = 0, which restricts to a bijection

0,1

pilkyy — Cf}f;’ﬂB:V’“ (T)(O),

with the property dop (v) = v, for all v € TCk, o :=the tangent cone of K4
at the origin.
(B) €9 € Ry, €0 < &, and a smooth map

0,1
BZZ’“ (Tx.7) (0) — HO (TX”])J_ N W (TXJ)

e — &,
with & = 0, such that 5;‘;53 $e(e,) = 0 which restricts to an application
wo (T,
B ) (0)n 0N (Tx ) — HO(Tx, ;)" NE(Tx.s),
and such that the map

0,1 . 0,1
BT ) ety g TN ()

e p(P) = Pee,)
s well defined.
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Proof We divide Kuranishi’s proof in a few steps.
STEP A1l. We show first that the system

ng,J M+ % [Nvﬂ] =0,
(S)9 _,
aTg);S.)JM =0.
is equivalent to the system
A+ %ETS;?]GTX,J [:ua M] = HTX,J Hy
(52)
HTX,J [:uﬂp'] =0,

provided that y is sufficiently close to 0. Indeed let u be a solution of (S7).
Then the considerations about the resolution of the d-equation imply the second
equation in (S2). Moreover if we set

17*979

w = 7§aTXJGTX,J [N’a,u’] )

then o := p — ¢ satisfies Or, , @ = 0 and 5;«‘;’?,04 = 0. Thus a € ng;(TX)J)
and Hr, ,pt = « since

I_-]'T)(,.]g*g'Q = 0,

Tx,s

by orthogonality. This shows that also the first equation in (S2) holds. Assume
now that p is a solution of (Sz). It is clear that the second equation in (S)
holds true. We set

— 1
Y o= 6TX,J [ 5 [Mvﬂ} ’

and we observe the equalities

1—- —*g, 1
w = _§aTX,JaTxf7JGTX,J [:u’vlj‘] + 5 [M?N]
10 =
= § TX,JaTX.J GTX,J [Vw :u]

1« —
= iaTg);iGTx,JaTx,J [/J“a /u]

= 5;?;77 GTX,J [57—/1“’ :u’} .

We deduce the identity

Y = g;ifJGTX,J [w,u]-
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The assumption k& > n + 1 implies that the Sobolev embedding Wk c Ck—"

holds true. Using the standard estimates on the Sobolev norms of W,

1Grx s ellvz < Collellk,

[Te, ¥l k-1 < Callellellllx,

we obtain

[l < Cull [, p] k-1 < CLColl k|l

Thus if ||u||x < e/(C1C%) for some € € (0,1) then (1 — ¢)||¢]|x < 0, which holds
true if and only if ¥ = 0.

STEP A2. We remind that the previous discussion shows that the first
equation in (Sz) is equivalent to the condition

1**9,
Fp) = p+ §5TX?,GTX,J 1] € Hyo(Tx,s).

Let =, C W,S’l(TX,J) be the subset of the elements satisfying this condition.
We notice that the map

F:wWo (Tx,) — Wol(Tx.),
is well defined and continuous thanks to the estimate

1077, G s sl e < Cull [ ) lk—1 < CrCo|al3-

We infer that F' is also holomorphic since F' — I is a continuous quadratic
form. The fact that the differential of F' at the origin is the identity implies the
existence of an inverse holomorphic map F~! in a neighborhood B*(0) of the
origin. Restricting this to Hg’é(TX“}) N BYx(0) we deduce the existence of a
holomorphic map 7

a € Hyo(Tx,)) N BI(0) —  pa € W (Tx ),

such that
j
Hao + 587’ GT [pas ta] = a.

By construction Im (o — 1) represents a neighborhood of the origin inside
Zk. It is clear that p, is of class C*~" by the Sobolev embedding. We show
further that p, is smooth for a sufficiently small choice of . Indeed applying
the Hodge Laplacian A%’;g‘] to both sides of the previous identity and using the
equalities

Q,—J57*g,Q A0 AQ,—J __ JA*eq
ATx,g 8TX,JGTX,J - aTX,JATX,g GT - aTX,Ja
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(notice that E*T‘;ZHTX“, = 0) we obtain the equation

Q,
ATX J/‘a + aTX 7 [Nm,uoc] = 0,

which rewrites also as

1 1
5Vglia * Vglia + 9 Ba* Vo *Vgf

1
Q,—J
ATt + 5 o * Vo 5

where * denotes adequate contraction operators. The fact that the C%-norm of
Lo can be made arbitrary small for sufficiently small ¢ implies that the operator

1
Q,—J 2
ATXg +§,U/oz*vg7

is elliptic. Then the smoothness of i, follows by standard elliptic bootstrapping.
We denote by K, the zero set of the holomorphic map

X Hyo(Tx.)) N BYH(0) — Hyo(Tx.s)

a HTX,J [:L"Ocv/ia]'

Then the set {yq | @ € K4} covers the set of the solutions of the system (S2)
in a neighborhood of the origin. - .
STEP B. We observe first that aT‘;jJ@ = 0 if and only if GTX7J8T9);?J<,0 =0.
Indeed .
Im 8Tg’9 1 KerGry ,,

since Ker G, , = Ker AQX 7. Thus in order to construct the application ¢ —
&, we need to find the zeros of the map

R: W]?’l (TX”]) X {HO (TXJ)J_ n B?O/k(TX’J) (0):| — H° (TX,J)J_ N Wi (TX“])

(0.6) > Gry, 07 Peie)s

(0,0) — 0.

For notations simplicity we denote W : (u, f) — py. With these notations the
formula (21.14) writes as

5Je () = —0,e(t&) -V (0,e(tg)).

Time deriving this identity at ¢ = 0 and using the fact that dt|t o€ e(tg) = ¢,
¥ (0,Idx) = 0 and e (0) = Idx we obtain

5TX,J£ = 7Df\IJ(OvIdX) '57
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where DyW¥ denotes the partial Frechet derivative of ¥ in the variable f. We
observe now that for any £ € Wy, (T’x,s) holds the decomposition formula

§ = HTX J £+ GTx JaTX JaTX Jg
Thus if £ € H° (TXJ)l N Wy, (Tx,s) then holds the identity

£ = GTx,Jg;;JgTX,Jg-

We conclude the identity D¢R (0,0) = I and the existence of the map ¢ — &,
by the implicit function theorem. In local coordinates we can consider the
expansion

e(§) = Idx+&+0(€P).
Then the formula (21.14) implies the local identity

ey = O+ +Q(,8),

with @ an analytic function (depending on the local coordinates) Then the
o, . % y . .
condltlonaTgX'i Pe(e,) = 0 implies

AT+ 07 0+ 010 Q (9,6,) =0

Thus &, is smooth if ¢ is smooth by elliptic regularity. O

21.4.5 Parametrization of a sub-space of the w-compatible complex
structures

Let (X, J,w) be a polarized Fano manifold and consider the set

_ 1
Cog = {ueé’( ;’,J)Ig(liu)>075TX,JN+2[/~L7M]=0},

with g := —wJ. Then the Caley transform restricts to a bijection (see Gaud)
Calyj:Coy — Jo.

We define also the sub-set of Q-divergence free tensors in C,, s
cdy = {uecm|aT“ :o}.

Definition 2 (The Kuranishi space of polarised deformations) For any
polarized Fano manifold (X, J,w) we define the Kuranishi space of w-polarized
complex deformations as the complex analytic subset

Ky = {a €Kg | o — (Hu)g}
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With these notations the map p in theorem 3 restricts to a bijection
. 0,1
piky — el B (o),

For any a € K% we define J, := Caljuo. Let also U, C CF (X, C), be an
open neighborhood of the origin such that w + ddia up > 0 for all o € K% and
u = u1 + fu2 € U, with u; real valued. We define the real vector field

a,u -1 1
gt ’ = — (OJ + tdd(ja U1> (d;a uy + 2du2) R

for all t € (—&,1+¢), for some small € > 0. We define also the family of
diffeomorphisms (@f’“)te(f&pre) over X given by 9;®"" = & o ;" with
P, = Idx. We set finally

Jou = (@'{"u)* Ja-
With these notations holds the following lemma.

Lemma 30 The map
K9 xU, — Jo,

(,u) — Jaus
1s well defined and its differential at the origin is given by the fiberwise injection

TCICj,O @AZ’}' — TCyg, s

(Av) —s —J [ETX,ngﬂ n QA} .
Proof Let denote for simplicity w; := w +tdd u; and we observe the elemen-
tary identities
(,;}t = ddc]a uy = —d(éft’uﬁwt) = —ngy,u,wt.
We infer

and thus (@) w; = (®5")" wo = w, i.e.
(G (w +ddS, ul) = w.
The fact that the complex structure J, is integrable implies that the form w; is

Jo-invariant. (This is no longer true in the non-integrable case!) We conclude
Ja,u € jw-
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We compute now the differential at the origin. We consider for this purpose
a smooth family (u (s)), C U, such that « (0) = 0 and % (0) = v. We denote for

simplicity & s := 51?’"(5) and P, ;= @?’u(s). Then deriving with respect to s at
s = 0 the identity

0
=@ s = s o S5

ot t, fu O Dy,

and using the fact that & ¢ = 0, (which implies in particular ®; o = Idx) we
obtain

0 0

4 0
%h:o aét’s - %lszogt,s + dwft,o C— (bt7s
0

0Os [s=o0

- %ls:ogt,s-

On the other hand deriving with respect to s at s = 0 the identity

1
e (bt () = = (o )+ aua (9).
we obtain
0 . 1
(assogt,s> W= = (dJU1 + 2d1)2) y

and thus

0 1 _

%ls:(’ft,s = *ivg,ﬂ)-

Commuting the derivatives in s and ¢ we infer the identity

Integrating in ¢ from 0 to 1 we deduce

0 1
=2 @, = —-V,
m 0510 Ls 9 VoIV

since ®g s = Idx. We infer

d

%‘ . J()’u(s) = LnJ = 7J5TX7ng7J@.
Assume now (a(s)), C Ky, is a smooth curve with a (0) = 0 and & (0) = A.
Then

d d d
<y = L et
d8|s=0 a(s),u(s) d8|s=0 a(s) + ds|._o 0,u(s)»

oz
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with
d

S Ty = —2JA,
dsls:O ()

thanks to the properties of the differential of the Caley transform (see [Gau]).
O

Lemma 31 For any point J € J,, holds the inclusions

|:5TX,JV!J7JCOQ (X, (D) ] 19} TCIC“j7O
- TCJM,J

C |01y, V0 sC™ (X, €) | @0 TCx, .0

Proof The first inclusion is a direct consequence of lemma 30. In order to show
0,1
the second one let (), C C;N BZX’“ (Tx.5) (0) with ¢ = 0 and set for notation
simplicity e; := e (§,,). With these notations, the identity (21.14) writes as
dyer—(proey)-9,ep = — [aﬂt —(proer) ‘gﬂt] (o) -

Time deriving this at ¢ = 0 and using the obvious equality éy = D¢ (0) o we
deduce the equality

d

Ory [Df(o) ¢’0} — o = ) :Ou(sot)~

This combined with the identity g;i(sl,u (¢¢) = 0 implies
97 Or., [DE(0) g0| = 0% 00 = 0.

Thus if E*Tg)fjgbo =0 then D (0) ¢ = 0 and

d

b= gt (1) -

We infer the equality

g,

{A e HOL(Tx ) | 3(T), C T Jo = J, Jo = A}

= {A € Hyo(Tx.s) | 3 (1), CCTY 100 =0, o = A} = TCk,,0-
By gauge transformation we deduce

{A € H?:;z(TX,J) |3(Je), € Ju 2 Jo=J, Hry ,Jo = A}

g

- {A S HO:;Z(TX7J) | 3(Je); C Fint = Jo = J, Jo = A}a

g9
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and thus the required inclusion. O

This result combined with the existence of the isomorphism (18.3) and with
the triple decomposition identity (18.4) implies the inclusions (1.16) and (1.17)
in the introduction of the paper.
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