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An all-regime Lagrange-Projection like scheme for the gas dynamics

equations on unstructured meshes
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June 17, 2014

Abstract

We propose an all regime Lagrange-Projection like numerical scheme for the gas dynamics equations. By
all regime, we mean that the numerical scheme is able to compute accurate approximate solutions with an
under-resolved discretization, i.e. a mesh size and time step much bigger than the Mach number M . The
key idea is to decouple acoustic and transport phenomenon and then alter the numerical flux in the acoustic
approximation to obtain a uniform truncation error in term of M . This modified scheme is conservative and
endowed with good stability properties with respect to the positivity of the density and the internal energy.
A discrete entropy inequality under a condition on the modification is obtained thanks to a reinterpretation
of the modified scheme in the Harten Lax and van Leer formalism. A natural extension to multi-dimensional
problems discretized over unstructured mesh is proposed. Then a simple and efficient semi implicit scheme is
also proposed. The resulting scheme is stable under a CFL condition driven by the (slow) material waves and
not by the (fast) acoustic waves and so verifies the all regime property. Numerical evidences are proposed
and show the ability of the scheme to deal with tests where the flow regime may vary from low to high Mach
values.

1 Introduction

In this paper, we consider the system of gas dynamics in two space dimension in situations when the flow regime
may vary in terms of Mach number M across the computational domain. We propose a collocated Finite Volume
method that addresses two important issues.

The first issue concerns the lack of accuracy in the low Mach regime of Godunov-type schemes. While
these methods performs well at capturing shocks, they may generate spurious numerical diffusion when they are
used for simulating low Mach flows over relatively coarse mesh, i.e. mesh size much bigger the Mach number.
Improvements of Godunov-type schemes more generally of collocated methods have been proposed by many
authors like [29, 16, 21, 5, 9, 7, 28, 18, 24, 23, 14, 11, 8, 19]. The analysis of these authors may rely on different
arguments like the analysis of the viscosity matrix [29], an asymptotic expansion in terms of Mach number [16],
a detailed study in [11] that seek for invariance properties of the numerical scheme transposing the framework
of Schochet [25] to the discrete setting, and also an analysis based on the so-called Asymptotic Preserving
property [20] in [19]. Nevertheless the resulting cure usually boils down to reduce the numerical diffusion in the
momentum equation for low Mach number values.

The second problem we address deals with subsonic flow when the fluid velocity is slow and the acoustic
waves are not driving phenomenons. In this case, the Courant-Friedrichs-Lewy (CFL) condition on the time
step for explicit Godunov-type methods that involves the (fast) acoustic wave velocity may lead to very small
time steps choices and thus costly computations. It seems natural to seek for numerical schemes that enable
the use of a large time steps that are not constrained by the sound velocity. This question has been examined
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by several authors like [21, 7, 8, 9, 19] (see also [4, 6]) who derived mixed implicit-explicit strategies that allows
to choose the time step independently of the Mach Number.

Numerical schemes that can tackle both issues, namely: accuracy for mesh sizes that do not depend on the
Mach number and also stability for time steps that are not constrained by the Mach value are usually referred
to as all regime, like the methods proposed by [21, 7, 8, 9, 19].

In the present work, we first propose an operator splitting strategy that allows to decouple the acoustic and
the transport phenomenons. The approximation algorithm is split into two steps: an acoustic step and a trans-
port step. For one-dimensional problems, this strategy is equivalent to an explicit Lagrange-Projection [15, 13]
method, however the present splitting does not involve any moving Lagrangian mesh and can be naturally
expressed for multi-dimensional problems. Following simple lines inspired by [11, 10] we investigate the depen-
dence of the truncation error with respect to the Mach number. Let us mention that our study does not involve
a Taylor expansion in the vicinity of the zero-Mach limit, nor a near-divergence free condition for the velocity
field. Although this analysis is by no mean a thorough explanation of the low Mach regime behavior of our
solver, it is enough to suggest simple means to obtain a truncation error with a uniform dependence on the
Mach number for M < 1. The cure simply relies on modifying the pressure terms in the flux of the acoustic
operator that is coherent with the correction proposed by [11, 10, 18, 24, 14]. Although this modified scheme
is based on a modified flux definition, one can shows that it can also be rephrased as a simple approximate
Riemann solver in the sense of Harten, Lax and van Leer [17] that is consistent with the integral form of the gas
dynamics equation. This scheme is endowed with good stability properties under a CFL condition that involves
the Mach number as the time step is still constrained by the sound velocity.

We propose to circumvent this time-step restriction by implementing a mixed implicit-explicit method follow-
ing the ideas developped by [6] for one-dimensional problems using a genuine Lagrange-Projection framework.
This idea was also used in [4] and consists in using an implicit update for the acoustic step and an explicit
march in time for the transport step. This enables stability under a CFL condition that only involves the
(slow) material waves without the (fast) acoustic waves. Finally, let us mention that the overall procedure is a
conservative discretization that relies on a Suliciu relaxation approach [27] that allows to cope with compressible
fluids equipped with very general Equation of State (EOS).

The paper is structured as follows: we first present the operator splitting considering only one-dimensional
problems. Then we study the behavior of the scheme in the low Mach regime. This allows to lead to an explicit
corrected scheme for the sole acoustic step that preserves the accuracy of the scheme at low Mach. Interestingly,
we show that this flux-based corrected method may be expressed thanks to an approximate Riemann solver
for the acoustic step. Next and thanks to this property, we investigate the ability of the corrected scheme to
satisfy to a discrete entropy inequality. Afterwards, we present the extension of the operator splitting method
to unstructured meshes either with a semi-implicit or full-explicit march in time. Finally we present numerical
results involving low Mach and multi-regime flows.

2 Governing equations

We are interested in the two-dimensional gas dynamics equations
∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0,

∂t(ρE) +∇ · [(ρE + p)u] = 0,

(1a)

(1b)

(1c)

where ρ, u = (u1, u2)t, E denote respectively the density, the velocity vector and the total energy of the fluid.

Let e = E − |u|
2

2 be the specific internal energy of the fluid and s its specific entropy. We note τ = 1/ρ and
we suppose given an Equation of State (EOS) through the mapping (τ, s) 7→ eEOS which satisfies to the usual
Weyl assumptions [30]

∂τe
EOS < 0, ∂se

EOS > 0, ∂ττe
EOS > 0

∂sse
EOS > 0, ∂ττe

EOS∂sse
EOS > (∂τse

EOS)2, ∂τττe
EOS < 0.

(2)

The entropy s = sEOS(τ, e) verifies e = eEOS(τ, s) thanks to (2) and we can define the pressure p = −∂τeEOS

and the sound velocity c = τ
√
∂ττeEOS. The above assumptions imply that (τ, s) 7→ eEOS and (τ, e) 7→ −sEOS
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are strictly convex. Using a slight abuse of notation, we shall also consider p as a function of (τ, e) and note
p = pEOS(τ, e).

3 Acoustic/transport operator splitting strategy for the one-dimensional
problem

In this section we will consider for the sake of simplicity one-dimensional problems and propose a two-step
approximation strategy based on an operator splitting. The aim of this splitting is to decouple acoustic and
transport phenomena. Using this guideline we will propose an explicit numerical solver. We shall propose two
simple extensions of this method to two-dimensional problems discretized over unstructured grids using either
an explicit or a semi-implicit time update in section 5.4.

Before going any further, we introduce classical notations for the one-dimensional setting: let ∆t > 0 and
∆x > 0 be respectively the time and space steps. We define the Eulerian mesh interfaces xj+1/2 = j∆x for
j ∈ Z, and the intermediate times tn = n∆t for n ∈ N. If b is a fluid parameter, in the sequel, we will note
bnj (resp. bn+1

j ) the approximate value b respectively within the jth cell [xj−1/2, xj+1/2) at instant t = tn (resp.

t = tn+1).
For one-dimensional problems, (1) supplemented with a passive scalar variable v (that will account for the

transverse velocity in two-dimensional problems) reads
∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂t(ρv) + ∂x(ρuv) = 0,

∂t(ρE) + ∂x[(ρE + p)u] = 0.

(3a)

(3b)

(3c)

(3d)

Our discretization strategy of (3) consists in approximating successively the solutions of the following systems (4)
and (5) where 

∂tρ+ ρ∂xu = 0,

∂t(ρu) + ρu∂xu+ ∂xp = 0,

∂t(ρv) + ρv∂xu = 0,

∂t(ρE) + ρE∂xu+ ∂x(pu) = 0,

(4a)

(4b)

(4c)

(4d)

and 
∂tρ+ u∂xρ = 0,

∂t(ρu) + u∂x(ρu) = 0,

∂t(ρv) + u∂x(ρv) = 0,

∂t(ρE) + u∂x(ρE) = 0.

(5a)

(5b)

(5c)

(5d)

In the sequel, system (4) and (5) will be respectively referred to as the acoustic system and the transport
system.

Given a fluid state (ρ, ρu, ρv, ρE)nj , j ∈ Z at instant tn, this splitting algorithm can be decomposed as
follows.

1. Update the fluid state (ρ, ρu, ρv, ρE)nj to the value (ρ, ρu, ρv, ρE)n+1−
j by approximating the solution of

(4);

2. Update the fluid state (ρ, ρu, ρv, ρE)n+1−
j to the value (ρ, ρu, ρv, ρE)n+1

j by approximating the solution
of (5).

3.1 Properties and approximation of the one-dimensional acoustic system

First, we notice that the acoustic system (4) reads equivalently

∂tτ − τ∂xu = 0, ∂tu+ τ∂xp = 0, ∂tv = 0, ∂tE + τ∂x(pu) = 0. (6)
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The acoustic system (6) is a quasilinear system that can be simply checked to be strictly hyperbolic. Indeed,
the Jacobian of the system (6) has three eigenvalues (λ1, λ2, λ3) = (−c, 0,+c). The waves associated with λ1

and λ3 are genuinely nonlinear waves while the wave of velocity λ2 = 0 is a stationnary contact discontinuity.
In order to derive an update process from (ρ, ρu, ρv, ρE)nj to (ρ, ρu, ρv, ρE)n+1−

j , we will perform several

approximations. We notice that for a smooth solution (6) we also have ∂tp+ τ(ρc)2∂xu = 0 and we thus choose
to perform a Suliciu-type approximation of (6) for t ∈ [tn, tn + ∆t) by introducing a surrogate pressure Π and
considering the relaxed system 

∂tτ − τ∂xu = 0,

∂tu+ τ∂xΠ = 0,

∂tv = 0,

∂tE + τ∂x(Πu) = 0,

∂tΠ + τa2∂xu = ν(Π− p),

(7a)

(7b)

(7c)

(7d)

(7e)

where a > 0 is parameter whose choice will be specified later. In the regime ν → +∞ we formally recover
(6). In our numerical solver context, we classically mimic the ν → +∞ regime enforcing at each time step
Πn
j = pEOS(τnj , e

n
j ) and then solving (7) with ν = 0.

At last, for t ∈ [tn, tn + ∆t) we choose to approximate τ(x, t)∂x by τ(x, tn)∂x in (7). If one introduces the
mass variable m defined by dm = ρ(x, tn)dx our approximation of (6) (up to an abuse of notation) can be
expressed in the following fully conservative form

∂tW + ∂mF(W) = 0, (8)

where W = (τ, u, v, E,Π)T and F(W) = (−u,Π, 0,Πu, a2u)T . Let us remark that (8) is consistent with a Suliciu
relaxation of the gas dynamics equation written in Lagrangian coordinates using a mass variable formulation.
The solution of the Riemann problem associated with (8) can be derived explicitly (see section C). This allows
to write an exact Godunov solver for (8) that turns out to be an approximate Riemann solver for (6) following
the Harten-Lax-van Leer formalism (see section B and [17, 1]). It provides us with the update formula

Wn+1−
j = Wn

j −
∆t

∆x

(
Fj+1/2 − Fj−1/2

)
,

Fj+1/2 = F(Wn
j ,W

n
j+1),

F(WL,WR) = (−u∗,Π∗, 0,Π∗u∗, a2u∗)T ,

(9a)

(9b)

(9c)

where 
u∗ =

(uR + uL)

2
− 1

2a
(ΠR −ΠL),

Π∗ =
(ΠR + ΠL)

2
− a

2
(uR − uL).

(10a)

(10b)

The update of the conservative variables is obtained by setting ρn+1−
j = 1/τn+1−

j , (ρu)n+1−
j = ρn+1−

j × un+1−
j ,

(ρv)n+1−
j = ρn+1−

j × vn+1−
j and (ρE)n+1−

j = ρn+1−
j ×En+1−

j . This can be summed up by the following update
formulas 

Ljρ
n+1−
j = ρnj ,

Lj(ρu)n+1−
j = (ρu)nj −

∆t

∆x
(Π∗j+1/2 −Π∗j−1/2),

Lj(ρv)n+1−
j = (ρv)nj ,

Lj(ρE)n+1−
j = (ρE)nj −

∆t

∆x
(Π∗j+1/2u

∗
j+1/2 −Π∗j−1/2u

∗
j−1/2),

Lj = 1 +
∆t

∆x
(u∗j+1/2 − u

∗
j−1/2).

(11a)

(11b)

(11c)

(11d)

(11e)

Let us remark that (9) also proposes an update relation for Π. However in this case Π is just a disposable
intermediate value whose role only consists in providing a formula for the interface pressure terms and the
udpated value Πn+1−

k will be discarded. Indeed in this explicit scheme, Π is updated after each time step by

4



the equilibrium formula Πn
j = pEOS(τnj , e

n
j ). However, this will no longer be the case for semi-implicit strategy

as we will see in section 5.4.
Let us finally note that the relaxation scheme (9) is equivalent to the acoustic scheme [12]. In order to avoid

numerical instabilities, the parameter a must complies with the subcharacteristic condition

a > max ρc, (12)

for all possible values of ρc when considering a solution of the equilibrium system (6). In practice we will choose
a value aLR for each interface by setting

aLR = K max(ρnLc
n
L, ρ

n
Rc

n
R), (13)

where K ≥ 1, LR = j + 1/2, L = j and R = j + 1. We refer the reader to [1, 3, 2, 13] and the reference therein
for more details.

3.2 Properties and approximation of the one-dimensional transport system

The transport system equation discretization is quite simple. Indeed, system (5) is a quasi-linear hyperbolic sys-
tem that only involves the transport of the conservative variables with the velocity u. We choose to approximate
the solution of (5) thanks to a standard upwind Finite-Volume approximation for ϕ ∈ {ρ, ρu, ρv, ρE}

ϕn+1
j = ϕn+1−

j − ∆t

∆x

(
u∗j+1/2ϕ

n+1−
j+1/2 − u

∗
j−1/2ϕ

n+1−
j−1/2

)
+

∆t

∆x
ϕn+1−
j

(
u∗j+1/2 − u

∗
j−1/2

)
, (14)

where

ϕn+1−
j+1/2 =

{
ϕn+1−
j , if u∗j+1/2 ≥ 0,

ϕn+1−
j+1 , if u∗j+1/2 < 0.

Let us finally remark that (14) can be recast into

ϕn+1
j = ϕn+1−

j Lj +
∆t

∆x

(
u∗j+1/2ϕ

n+1−
j+1/2 − u

∗
j−1/2ϕ

n+1−
j−1/2

)
. (15)

3.3 Properties of the operator splitting scheme

We present here a few properties of the operator splitting scheme defined by (9) and (14). Let us first remark that
this algorithm performs the same update as a classical Lagrange-Remap (or equivalently Lagrange-Projection)
algorithm for one-dimensional problems (see appendix A) although the design of our algorithm does not involve
a moving mesh for following the variables in a Lagrangian reference frame. This feature will be the key element
of the multi-dimensional extension of the present scheme. It is also interesting to mention that the operator
splitting strategy also provided a mean of treating the waves of the gas dynamics system (3) separately: the
acoustic step only involves acoustic waves while freezing the transport waves. The transport step only deals
with the contact discontinuity of the material transport. Let us mention that a similar operator splitting was
used in [?].

The overall update from variable at instant tn to variables at instant tn+1 is fully conservative with respect
to ρ, ρu, ρv and ρE. Indeed, we have

ρn+1
j = ρnj +

∆t

∆x

(
u∗j+1/2ρ

n+1−
j+1/2 − u

∗
j−1/2ρ

n+1−
j−1/2

)
,

(ρu)n+1
j = (ρu)nj +

∆t

∆x

(
u∗j+1/2(ρu)n+1−

j+1/2 + Π∗j+1/2 − u
∗
j−1/2(ρu)n+1−

j−1/2 −Π∗j−1/2

)
,

(ρv)n+1
j = (ρv)nj +

∆t

∆x

(
u∗j+1/2(ρv)n+1−

j+1/2 − u
∗
j−1/2(ρv)n+1−

j−1/2−
)
,

(ρE)n+1
j = (ρE)nj +

∆t

∆x

(
u∗j+1/2(ρE)n+1−

j+1/2 + Π∗j+1/2u
∗
j+1/2 − u

∗
j−1/2(ρE)n+1−

j−1/2 −Π∗j−1/2u
∗
j−1/2

)
.

(16a)

(16b)

(16c)

(16d)

The scheme (9)-(10) for the acoustic step is stable under the Courant-Friedrichs-Lewy (CFL) condition

∆t

∆x
max
j∈Z

(
max(τnj , τ

n
j+1)aj+1/2

)
≤ 1

2
. (17)
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If one notes b± = b±|b|
2 , then a classical result states that the CFL condition associated with the transport

scheme (14) reads

∆tmax
j∈Z

(
(u∗j− 1

2
)+ − (u∗j+ 1

2
)−
)
< ∆x. (18)

Entropy-related stability properties of the scheme will be examined in section 5.3.
One can also remark that both the acoustic steps and the transport steps are achieved thanks to genuine

Godunov solvers applied to simplified subsystems.

4 Behavior of the scheme with respect to the Mach regime

We are now interested in the behavior of the numerical scheme with respect to the variations of the Mach regime.
In order to characterize the Mach regime of the flow, we consider a classical rescaling of the equations (3): let
us introduce the following non-dimensional quantities:

x̃ =
x

L
, t̃ =

t

T
, ρ̃ =

ρ

ρ0
, ũ =

u

u0
, ṽ =

v

v0
, ẽ =

e

e0
, p̃ =

p

p0
, c̃ =

c

c0
. (19)

The parameters L, T , u0 = v0 = L
T , ρ0, e0 = p0ρ0, p0 and c0 =

√
p0

ρ0
denote respectively a characteristic length,

time, velocity, density, internal energy, pressure and sound speed. If M = u0

c0
is the so-called Mach-number then

system (3) reads 

∂t̃ρ̃+ ∂x̃(ρ̃ũ) = 0,

∂t̃(ρ̃ũ) + ∂x̃(ρ̃ũ2) +
1

M2
∂x̃p̃ = 0,

∂t̃(ρ̃ṽ) + ∂x̃(ρ̃ũṽ) = 0,

∂t̃(ρ̃Ẽ) + ∂x̃[(ρ̃Ẽ + p̃)ũ] = 0,

(20a)

(20b)

(20c)

(20d)

where Ẽ = ẽ+ 1
2M

2ũ2. For a given small value of the Mach number, we distinguish two cases:

• the term ∂x̃p̃ remains of magnitude O(M2). Then the variations of ρ̃ũ are of order 1 which implies that
all the tilde variables will remain of order 1. We shall refer this case as the low Mach regime;

• the term ∂x̃p̃ does not remain of magnitude O(M2). Then the variations of ρ̃ũ will reach a magnitude
O(1/M) or O(1/M2). These large magnitude variations of the momentum will induce a growth of the
Mach number and thus a change of Mach regime.

Before going any further, let us underline that in the present approach we do not intend to study the
behavior of the rescaled system (3) in the limit regime M → 0. This delicate question has been widely
investigated over the past years and is still a rich field of research [16, 11, 19]. We focus here on a simpler task
that consists in examining the consistency of a rescaled approximate solution provided by the splitting operator
algorithm with the solution of (20) in the low Mach regime. The framework we will place ourselves in does
not require sophisticated hypotheses and may deal with the evaluation of a local behavior of the solution (a
few neighbouring cells in the discrete setting). More precisely, if one considers smooth solutions of (20) and
considers the truncation error of the rescaled numerical scheme in the sense of Finite Difference, how does it
depends on M in the low Mach regime?

Introducing the rescaling defined earlier into (10) we get

ũ∗j+1/2 =
1

2
(ũnj + ũnj+1)− 1

2ãj+1/2M
(Π̃n

j+1 − Π̃n
j ), Π̃∗j+1/2 =

1

2
(Π̃n

j + Π̃n
j+1)−

ãj+1/2M

2
(ũnj+1 − ũnj ),

6



for (11) we have 

L̃j ρ̃
n+1−
j = ρ̃nj ,

L̃j(ρ̃ũ)n+1−
j = (ρ̃ũ)nj −

∆t̃

M2∆x̃
(Π̃∗j+1/2 − Π̃∗j−1/2),

L̃j(ρ̃ṽ)n+1−
j = (ρ̃ṽ)nj ,

L̃j(ρ̃Ẽ)n+1−
j = (ρ̃Ẽ)nj −

∆t̃

∆x̃
(Π̃∗j+1/2ũ

∗
j+1/2 − Π̃∗j−1/2ũ

∗
j−1/2),

L̃j = Lj = 1 +
∆t̃

∆x̃
(ũ∗j+1/2 − ũ

∗
j−1/2),

(21a)

(21b)

(21c)

(21d)

(21e)

and finally if ϕ̃ ∈ {ρ̃, ρ̃ũ, ρ̃ṽ, ρ̃Ẽ} the rescaling of (15), reads

1

∆t̃
(ϕ̃n+1
j − L̃jϕ̃n+1−

j ) +
1

∆x̃

(
ϕ̃n+1−
j+1/2ũ

∗
j+1/2 − ũ

∗
j−1/2ϕ̃

n+1−
j−1/2

)
= 0. (22)

Note that the CFL restriction of the acoustic step reads now

∆t̃

∆x̃
max(τ̃nj , τ̃

n
j+1)ãnj+1/2 ≤

M

2
, (23)

while the CFL restriction associated with the transport step is(
(ũ∗j−1/2)+ − (ũ∗j+1/2)−

) ∆t̃

∆x̃
≤ 1. (24)

In order to evaluate the truncation error (in the Finite Difference sense) in the low Mach regime, we use
the classical tool of equivalent equations. Let (x̃, t̃) 7→ b̃ be a parameter of (rescaled) functions that describe a
smooth flow. With a classical slight abuse of notation, we consider that ϕ̃(xj , t

n) = ϕ̃nj so that we can substitute

these functions into the discrete update formula when ϕ̃ ∈ {ρ̃, ũ, ṽ, Ẽ, Π̃}. We suppose that we are in low Mach
regime, namely ∂x̃p̃ = O(M2). This hypothesis yields that Π̃n

j+1 = Π̃n
j +O(M2∆x̃) for the discrete unknowns.

We have the following result.

Proposition 1. In the low Mach regime, the rescaled discretization of the acoustic step is consistent with

∂t̃τ̃ − τ̃ ∂x̃ũ = O(∆t̃) +O(M∆x̃), ∂t̃ũ+
τ̃

M2
∂x̃p̃ = O(∆t̃) +O

(
∆x̃

M

)
,

∂t̃ṽ = O(∆t̃), ∂t̃Ẽ + τ̃ ∂x̃(p̃ũ) = O(∆t̃) +O(M∆x̃).

The rescaled discretization of the transport step is consistent with

∂t̃ϕ̃+ ũ∂x̃ϕ̃ = O(∆t̃) +O(∆x̃) +O(M∆x̃),

and the equivalent equation verified by the rescaled scheme reads

∂t̃ρ̃+ ∂x̃(ρ̃ũ) = O(∆t̃) +O(∆x̃) +O(M∆x̃),

∂t̃(ρ̃ũ) + ∂x̃(ρ̃ũ2) +
1

M2
∂x̃p̃ = O(∆t̃) +O(∆x̃) +O(M∆x̃) +O

(
∆x̃

M

)
,

∂t̃(ρ̃ṽ) + ∂x̃(ρ̃ũṽ) = O(∆t̃) +O(∆x̃) +O(M∆x̃),

∂t̃(ρ̃Ẽ) + ∂x̃[(ρ̃Ẽ + p̃)ũ] = O(∆t̃) +O(∆x̃) +O(M∆x̃).

(25a)

(25b)

(25c)

(25d)

Proof. There exists three smooth functions A, B and C of magnitude 1 with respect to M such that

ũ∗j+1/2 =
ũnj+1 + ũnj

2
+M∆x̃A(xj+1/2, t

n) +O(M∆x̃2),

Π̃∗j+1/2 =
Π̃n
j+1 + Π̃n

j

2
+M∆x̃B(xi+1/2, t

n) +O(M∆x̃2),

Π̃∗j+1/2ũ
∗
j+1/2 =

(ũnj+1 + ũnj )(Π̃n
j+1 + Π̃n

j )

4
+M∆x̃C(xi+1/2, t

n) +O(M∆x̃2).
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Injecting the above relation into (21) we get

L̃j ρ̃
n+1−
j = ρ̃nj ,

L̃j(ρ̃ũ)n+1−
j = (ρ̃ũ)nj −

∆t̃

M2

Π̃n
j+1 − Π̃n

j−1

2∆x̃
+O

(
∆x̃∆t̃

M

)
,

L̃j(ρ̃j ṽ)n+1− = (ρ̃ṽ)nj ,

Lj(ρ̃Ẽ)n+1−
j = (ρ̃Ẽ)nj −∆t̃

(
(ũnj+1 + ũnj )(Π̃n

j+1 + Π̃n
j )

4∆x̃
−

(ũnj−1 + ũnj )(Π̃n
j−1 + Π̃n

j )

4∆x̃

)
+O(M∆x̃∆t̃),

L̃j = 1 + ∆t̃
ũnj+1 − ũnj−1

2∆x̃
+O(M∆x̃∆t̃).

(26a)

(26b)

(26c)

(26d)

(26e)

This yields 

L̃j ρ̃
n+1−
j = ρ̃nj ,

L̃j(ρ̃ũ)n+1−
j = (ρ̃ũ)nj −

∆t̃

M2
∂x̃p̃+O

(
∆x̃∆t̃

M

)
+O

(
∆x̃2∆t̃

)
,

L̃j(ρ̃j ṽ)n+1− = (ρ̃ṽ)nj ,

Lj(ρ̃Ẽ)n+1−
j = (ρ̃Ẽ)nj −∆t̃∂x̃(p̃ũ) +O(M∆x̃∆t̃) +O(∆x̃2∆t̃),

L̃j = 1 + ∆t̃∂x̃ũ+O(M∆x̃∆t̃) +O(∆x̃2∆t̃).

(27a)

(27b)

(27c)

(27d)

(27e)

Remark 1. For smooth solutions in the low Mach regime, we have ∂x̃x̃p̃ = O(M2). We used this relation to
obtain the term O

(
∆x̃2∆t̃

)
in (27b).

Let us remark that (27) is indeed consistent at order 1 with respect to ∆x with

∂t̃τ̃ − τ̃ ∂x̃ũ = O(∆t̃) +O(M∆x̃), ∂t̃ũ+
τ̃

M2
∂x̃p̃ = O(∆t̃) +O

(
∆x̃

M

)
,

∂t̃ṽ = O(∆t̃), ∂t̃Ẽ + τ̃ ∂x̃(p̃ũ) = O(∆t̃) +O(M∆x̃).

Now we turn to the transport step. Accounting for the low Mach hypothesis, (22) becomes

1

∆t̃
(ϕ̃n+1
j − L̃jϕ̃n+1−

j ) +
1

2∆x̃

(
ϕ̃n+1−
j+1/2(ũnj+1 + ũnj )− ϕ̃n+1−

j−1/2(ũnj + ũnj−1)
)

= O(M∆x̃),

hence
1

∆t̃
(ϕ̃n+1
j − L̃jϕ̃n+1−

j ) + ∂x̃(ϕ̃ũ) = O(∆x̃) +O(M∆x̃), (28)

which is consistent with ∂t̃ϕ̃ + ũ∂x̃ϕ̃ = O(∆t̃) + O(∆x̃) + O(M∆x̃). Finally, using (27) into (28) we finally
obtain the desired result.

Remark 2. It is important to note that the analysis we proposed in this section cannot be considered as an
exhaustive explanation for the behavior of the numerical scheme in the Low Mach regime. It just merely provides
magnitude estimate of the truncation error. Considering the same lines with additional hypotheses: ρ̃, ũ, ṽ, Ẽ
are solution of the rescaled gas dynamics equations in the low Mach regime with well-prepared conditions [11],
then one can show that the O(∆x̃/M) term in (25b) does vanish [11] for one-dimensional problems set over the
whole real line. The analysis is delicate and depends on many hypotheses: for two-dimensional problems same
results can be obtained for discretization over a triangular mesh with periodic boundary conditions. However,
this no longer works for two-dimensional Cartesian meshes where the classical Godunov-type solvers perform
poorly with periodic boundary conditions. More general boundary conditions require a specific study for each
case [11, 10].

5 Low Mach correction

The equivalent equation (25) satisfied by the rescaled scheme is clearly not satisfactory because
of the term O(∆x̃

M ) which behaves bad when M � ∆x̃. This suggests to modify the scheme
accordingly.
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5.1 Correction of the low Mach behavior: a simple flux modification

In the light of the previous asymptotic analysis, we propose to leave the projection step unchanged and rather
focus on the acoustic step of the scheme. In the acoustic step, we suggest to simply replace Π∗j+1/2 by

Π∗,θj+1/2 =
1

2
(Πn

j + Πn
j+1)− θj+1/2

aj+1/2

2
(unj+1 − unj ). (29)

The associated dimensionless flux reads

Π̃∗,θj+1/2 =
1

2
(Π̃n

j + Π̃n
j+1)− θj+1/2

ãj+1/2M

2
(ũnj+1 − ũnj ). (30)

This yields the following modified scheme for the acoustic step.
Wn+1−

j = Wn
j −

∆t

∆x

(
Fj+1/2 − Fj−1/2

)
,

Fj+1/2 = Fθ(Wn
j ,W

n
j+1),

Fθ(WL,WR) = (−u∗,Π∗,θ, 0,Π∗,θu∗, a2u∗)T .

(31a)

(31b)

(31c)

Let us underline that this modification solely alters the non-centered terms of the pressure flux. In other
words this does not modify the ultimate consistency of Π∗,θj+1/2 with the pressure value, it does impact the

numerical dissipation involved with the discretization of the pressure terms. This approach complies with several
previous works that have been investigating the approximation of the low Mach regime like [18, 24, 14]. While
such modification is usually delicate with regards to the stability of the numerical scheme, we will nevertheless
see that the resulting modified numerical scheme is still endowed with stability properties (see section 5.3). In
the sequel, in order to perform an equivalent equation analysis with the modified pressure flux, we consider a
smooth function x 7→ θ such that θj+1/2 = θ(xj+1/2). We have the following consistency properties for the

numerical scheme with the modified pressure flux Π∗,θj+1/2.

Proposition 2. In the low Mach regime, the rescaled discretization (31) of the acoustic step is consistent with

∂t̃τ̃ − τ̃ ∂x̃ũ = O(∆t̃) +O(M∆x̃), ∂t̃ũ+
τ̃

M2
∂x̃p̃ = O(∆t̃) +O

(
θ∆x̃

M

)
,

∂t̃ṽ = O(∆t̃), ∂t̃Ẽ + τ̃ ∂x̃(p̃ũ) = O(∆t̃) +O(M∆x̃) +O(Mθ∆x̃).

The rescaled discretization of the transport step is consistent with

∂t̃ϕ̃+ ũ∂x̃ϕ̃ = +O(∆t̃) +O(∆x̃) +O(M∆x̃),

and the equivalent equation verified by the rescaled scheme reads

∂t̃ρ̃+ ∂x̃(ρ̃ũ) = O(∆t̃) +O(∆x̃) +O(M∆x̃),

∂t̃(ρ̃ũ) + ∂x̃(ρ̃ũ2)
1

M2
+ ∂x̃p̃ = O(∆t̃) +O(∆x̃) +O

(
θ∆x̃

M

)
,

∂t̃(ρ̃ṽ) + ∂x̃(ρ̃ũṽ) = O(∆t̃) +O(∆x̃) +O(M∆x̃).

∂t̃(ρ̃Ẽ) + ∂x̃[(ρ̃Ẽ + p̃)ũ] = O(∆t̃) +O(∆x̃) +O(M∆x̃) +O(Mθ∆x̃).

(32a)

(32b)

(32c)

(32d)

As a consequence, provided that we impose the asymptotic behavior θj+1/2 = O(M), the truncation error is
uniform with respect to M .

Proof. Following similar lines as in the proof of proposition 1 and using the same notations, there exists three
smooth functions A, B, C and D of magnitude 1 with respect to M such that

ũ∗j+1/2 =
ũnj+1 + ũnj

2
+M∆x̃A(xj+1/2, t

n) +O(M∆x̃2),

Π̃∗,θj+1/2 =
p̃nj+1 + p̃nj

2
+ θj+1/2M∆x̃B(xi+1/2, t

n) +O(M∆x̃2),

Π̃∗,θj+1/2ũ
∗
j+1/2 =

(ũnj+1 + ũnj )(p̃nj+1 + p̃nj )

4
+M∆x̃C(xi+1/2, t

n) +Mθj+1/2∆x̃D(xi+1/2, t
n) +O(M∆x̃2).
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The rest of the analysis follows the same line as the proof of proposition 1. Using (21) we get

L̃j ρ̃
n+1−
j = ρ̃nj ,

L̃j(ρ̃ũ)n+1−
j = (ρ̃ũ)nj −

∆t̃

M2
∂x̃p̃+O

(
θ∆x̃∆t̃

M

)
+O

(
∆x̃2∆t̃

)
,

L̃j(ρ̃j ṽ)n+1− = (ρ̃ṽ)nj ,

Lj(ρ̃Ẽ)n+1−
j = (ρ̃Ẽ)nj −∆t̃∂x̃(p̃ũ) +O(M∆x̃∆t̃) +O(Mθ∆x̃∆t̃) +O(∆x̃2∆t̃),

L̃j = 1 + ∆t̃∂x̃ũ+O(M∆x̃∆t̃) +O(∆x̃2∆t̃).

(33a)

(33b)

(33c)

(33d)

(33e)

and (22) yields again
1

∆t̃
(ϕ̃n+1
j − L̃jϕ̃n+1−

j ) + ∂x̃(ϕ̃ũ) = O(∆x̃) +O(M∆x̃). (34)

Relations (33) and (34) provides the desired results.

Remark 3. In the light of the truncation error that appears in (25), one can see that it is not necessary to
involve a correction for the energy flux term in (31c). It would be possible to consider a numerical scheme with
the definition (10a) for the velocity at the interface, the modified pressure (29) for interface pressure terms and
Π∗u∗ for the energy flux.

5.2 Approximate Riemann solver for the modified acoustic scheme

The modified numerical scheme (31) for the acoustic step belongs to the category of flux-based solver. Indeed,
this solver relies on an update formula (31a) that involves the modified flux (31c). We will prove in this section
that this modified flux solver can also be obtained thanks to an approximate Riemann solver in the sense of
Harten, Lax and van Leer [17, 1], see also Annex B for a quick refresh on this, that is consistent with the integral
form of (8). This formalism is useful to establish stability properties. We have the following proposition.

Proposition 3. There exists a simple approximate Riemann solver that is an approximation of the Riemann
problem associated with the relaxed acoustic problem (8) and whose associated flux matches the flux of the
modified acoustic solver. More precisely, there exists a self-similar function

Wθ
RP

(m
t

; WL,WR

)
= (τ, u, v, E,Π)

(m
t

; WL,WR

)
=


WL, if m/t < −a,

W∗,θ
L , if −a ≤ m/t < 0,

W∗,θ
R , if 0 ≤ m/t < +a,

WR, if +a ≤ m/t.

(35)

such that

Fθ(WR,WL) = F(WL)−
∫ 0

−∞
[Wθ

RP(ξ; WL,WR)−WL] dξ = F(WR)+

∫ +∞

0

[Wθ
RP(ξ; WL,WR)−WR] dξ. (36)

The states W∗,θ
L = (τ∗,θL , u∗,θL , v∗,θL ,Π∗,θL )T and W∗,θ

R = (τ∗,θR , u∗,θR , v∗,θR ,Π∗,θR )T are given by

τ∗,θL = τL +
1

a
(u∗ − uL), τ∗,θR = τR +

1

a
(uR − u∗),

u∗,θL = u∗ +
1

2
(θ − 1)(uR − uL), u∗,θR = u∗ +

1

2
(1− θ)(uR − uL),

v∗,θL = vL, v∗,θR = vR,

E∗,θL = EL +
1

a
(ΠLuL −Π∗,θu∗), E∗,θR = ER +

1

a
(Π∗,θu∗ −ΠRuR)

Π∗,θL = Π∗, Π∗,θR = Π∗.

(37a)

(37b)

(37c)

(37d)

(37e)
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Proof. Suppose that Wθ
RP is consistent with the integral form of the relaxed acoustic problem (8) then for a

given WL and WR we have

F(WR)− F(WL) = −a(W∗,θ
L −WL) + a(WR −W∗,θ

R ),

which reads

W∗,θ
R + W∗,θ

L = WR + WL −
1

a
(F(WR)− F(WL)). (38)

If the resulting flux of this approximate Riemann solver is F θ(WL,WR) then (36) is verified and yields

2F θ(WL,WR) = F(WR) + F(WL)− a(W∗,θ
L −WL)− a(WR −W∗,θ

R )

or equivalently

W∗,θ
R −W∗,θ

L = WR −WL +
1

a

(
2F θ(WL,WR)− F(WL)− F(WR)

)
. (39)

Both (38) and (39) provide

W∗,θ
L = WL −

1

a
(F θ(WL,WR)− F(WL)), W∗,θ

R = WR +
1

a
(F θ(WL,WR)− F(WR)).

This yields the desired results.

Using this approximate Riemann solver, we can deduce that the modified acoustic solver (31) is stable under
the same CFL conditions (17) that does not depend on the Mach number M . Moreover, when θ = 1 the
self-similar function Wθ

RP defined in proposition 3 degenerates to the exact solution of the Riemann problem
associated with relaxed acoustic system (8).

Finally, if one takes into account the equilibrium projection step of the relaxation strategy into the ap-
proximate Riemann solver of proposition 3, we have ΠL = pEOS(τL, eL), and ΠR = pEOS(τR, eR). Under
this assumption, it is easy to check that the first coordinates (τ, u, v, E) of the self similar function Wθ

RP are
consistent with the integral form of the acoustic system (6).

5.3 Properties of the modified operator splitting scheme

We start this section by examining the ability of the modified operator splitting scheme to satisfies a discrete
entropy inequality. In the sequel, I(b, b′) ⊂ R will denote the interval whose bounds are b ∈ R and b′ ∈ R. We
consider the following slightly more restrictive subcharacteristic condition

τ∗L > 0, −∂τpEOS(τ, sL) ≤ a2, ∀τ ∈ I(τL, τ
∗
L),

τ∗R > 0, −∂τpEOS(τ, sR) ≤ a2, ∀τ ∈ I(τR, τ
∗
R),

(40)

and we start with the two following technical results. we also refer the reader to Annex B for a quick refresh
on this topic.

Lemma 1. Consider the solution of Riemann problem for the relaxed acoustic system (8). Suppose that (40)
is verified. Let sk = sEOS(τk, ek), k = L,R, we have

e∗k − eEOS(τ∗k , sk)−
(
pEOS(τ∗k , sk)−Π∗

)2
2a2

≥ 0. (41)

Proof. We consider the case k = R and set for τ ∈ I(τR, τ
∗
R)

φ(τ) = eEOS(τ, sR)− pEOS(τ, sR)2

2a2
− eEOS(τ∗R, sR) +

pEOS(τ∗R, sR)2

2a2

+ pEOS(τ∗R, sR)

(
τ +

pEOS(τ, sR)

a2
− τ∗R −

pEOS(τ∗R, sR)

a2

)
.

We have φ′(τ) =
(
pEOS(τ, sR)− pEOS(τ∗R, sR)

) (
1− ρ2c2(τ, sR)/a2

)
. If τR > τ > τ∗R (resp. τR < τ < τ∗R)

the Weyl assumptions (2) provides pEOS(τ, sR) − pEOS(τ∗R, sR) < 0 (resp. pEOS(τ, sR) − pEOS(τ∗R, sR) > 0)
and together with hypothesis (40) this yields φ′(τ) ≥ 0 (resp. φ′(τ) ≤ 0). As φ(τ∗R) = 0 we obtain that

φ(τR) > φ(τ∗R) = 0 for τ ∈ I(τR, τ
∗
R). Using the Riemann invariant jump relation (e∗R − Π∗

2a2 ) = (eR − ΠR

2a2 ),
one obtains 0 < φ(τR) = e∗R − eEOS(τ∗R, sR) − 1

2a2 (pEOS(τ∗R, sR) − Π∗)2. The same lines applies for the case
k = L.
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Lemma 2. Let θ ∈ R, and e∗,θk = E∗,θk − (u∗,θk )2/2 for k = L,R then we have

e∗,θk − e
EOS(τ∗,θk , sk)− 1

2a2

(
pEOS(τ∗,θk , sk)−Π∗

)2

+
(1− θ)2(uR − uL)2

8
≥ 0, k = L,R. (42)

Proof. One has u∗,θR = u∗+ (1− θ)(uR−uL)/2 and Π∗,θ = Π∗+ (1− θ)a(uR−uL)/2 and together with (37) one

obtains e∗,θR = e∗R − (1− θ)2(uR − uL)2/8. Injecting this relation into (41) and noticing that τ∗,θR = τ∗R provides
the desired result for k = R. The case k = L is obtained with the same lines.

It is now clear that the inequalities

− 1

2a2

(
pEOS(τ∗,θk , sR)−Π∗

)2

+
(1− θ)2(uR − uL)2

8
≤ 0, k = L,R (43)

can help us equip the modified numerical scheme with a discrete entropy inequality.

Proposition 4. Let s∗,θk = sEOS(τ∗,θk , e∗,θk ) for k = L,R. If assumption (43) is verified, we have

0 ≤ −a(s∗,θL − sL) + a(sR − s∗,θR ). (44)

Inequality (44) implies that the modified scheme (31) for the acoustic step is consistent with the integral form
of the entropy inequality

∂ts(τ, e) ≤ 0. (45)

Moreover, the explicit modified scheme (31) is equipped with a discrete entropy inequality. Indeed there exists a
numerical flux function qnj+1/2 = q(Wn

j ,W
n
j+1) that is consistent with 0 when ∆t and ∆x tend to 0 such that

s(τn+1−
j , en+1−

j )− s(τnj , enj ) + τnj
∆t

∆x
(qnj+1/2 − q

n
j−1/2) ≤ 0. (46)

Proof. Let k = L,R, under hypothesis (43), we have that e∗,θk ≥ eEOS(τ∗,θk , sk). According to (2) ε 7→
sEOS(τ∗,θk , ε) is increasing, thus sEOS(τ∗,θk , e∗,θk ) = s∗,θk ≥ sEOS(τ∗,θk , eEOS(τ∗,θk , sk)) = sk. Inequality (44) follows
trivially. Relation (44) expresses the consistency with the integral form of (45) and it provides the entropy
inequality (46) (see [1, Chap. 2] and Annex B).

We can now state the following entropic property for the full modified operator splitting explicit scheme
composed by (31) and (14).

Proposition 5. If the assumptions (43), (17) and (18) are verified, then the explicit scheme defined by (31)
and (14) verifies the following discrete entropy inequality

ρn+1
j s(τn+1

j , en+1
j )− ρnj s(τnj , enj ) +

∆t

∆x

(
gnj+1/2 − g

n
j−1/2

)
≤ 0, (47)

where the numerical entropy flux is defined by

gnj+1/2 = (u∗j+1/2)+ρn+1−
j s(τn+1−

j , en+1−
j ) + (u∗j+1/2)−ρn+1−

j s(τn+1−
j+1 , en+1−

j+1 ) + qnj+1/2. (48)

Proof. Let φ ∈ (ρ, ρu, ρv, ρE), under the CFL assumption (18) the transport scheme (14) expresses φn+1
j as a

convex combination of φn+1−
i , i = j − 1, j, j + 1, indeed one has

φn+1
j =

∆t

∆x
(u∗j−1/2)+φn+1−

j−1 +

(
1− ∆t

∆x
((u∗j+1/2)− − (u∗j−1/2)+)

)
φn+1−
j +

∆t

∆x
(u∗j+1/2)−φn+1−

j+1 .

As the mapping (ρ, ρu, ρv, ρE) 7→ −(ρs)(τ, e) is a strictly convex function (see for example [15]) we obtain
that

−(ρs)(τn+1
j , en+1

j ) ≤ −∆t

∆x
(u∗j−1/2)+(ρs)(τn+1−

j−1 , en+1−
j−1 )

−
(

1− ∆t

∆x
((u∗j+1/2)− − (u∗j−1/2)+)

)
(ρs)(τn+1−

j , en+1−
j )− ∆t

∆x
(u∗j+1/2)−(ρs)(τn+1−

j−1 , en+1−
j+1 ).

Using relation (46) one obtains (47).
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We now sum up the main properties of the modified operator splitting scheme.

Theorem 1. Suppose that (17), (18) (12) are satisfied, the explicit scheme defined by (31) and (14) verifies

1. the scheme is conservative with respect to the density ρ, the momentum ρu and total energy ρE,

2. the density ρnj is positive for all j and n > 0 provided that ρ0
j is positive for all j,

3. if θ = O(M), then the truncation error of the numerical scheme is uniform with respect to M < 1,

4. if (43) is verified then the numerical scheme is equipped with a discrete entropy inequality,

5. if (43) is verified then enj > 0 for all j ∈ Z and all n ∈ N.

It is clear from (32b) that the choice θ = O(M) is natural for the modified scheme to have an equivalent
equation which is satisfactory when M � ∆x̃ (uniform consistency w.r.t. M). At this stage θ = O(M) is not
made precise, see section 6 below. Let us now discuss the new condition which is related to the correction θ.

5.3.1 Behavior of condition (43) in the low-Mach regime for a perfect gas equation of state

We have just seen that the scheme is entropic provided that (43) is satisfied. In this section, we study the
compatibility in the low Mach regime between the condition (43) that is required to obtain a discrete entropy
inequality and the condition θ = O(M) that is required to have uniform consistency with respect to M (see
section 5). If |uR − uL| = 0, any value of θ ∈ R verifies condition (43), we can then assume that |uR − uL| > 0.
We consider the case of a Perfect Gas EOS defined by pEOS(ρ, e) = (γ− 1)ρe, where γ is the specific heat ratio.

First, let us recall that τ∗,θk = τ∗k and Πk = pEOS(τk, sk), k = R,L. For k = R, relation (43) reads

|1− θ| ≤ 2

a

|pEOS(τ∗R, sR)−Π∗|
|uR − uL|

. (49)

Let us remark that the right hand side of this inequality does not depend on θ. The Perfect Gas assumption
provides that pEOS(τ∗R, sR) = ΠR (τR/τ

∗
R)
γ
, therefore thanks to the definition of Π∗ we get

pEOS(τ∗R, sR)−Π∗ = ΠR (τR/τ
∗
R)
γ − ΠL + ΠR

2
+
a

2
(uR − uL). (50)

The definition of τ∗,θR = τ∗R by (37) using the dimensionless parameters defined by (19) gives τ̃∗R = τ̃R +

(Π̃R − Π̃L)/(2ã2)+M(ũR− ũL)/(2ã). If one now supposes that the flow is locally in the low Mach regime, then
we have ∂x̃Π̃ = O(M2), therefore ΠR −ΠL = O(M2∆x̃). Thus we obtain

τ̃∗R
τ̃R

= 1 +M
ũR − ũL

2ãτ̃R
+O(M2∆x̃).

Injecting the above relation into (50), we obtain

pEOS(τ∗R, sR)−Π∗

p0
= −M

2

[
1− γΠ̃R

ã2τ̃R

]
ã(ũR − ũL) +O(M2∆x̃).

Using the fact that γpEOS(τR, sR) = γΠR = ρR(cR)2 for a Perfect Gas in the previous relation allows to recast
(49) into

|1− θ| ≤

∣∣∣∣∣1−
(
ρ̃Rc̃R
ã

)2

+O

(
M∆x̃

|ũR − ũL|

)∣∣∣∣∣ . (51)

Let us recall that by definition : ã = K max(ρ̃Rc̃R, ρ̃Lc̃L) with K ≥ 1. Suppose without loss of generality
that ρ̃Rc̃R = max(ρ̃Rc̃R, ρ̃Lc̃L) then (ρ̃Rc̃R)2/ã2 = 1/K and the condition (51) becomes

|1− θ| ≤

∣∣∣∣∣1−
(

1

K

)2

+O

(
M∆x̃

|ũR − ũL|

)∣∣∣∣∣ .
13
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Figure 1: the face Γjk = Ωj ∩ Ωk defined the segment (NS) has a unit normal vector njk oriented from Ωj to
Ωk.

Behavior when M → 0. When M → 0 the above inequality yields that θ ≥ (1/K)2 if one wants to enforce
uniform consistency with respect to M by setting θ = O(M). tThis leads to a contradiction. As a conclusion, a
correction scheme with θ = O(M) does not provide an entropic scheme in the asymptotic limit M → 0. On the
contrary, θ = 1 which correspond to the classic unmodified scheme is still entropic. Nevertheless, it is reasonable
to consider that in the limit M → 0, the solution of the gas dynamics equation is smooth and therefore the
consistency with an entropy criterion is a less critical matter.

5.4 Extension to several space dimensions with unstructured grids

Without loss of generality, we suppose that Ω ⊂ R2 is a polygonal domain that is covered by a set of N polygonal
cells (Ωj)1≤j≤N . Let Γ be a face of a cell Ωj , 1 ≤ j ≤ N . If Γ ⊂ ∂Ω, we suppose that there exists a single
k > N that will help to index ghost values for boundary conditions and we shall note Γ = Γjk. If Γ ∩ ∂Ω = ∅,
we suppose that the mesh is admissible in the sense that there exists a single 1 ≤ k ≤ N such that Γ = Ωj ∩Ωk.
Moreover, for 1 ≤ j ≤ N and 1 ≤ k ≤ N we suppose that Ωi ∩Ωj can either be empty, a vertex or a single face
of the mesh. If Γjk be the face of a cell Ωj then njk will denote the unit vector normal to Γjk pointing out of Ωj .
We define N(j) the set of indices k such that Γjk is a face of Ωj . Let E = {(j, k) | 1 ≤ j, k ≤ N, k ∈ N(j)} and
Eext = {(j, k) | 1 ≤ j ≤ N, k ∈ N(j),Γjk ⊂ ∂Ω}. In sequel x = (x1, x2) ∈ R2 will denote the space variable.

We will now present a natural extension of our discretization strategy for the case of multi-dimensional
problems with unstructured grids. Within this framework, the classical Lagrange-Remap algorithm involves
tracking a genuine multi-dimensional moving mesh. This task is a very delicate matter as the mesh may be
dramatically distorted during the simulation. We will here present a much simpler approach that relies on
the alternative guideline proposed in section 3. A similar approach was used to derive an explicit scheme for
two-component interface problems in [?].

Consider the operator splitting of (1) into the following systems
∂tρ+ ρdiv(u) = 0,

∂t(ρu) + ρudiv(u) +∇p = 0,

∂t(ρE) + ρEdiv(u) + div(Pu) = 0,

(52a)

(52b)

(52c)

and 
∂tρ+ (u · ∇)ρ = 0,

∂t(ρu) + (u · ∇)ρu = 0,

∂t(ρE) + (u · ∇)ρE = 0.

(53a)

(53b)

(53c)

Before going any further, let us note that we obtain similar properties as for the systems (4) and (5). Indeed
system (52) is a quasilinear hyperbolic system that involves the two nonlinear acoustic waves of velocity ±c and
two null velocity contact discontinuities waves. System (52) only involves acoustic phenomena while freezing
the material transport, while (53) is pure multi-dimensional transport system at the material velocity u.

We adopt the same strategy as in section 3: given a fluid state (ρ, ρu, ρE)nj ,
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• update the fluid state to the value (ρ, ρu, ρE)n+1−
j by approximating the solution of (52),

• update the fluid state to the value (ρ, ρu, ρE)n+1
j by approximating the solution of (53).

Approximation of the acoustic system (52)
System (52) can be expressed

∂tτ − τ(x, t)div(u) = 0, ∂tu + τ(x, t)∇p = 0, Et + τ(x, t)div(pu) = 0.

Using the same lines as in section 3 we consider a Suliciu-type relaxation approximation

∂tτ − τ(x, t)div(u) = 0, ∂tu + τ(x, t)∇Π = 0, Et + τ(x, t)div(pu) = 0, Πt + τ(x, t)a2div(u) = ν(p−Π),

in the regime ν → +∞. Once again, for t ∈ [tn, tn + ∆t), this task is achieved by setting Π(x, tn) = p(x, tn)
and then solving the relaxation system for ν = 0. We approximate again τ(x, t)∂xr by τ(x, tn)∂xr for r = 1, 2
when t ∈ [tn, tn + ∆t). In the regime λ = 0 our approximation of (52) becomes

∂tτ −τ(x, tn)div(u) = 0, ∂tu+τ(x, tn)∇Π = 0, Et+τ(x, tn)div(pu) = 0, Πt+τ(x, tn)a2div(u) = 0. (54)

If b is a flow parameter and bnj is an approximation of 1
|Ωj |

∫
Ωj
b(x, tn) dx, we solve (54) thanks to the following

classical Finite-Volume method 

un+1−
j = unj − τnj ∆t

∑
k∈N(j)

σjk Π∗,θjk njk,

Πn+1−
j = Πn

j − τnj ∆t
∑

k∈N(j)

σjk (ajk)2u∗jk,

τn+1−
j = τnj + τnj ∆t

∑
k∈N(j)

σjk u
∗
jk,

En+1−
j = Enj − τnj ∆t

∑
k∈N(j)

σjk Π∗,θjk u
∗
jk,

(55a)

(55b)

(55c)

(55d)

where σjk = |Γjk|/|Ωj |.
The three scalar quantities ajk, Π∗,θjk and u∗jk that respectively represent an average sound velocity, a pressure

and the normal velocity at the face Γjk. In order to define these quantities, we classicaly take advantage of the
fact that (54) is rotational invariant. This allows to associate in the referential of each face Γjk a Suliciu-type
relaxation approximation of a one-dimensional Riemann problem in the frame of the face. Noting ] ∈ {n, n+1−},
this leads us to set

ajk ≥ max[(ρc)nj , (ρc)
n
k ],

u∗jk =
1

2
nTjk(u]j + u]k)− 1

2ajk
(Π]

k −Π]
j),

Π∗,θjk =
1

2
(Π]

j + Π]
k)− ajkθjk

2
nTjk(u]k − u]j).

(56a)

(56b)

(56c)

When ] = n the solver is explicit and when ] = n+ 1−, the solver is implicit.

Approximation of the transport system (53)
In order to approximate the solution of (53), we simply use an upwind Finite-Volume scheme. Let ϕ ∈
{ρ, ρu1, ρu2, ρE}, we set

ϕn+1
j = ϕn+1−

j −∆t
∑

k∈N(j)

σjk u
∗
jkϕ

n+1−
jk + ∆tϕn+1−

j

∑
k∈N(j)

σjk u
∗
jk, (57)

where ϕn+1−
jk is defined by the upwind choice with respect to the sign of u∗jk, namely

ϕn+1−
jk =

{
ϕn+1−
j , if u∗jk > 0,

ϕn+1−
k , if u∗jk ≤ 0.
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Proposition 6. The overall numerical scheme composed by the discretization steps (55a)-(55d) and (57) is
conservative with respect to the variable ρ, ρu and ρE, for both the implicit solver and the explicit solver. The
update of these variables from tn to tn+1 reads

ρn+1
j − ρnj + ∆t

∑
k∈N(j)

σjk ρ
n+1−
jk u∗jk = 0,

(ρu)n+1
j − (ρu)nj + ∆t

∑
k∈N(j)

σjk

(
(ρu)n+1−

jk u∗jk + Π∗,θjk njk

)
= 0,

(ρE)n+1
j − (ρE)nj + ∆t

∑
k∈N(j)

σjk

(
(ρE)n+1−

jk + Π∗,θjk

)
u∗jk = 0.

(58a)

(58b)

(58c)

The semi-implicit solver obtained for ] = n+ 1− can be decomposed along the following steps: the acoustic
step first involves solving the linear system (55a)-(55b) for computing the acoustic velocity un+1−

j and pressure

term Πn+1−
j . The acoustic step is completed by the update of τn+1−

j and En+1−
j thanks to the explicit

procedures (55c) and (55d). The last stage of the semi-implicit solver is achieved thanks to the explicit transport
scheme (57).

We want now to investigate further the implicit system involved with the semi-implicit method for the
specific case of wall-boundary conditions that we implement by imposing ghost values Πn+1−

k and nTjku
n+1−
k

for a boundary face Γjk ⊂ ∂Ω, where 1 ≤ j ≤ N and k ∈ N(j), k > N with

Πn+1−
k = Πn+1−

j , nTjku
n+1−
k = −nTjku

n+1−
j . (59)

We have the following proposition.

Proposition 7. We consider the case of the semi-implicit solver with implementation of wall boundary condi-
tions (59) and a uniform choice of a, i.e. ajk = a for all 1 ≤ j ≤ N and k ∈ N(j). If τnj > 0 for all 1 ≤ j ≤ N ,
then the linear system (55a)-(55b) always possesses a single solution for any ∆t > 0 and θjk > 0.

Proof. For the sake of readability, we shall note here un+1−
j = uj and Πn+1−

j = Πj . The finite-dimension linear
system (55a)-(55b) reads

|Ωj |uj + τnj ∆t
∑

k∈N(j)

|Γjk|
[

1

2
(Πj + Πk)− aθjk

2
nTjk(uk − uj)

]
njk = |Ωj |unj ,

|Ωj |Πj + τnj ∆t
∑

k∈N(j)

|Γjk|a2

[
1

2
nTjk(uj + uk)− 1

2a
(Πk −Πj)

]
= |Ωj |Πn

j .

(60a)

(60b)

This system admits a unique solution if and only if uj = 0, Πj = 0, 1 ≤ j ≤ N is the only solution of the
particular case obtained for unj = 0, Πn

j = 0, 1 ≤ j ≤ N . Thus, let us now suppose that the right members of

(60) are null, we proceed using an energy estimate type proof. Left multiply (60a) by
2uTj
τnj ∆t

and sum over j,

we obtain

0 =

N∑
j=1

2|Ωj ||uj |2

τnj ∆t
+

N∑
j=1

∑
k∈N(j)

|Γjk|(Πj + Πk)(uTj njk)−
N∑
j=1

∑
k∈N(j)

|Γjk|aθjk(uTj njk)(uk − uj)
Tnjk. (61)

Accounting for the fact that
∑

k∈N(j)

|Γjk|njk = 0, the second term of (61) verifies

N∑
j=1

∑
k∈N(j)

|Γjk|(Πj + Πk)(uTj njk) =

N∑
j=1

∑
k∈N(j)

|Γjk|Πku
T
j njk.
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Using boundary conditions (59), the third term of (61) reads

N∑
j=1

∑
k∈N(j)

|Γjk|aθjk(uTj njk)(uk − uj)
Tnjk

=
∑

(j,k)∈E

|Γjk|aθjk
[
(uTj njk)(uk − uj)

Tnjk + (uTk nkj)(uj − uk)Tnkj

]
+

∑
(j,k)∈Eext

|Γjk|aθjk(uTj njk)(uk − uj)
Tnjk

= −
∑

(j,k)∈E

|Γjk|aθjk
[
(uk − uj)

Tnjk

]2
− 2

∑
(j,k)∈Eext

|Γjk|aθjk[(uTj njk)]2.

Finally we see that (61) is equivalent to

0 =

N∑
j=1

2|Ωj ||uj |2

τnj ∆t
+

N∑
j=1

∑
k∈N(j)

|Γjk|Πku
T
j njk+

∑
(j,k)∈E

|Γjk|aθjk
[
(uk−uj)

Tnjk

]2
+2

∑
(j,k)∈Eext

|Γjk|aθjk[(uTj njk)]2. (62)

Let us turn to the pressure equation (60b), we multiply by
2Πj

τnj a
2∆t

and sum over all 1 ≤ j ≤ N , this yields

0 =

N∑
j=1

2|Ωj |Π2
j

τnj a
2∆t

+

N∑
j=1

∑
k∈N(j)

|Γjk|nTjk(uj + uk)Πj −
N∑
j=1

∑
k∈N(j)

1

a
|Γjk|(Πk −Πj)Πj . (63)

Using once again
∑

k∈N(j)

|Γjk|njk = 0, we have for the second term of (63) that

N∑
j=1

∑
k∈N(j)

|Γjk|nTjk(uj + uk)Πj =

N∑
j=1

∑
k∈N(j)

|Γjk|nTjkukΠj .

Accounting for (59), the third term of (63) verifies

N∑
j=1

∑
k∈N(j)

|Γjk|
a

(Πk −Πj)Πj =
1

a

∑
(j,k)∈E

|Γjk|
[
(Πk −Πj)Πj − (Πj −Πk)Πk

]
+

1

a

∑
(j,k)∈Eext

|Γjk|(Πk −Πj)Πj

= −1

a

∑
(j,k)∈E

|Γjk|(Πk −Πj)
2.

Then, we see that (63) also reads

0 =

N∑
j=1

2|Ωj |Π2
j

τnj a
2∆t

+

N∑
j=1

∑
k∈N(j)

|Γjk|nTjkukΠj +
1

a

∑
(j,k)∈E

|Γjk|(Πk −Πj)
2. (64)

We now remark that

N∑
j=1

∑
k∈N(j)

|Γjk|nTjkukΠj =
∑

(j,k)∈E

|Γjk|(nTjkukΠj + nTkjujΠk) +
∑

(j,k)∈Eext

|Γjk|nTjkukΠj

=
∑

(j,k)∈E

|Γjk|nTjk(ukΠj − ujΠk)−
∑

(j,k)∈Eext

|Γjk|nTjkujΠj ,

and also that

N∑
j=1

∑
k∈N(j)

|Γjk|Πku
T
j njk =

∑
(j,k)∈E

|Γjk|(Πku
T
j njk + Πju

T
k nkj) +

∑
(j,k)∈Eext

|Γjk|Πku
T
j njk

=
∑

(j,k)∈E

|Γjk|nTjk(Πkuj −Πjuk) +
∑

(j,k)∈Eext

|Γjk|Πjn
T
jkuj .
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Therefore
N∑
j=1

∑
k∈N(j)

|Γjk|Πju
T
k njk +

N∑
j=1

∑
k∈N(j)

|Γjk|Πku
T
j njk = 0.

Thus, summing (62) and (64), we obtain

0 =

N∑
j=1

2|Ωj |
τnj ∆t

(
|uj |2 +

Π2
j

a2

)
+
∑

(j,k)∈E

|Γjk|
{
aθjk

[
(uk − uj)

Tnjk

]2
+

(Πk −Πj)
2

a

}
+2

∑
(j,k)∈Eext

|Γjk|
{
aθjk[(uTj njk)]2

}
.

This implies that |uj | = Πj = 0 for all 1 ≤ j ≤ N .

Remark 4. It is possible to derive a similar proof for the case of periodic boundary conditions.

We now examine the stability of the multi-dimensional operator splitting strategy (55), (56) and (57). The
acoustic step (55) in the explicit cases ] = n is stable under the CFL condition

∆t max
1≤j≤N

[
τnj

(
max
k∈N(j)

σjkajk

)]
≤ 1

2
. (65)

For both the explicit scheme ] = n and semi-implicit scheme ] = n+ 1−, the transport step (57) is stable under
the CFL condition

∆t max
1≤j≤N

 ∑
k∈N(j)

∣∣∣σjk(nTjku
∗,θ
jk )
∣∣∣
 ≤ 1. (66)

When one uses the semi-implicit scheme ] = n+ 1−, the condition (66) becomes implicit as the computation of

u∗,θjk depends on a given ∆t. In our simulations with the semi-implicit scheme, we chose to compute ∆t thanks

to the CFL condition (66) with the value u∗,θjk given by the fully explicit scheme ] = n. It is then possible to
check a posteriori that this ∆t value matches (66).

We gather thereafter the properties of the explicit and semi-implicit multi-dimensional schemes.

Theorem 2. Suppose that (65), (66) and (12) are satisfied. The explicit scheme defined by (55) and (57) with
] = n verifies

1. the scheme is conservative with respect to the density ρ, the momentum ρu and total energy ρE,

2. the density ρnj is positive for all j and n > 0 provided that ρ0
j is positive for all j,

3. if θ = O(M), then the truncation error of the numerical scheme is uniform with respect to M < 1,

4. if (43) is verified then the numerical scheme is equipped with a discrete entropy inequality,

5. if (43) is verified then enj > 0 for all j ∈ Z and all n ∈ N.

Theorem 3. Suppose that (66) and (12) are satisfied. The semi-implicit scheme defined by (55) and (57) with
] = n+ 1− verifies

1. the scheme is conservative with respect to the density ρ, the momentum ρu and total energy ρE,

2. the density ρnj is positive for all j and n > 0 provided that ρ0
j is positive for all j,

3. if θ = O(M), then the truncation error of the numerical scheme is uniform with respect to M < 1.

Let us note that the implicit treatment of the acoustic step leads to a CFL restriction (66) based only on
(slow) material waves.
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6 Numerical results

In this section, we present numerical results computed thanks to the general operator splitting strategy (55),
(56) and (57) with the following schemes:

• EX(θ = 1): the explicit operator splitting scheme obtained for θjk = 1 and ] = n,

• EX(θ = O(M)) : the explicit modified operator splitting scheme obtained with the low Mach correction

θjk = min
(
|u∗jk|/max(cnj , c

n
k ), 1

)
and ] = n,

• EX(θ = 0) : the explicit modified operator splitting scheme with centered pressure gradient θjk = 0 and
] = n,

• IMEX(θ = 1) : the semi-implicit operator splitting scheme with θjk = 1 and ] = n+ 1−,

• IMEX(θ = O(M)) : the modified semi-implicit operator splitting scheme with ] = n+1− and a low Mach
correction θjk defined as in the case of EX(θ = O(M)),

• IMEX(θ = 0) : the modified semi-implicit operator splitting scheme with a centered pressure gradient
θij = 0 and ] = n+ 1−.

Remark 5. The choice of the modification θjk = min
(

|u∗
jk|

max(cnj ,c
n
k ) , 1

)
corresponds to a low Mach correction.

Indeed, this choice is non-dimensional, in (0, 1), such that θ = O(M) in the low Mach regime and θ = 1 for
large Mach numbers. In this latter case, we then recover the classical scheme without modification.

In the sequel, we shall consider that the fluid follows a perfect gas equation of state p = (γ − 1)ρe with a
specific heat ratio γ = 1.4. We will test schemes on both low Mach and order 1 Mach number test cases.

6.1 Low Mach number examples

In this section we will consider low Mach tests and try to examine two questions: the accuracy gain for
simulations on coarse grid in the low Mach regime thanks to the proposed correction, then the benefit of using
a semi-implicit strategy in term of CPU time.

Vortex in a Box

We consider a test performed in [5]. The computational domain is Ω = [0, 1]2 with an initial condition is given
by

ρ0(x1, x2) = 1− 1

2
tanh

(
x2 −

1

2

)
, u0(x1, x2) = 2 sin2(πx1) sin(πx2) cos(πx2),

p0(x1, x2) = 1000, v0(x1, x2) = −2 sin(πx1) cos(πx1) sin2(πx2).

No-slip boundary conditions are imposed on the domain boundaries. The Mach number for the resulting flows
is of order 0.026, so that we are in the low Mach regime. Results are displayed in table 1 and figures 2 and 3.

We first use the schemes EX(θ = 1) with a 400× 400-cell and a 50× 50-cell mesh. As expected the scheme
performs poorly on the coarse mesh and the gain of accuracy is obvious when one refines the mesh: a mesh size
of order M is required, but it comes at a much higher price in terms of CPU time as we can see on table 1. The
EX(θ = O(M)) scheme gives good results even with the coarse 50× 50-cell grid. With the low Mach correction
scheme the connection between the accuracy of the solution and the mesh size does not seem to be constrained
by M . Therefore, for a given target accuracy on a relatively coarse mesh, this numerical scheme is also much
cheaper in term of CPU time.

Let us now turn to the semi-implicit strategies where the time step was chosen in agreement with the material
CFL condition (66). While the IMEX(θ = 1) is not CPU intensive on a coarse mesh the results are very altered
by the numerical diffusion. The IMEX(θ = O(M)) scheme performs fast and allows to recover numerical results
that are as good as EX(θ = O(M)). As with the EX(θ = M) scheme the accuracy seems much less constrained
by the Mach number when it comes to choosing the time step and the mesh size. As we can see in table 1, the
IMEX(θ = O(M)) scheme is 3.34 times faster than the EX(θ = O(M)).
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Table 1: Vortex in a box test case. Comparison of the number of iterations and CPU time of EX(θ = 1),
EX(θ = O(M)), IMEX(θ = 1) and IMEX(θ = O(M)) schemes to obtain solutions of figure 2 and figure 3.

Numerical scheme EX(θ = 1) EX(θ = 1) EX(θ = O(M)) IMEX(θ = 1) IMEX(θ = O(M))
Mesh 400× 400 50× 50 50× 50 50× 50 50× 50

Number of iterations 18 457 2 306 2 305 43 56
CPU time (s) 9 263.04 (2h 34 min) 17.14 19.3 3.75 5.77

(a) (b) (c) (d)

Figure 2: Vortex in a box test case with a Cartesian mesh. Profile at time t = 0.125 s of the velocity magnitude
for (a) EX(θ = 1), (b) EX(θ = O(M)) with a 50×50-cell Cartesian mesh, (c) velocity magnitude obtained with
EX(θ = 1) using a 400× 400 Cartesian mesh and (d) Mach number obtained with EX(θ = 1) using a 400× 400
Cartesian mesh.

Figure 3: Vortex in a box test case with a Cartesian mesh. Profile at time t = 0.125 s of the velocity magnitude
for the IMEX(θ = 1) scheme (left) and the IMEX(θ = O(M)) scheme (right) on a 50× 50-cell Cartesian mesh.
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Table 2: Backward facing step test case. Comparison of the number of iterations and CPU time of EX(θ = 1),
EX(θ = O(M)), IMEX(θ = 1) and IMEX(θ = O(M)) schemes to obtain solutions of figure 4 and figure 6.

Numerical scheme EX(θ = 1) EX(θ = O(M)) IMEX(θ = 1) IMEX(θ = O(M))

Number of time steps 5 258 803 5 258 784 4 384 4 970
CPU time (s) 62 805.6 (17h 27min) 69 764.7 (19h 22min) 418.37 (6min 58s) 500.83 (8min 20s)

Backward facing step

We consider now the case of an inviscid flow passing a backward facing step as derived from [7]. The computa-
tional domain is Ω = [0, 18]× [0, 2] r (0, 4)× (0, 1). The initial condition is given by

ρ0(x1, x2) = 10, u0(x1, x2) = 1, p0(x1, x2) = 105, v0(x1, x2) = 0.

We impose an inlet boundary condition at {0} × [1, 2] and an outlet boundary condition at {12} × [0, 2]. Wall
boundary conditions are set on other boundaries. This configuration leads to a low Mach flow with the order
of magnitude 10−3 ≤M ≤ 10−2. All tests are performed with a 220× 20 Cartesian space grid.

Figure 4 and 6 display the flow profile at t = 50 s, we observe that EX(θ = 1) and IMEX(θ = 1) schemes do
not capture the vortex of the fluid in the low Mach velocity region. On the contrary, thanks to the low Mach
correction EX(θ = O(M)) and IMEX(θ = O(M)) schemes are both able to capture this vortex with a coarse
Cartesian Mesh. In term of CPU cost, measure are presented in table 2. We observe that the IMEX(θ = O(M))
scheme is 139.29 times faster than the EX(θ = O(M)) scheme thanks to the implicit treatment of the acoustic
step, thanks to the use of material velocity CFL condition (66).

Figure 4: Backward facing step test case. Profile at t = 50 s of the velocity magnitude and stream lines for the
EX(θ = 1) scheme (top) and the EX(θ = O(M)) scheme (bottom) on a 220× 20-cell Cartesian mesh.

Figure 5: Backward facing step test case. Mapping at t = 50 s of the Mach number values for EX(θ = O(M))
scheme with a 220× 20-cell Cartesian mesh.
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Figure 6: Backward facing step test case. Mapping at t = 50 s of the velocity magnitude and stream lines
obtained with the IMEX(θ = 1) scheme (top) and the IMEX(θ = O(M)) scheme (bottom) using a 220× 20-cell
Cartesian mesh.

6.2 Compressible flow examples

In this section, we assess the ability of our operator splitting scheme to handle cases where the flow may not
remain uniformly in the same Mach regime over the whole computational domain Ω. We will see that even with
a centred pressure discretization (which corresponds to the choice θ = 0), the solution remains stable but may
be less precise in area where the Mach number is of order 1. The semi-implicit scheme becomes slower than the
explicit scheme when the Mach number is of order 1 as the benefit from using a material CFL (66) condition
instead of an acoustic CFL (65) becomes less beneficial but requires solving a linear system.

1D Sod shock tube

We consider a variant of the classical Sod shock tube [26], that consists in solving the one-dimensional Riemann
problem over Ω = [0, 1] defined by the initial conditions (ρ, u, P ) = (1.0, 0.0, 105) for x < 0.5 and (ρ, u, P ) =
(0.1, 0.0, 104) for x > 0.5. We impose Neumann boundary conditions during the test. The domain is discretized
over a 1000-cell grid. This resulting Mach number verifies 0 < M < 0.95, so that we have both low Mach and
order 1 Mach values. We plot the solution at t = 3.1× 10−4 s.

Figure 7 displays the results obtained with EX(θ) and IMEX(θ) for θ = 1 and θ = 0. We use as reference
solution an approximation computed with EX(θ = 1) using a 10 000-cell mesh. All schemes show a good
agreement with the reference solution. The schemes EX(θ = 0) and IMEX(θ = 0) schemes are slightly less
diffused than the EX(θ = 1) and IMEX(θ = 1) schemes results. Let us underline that despite part of the
solutions clearly do not belong to the low Mach regime since M ' 0.95, the schemes EX(θ = 0) and IMEX(θ = 0)
are stable and provide good numerical results while involving a centered pressure discretization with θij = 0.

2D-Riemann problem

We consider a 2D Riemann problem that consists of 4 shock waves [22]. We consider the domain Ω = [0, 1]2.
The initial condition is

(ρ, u1, u2, P )(x1, x2, t = 0) =


(0.1380, 1.206, 1.206, 0.029), for x1 < 0.5, x2 < 0.5

(0.5323, 0.000, 1.206, 0.300), for x1 > 0.5, x2 < 0.5

(0.5323, 1.206, 0.000, 0.300), for x1 < 0.5, x2 > 0.5

(1.5000, 0.000, 0.000, 1.500), for x1 > 0.5, x2 > 0.5

We impose Neumann boundary conditions. This configuration leads to a Mach number that ranges from 10−5

to 3.15, i.e. according to the regions of the computation domain, the flow belongs to the low Mach regime or
the order 1 Mach regime. We consider as a reference solution the approximation obtained with EX(θ = 1) for
a 200× 200-cell Cartesian mesh. Figures 8, 9 10 and 11 display the result at t = 0.4 s.

We observe in figure 8 and figure 9 that EX(θ = 0) and IMEX(θ = 0) schemes are stable for this test case
with both low Mach and order 1 Mach number values regions. Both figure show that the wave pattern at the

22



Figure 7: 1D Sod shock tube test case. Profile at t = 3.1×10−4 s of the density (top left), velocity magnitude (top
right), pressure (bottom left) and Mach number (bottom right) for the EX(θ = 1), EX(θ = 0), IMEX(θ = 1),
IMEX(θ = 0) using a 1000-cell grid, together with reference solution.

Table 3: 2D Riemann problem test case. Comparison of the number of time steps and CPU time necessary for
reaching t = 0.4 s with a 50×50-cell Cartesian grid with EX(θ = 1), EX(θ = 0), IMEX(θ = 1) and IMEX(θ = 0).

Numerical scheme EX(θ = 1) EX(θ = 0) IMEX(θ = 1) IMEX(θ = 0)

Number of iterations 323 343 216 218
CPU time (s) 2.59 2.79 10.28 10.33

center of the domain shape is better captured with coarse meshes when one uses the corrected schemes (θ = 0).
A 1D cut along the axis y = x as depicted in figure 10, also corroborates this observation: the approximation
obtained with EX(θ = 0) and IMEX(θ = 0) schemes are closer to the 200 × 200-cell reference solution thanks
to the numerical diffusion reduction. Nonetheless, we observe on a 1D cut along the x = 0.75 axis in figure 11
a spurious overshot for both density and pressure located at the shock front with EX(θ = 0) and IMEX(θ = 0).
This suggests that a small value of θ allows to improve the precision of the scheme by reducing the numerical
diffusion but it may cause overshoots if the value of θ becomes too small relatively to the local behavior of flow.
In all our numerical experiments the scheme seems to remain stable for any value of θ ∈ (0, 1). Let us note that
even if the pressure gradient is given a centred treatment (θ = 0), the transport step introduce some numerical
diffusion (independent of M) that stabilize the scheme see (32).

In table 3 we observe that the choice of θ does not impact the number of time steps and CPU time. For
this case, while the number of time steps is slightly reduced by about 30%, the semi-implicit schemes are much
slower due to the time required for solving the linear system involved with the schemes.

As a partial conclusion of this section, we can observe that for tests that strongly involve the compressibility
of the fluid both semi-implicit and explicit schemes seem to be very robust, independantly of the choice of θ
within [0, 1]. However, if the low Mach correction is too important, i.e. the value of θ is too close to 0 we
witnessed a deterioration of the numerical approximation with the appearance of overshoots in the vicinity of

shock fronts. Then some numerical criterion may be constructed with good properties, θij = min
(

|u∗
ij |

max(cni ,c
n
j ) , 1

)
for instance. We also observed that the benefit in terms of CPU time of the semi-implicit scheme vanishes when
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(a) (b) (c) (d)

Figure 8: 2D Riemann problem with a Cartesian mesh. Profile at t = 0.4 s of the velocity magnitude for
(a) EX(θ = 1), (b) EX(θ = 0) with a 50 × 50-cell mesh, (c) velocity magnitude and (d) Mach number with
EX(θ = 1) using a 200× 200 mesh.

Figure 9: 2D Riemann problem test case. Profile at t = 0.4 s of the velocity magnitude for IMEX(θ = 1) (left)
and IMEX(θ = 0) (right) on a 50× 50-cell Cartesian mesh.

Figure 10: 2D Riemann problem test case. Cut profile along y = x at t = 0.4 s of the density, velocity
magnitude, pressure and Mach number for EX(θ = 1), EX(θ = 0), IMEX(θ = 1) and IMEX(θ = 0) using a
50× 50 mesh together with the 200× 200-cell reference solution.
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Figure 11: 2D Riemann problem test case. Cut profile along x = 0.75 at t = 0.4 s of the density, velocity
magnitude, pressure and Mach number for EX(θ = 1), EX(θ = 0), IMEX(θ = 1) and IMEX(θ = 0) using a
50× 50 mesh together with the 200× 200-cell reference solution.

the Mach number becomes of order 1.
The implementation of the criterion on θ to recover a discrete entropy inequality does not allow to recover

a good low Mach behaviour as it was expected from its low Mach analysis. Finding from a theoretical point of
view a criterion on θ that allows to recover a good low Mach behaviour and avoid spurious phenomenon that
may occur if θ is too small for a given configuration is still an open problem.

Remark 6. The robustness of the scheme with respect to the modification θ ≥ 0 seems to be linked to the
Lagrange-Projection decomposition approach. Indeed, numerical evidences not presented here show that a mod-
ified relaxation scheme written in Eulerian coordinates is unstable outside of the low-Mach regime for value of
θ that are too small. For instance, The Sod shock test tube require θ > 0.63 to be stable.

7 Conclusion

We proposed a conservative operator splitting based Lagrange-Projection like numerical strategy for approxi-
mating the gas dynamics that decouples acoustic and transport phenomenons. The operator splitting scheme is
positive for the density, the internal energy and entropic under classical CFL conditions. For one-dimensional
problem, this procedure is equivalent to a Lagrange-Projection discretization. We presented an analysis of the
way the truncation error depends on the Mach number for one-dimensional problems. In the low Mach regime,
the truncation error of the scheme showed to be non-uniform with respect to the Mach number M . This al-
lowed us to modify the operator splitting scheme in order to recover a uniform truncation error in term of M by
altering the numerical flux in the acoustic approximation. We showed that this modification can be obtained
thanks to a simple approximate Riemann solver that is consistent with the integral form of the PDEs. This
modified operator splitting scheme is conservative and endowed with good stability properties with respect to
the positivity of the density, the internal energy under classical acoustic CFL conditions that depend on M .
The resulting scheme allows to deal with tests where the flow regime may vary from low to high Mach values.

We showed that this splitting strategy has a natural extension to multi-dimensional problems discretized
over unstructured meshes. A simple and efficient semi-implicit scheme that is stable under CFL conditions
based on the material velocity is also proposed and leads to an all-regime numerical scheme, following the ideas
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paved by [6] for one-dimensional problems.
Future developments include extensions to high-order methods and approximation of other systems for the

simulation of multi-material flows.
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A Classical Lagrange-Projection for one-dimensional gas dynamics

In this section we briefly recall the classical Lagrange-Projection (or Lagrange-Remap) procedure for deriving a
Finite Volume discretization within a one-dimensional framework. For a detailed description we refer the reader
to [15, 13]. Let (X, t)R× [tn, tn + ∆t) 7→ χ be the mapping defined by

∂tχ = u(χ(X, t), t), χ(X, t = tn) = X.

The pair (X, t) is usually referred to as the Lagrangian system of coordinates: a particle of fluid at the position
X at instant t = tn will be located at x = χ(X, t), t ∈ [tn, tn + ∆t]. If (x, t) 7→ b is a mapping that provides
an Eulerian representation of a parameter b, one defines a Lagrangian representation of b as the function
(X, t) 7→ bLag by setting bLag(X, t) = b(χ(X, t), t). The system (3) is equivalent to

∂tV
Lag(X, t) + τLag(X, tn)∂XFLag(VLag)(X, t) = 0,

{
VLag = (τLag, uLag, vLag, ELag)T ,

FLag(VLag) = (−uLag, pLag, 0, pLaguLag)T .
(67)

It is common to introduce a mass coordinate m defined by dm = ρ(X, tn)dX in order to obtain the equivalent
conservation laws (with a slight abuse of notation)

∂tV
Lag(m, t) + ∂mFLag(VLag)(m, t) = 0. (68)

Straightforward calculations show that (68) (which is nothing but (6)) is hyperbolic over the phase space

ΩLag = {(τLag, uLag, vLag, ELag)T ∈ R4, τLag > 0, eLag > 0}, with eigenvalues given by λLag
1 = −ρc < λLag

2 =

0 < λLag
3 = ρc, where c still denotes the Eulerian sound speed. Here again, the extreme characteristic fields

associated with λLag
1 and λLag

3 are genuinely non linear while the intermediate characteristic field associated

with λLag
2 is linearly degenerate. It is important to note that the material transport phenomenons are frozen in

system (68) which explains why the characteristics speeds of the system only involve the sound velocity c.
Before going any further, we introduce classical notations: let ∆t > 0 and ∆x > 0 be respectively the time

and space steps. We define the Eulerian mesh interfaces xj+1/2 = j∆x for j ∈ Z, and the intermediate times

tn = n∆t for n ∈ N. If b is a fluid parameter, in the sequel, we will note bnj (resp. bn+1
j ) the approximate value b

respectively within the jth Eulerian cell [xj−1/2, xj+1/2) at instant t = tn (resp. t = tn+1). We need to introduce
a moving Lagrangian mesh (with respect to the Eulerian mesh) whose cell j at instant tn is [xj−1/2, xj+1/2)
and at instant t = tn+1 is [x∗j−1/2, x

∗
j+1/2). The value of the parameter b at instant tn (resp. t = tn+1) in the

Lagrangian cell j is noted bLag
j (resp. bn+1−

j ). Given a fluid state (ρ, ρu, ρv, ρE)nj , j ∈ Z at instant tn, the
Lagrange-Projection strategy proposes the following update procedure.

1. Build the discrete Lagrangian fluid state at instant tn by setting (VLag)j = (τnj , u
n
j , v

n
j , E

n
j );

2. Update the Lagrangian fluid state into the value (VLag)n+1−
j = (τn+1−

j , un+1−
j , vn+1−

j , En+1−
j ) by approx-

imating the solution of (68);

3. Build the updated value (ρ, ρu, ρv, ρE)n+1
j by remapping the Lagrangian state (VLag)n+1−

j onto the Eu-
lerian mesh.

The Lagrangian step (tn → tn+1−)
We propose to approximate the solution of (68) using the acoustic scheme [12, 13]. This leads to

τn+1−
j = τnj +

∆t

∆x
τnj (u∗j+1/2 − u

∗
j−1/2),

un+1−
j =unj −

∆t

∆x
τnj (p∗j+1/2 − p

∗
j−1/2),

vn+1−
j = vnj ,

En+1−
j = Enj −

∆t

∆x
τnj
(
(pu)∗j+1/2 − (pu)∗j−1/2

)
,

(69a)

(69b)

(69c)

(69d)

where the interfaces terms are defined by

u∗j+1/2 =
(unj + unj+1)

2
+

1

2anj+1/2

(pnj − pnj+1), p∗j+1/2 =
(pnj + pnj+1)

2
+
anj+1/2

2
(unj − unj+1),

(pu)∗j+1/2 = p∗j+1/2u
∗
j+1/2, anj+1/2 = max((ρc)nj , (ρc)

n
j+1).

(70)
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The acoustic scheme (69) with (70) provides the same update of the flow variable as the scheme (9) with (10). Let
us mention that a direct proof of stability for the acoustic scheme is available in [12] under the CFL criterion (17).

The projection (or remapping) step (tn+1− → tn+1)
The aim of this step is to project the solution obtained at the end of the Lagrangian step onto the Eulerian
cells [xj−1/2, xj+1/2). If one notes 1[x∗

j−1/2
,x∗

j+1/2
) the characteristic function of [x∗j−1/2, x

∗
j+1/2), a standard way

to achieve to goal consists in: first, approximating the position of the Lagrangian mesh interfaces at instant
tn+1 by setting x∗j+1/2 = xj+1/2 + u∗j+1/2∆t; second reaveraging the conservative variable unknowns over the

Eulerian mesh by setting [15]

ϕn+1
j =

1

∆x

∫ xj+1/2

xj−1/2

∑
j∈Z

ϕn+1−
j 1[x∗

j−1/2
,x∗

j+1/2
)(x)

dx, where ϕ ∈ {ρ, ρu, ρv, ρE}. (71)

Noting ∆x∗j = x∗j+1/2 − x
∗
j−1/2 and ε(j, n) = − sign(u∗j+1/2)1/2 one obtains the update formula

ϕn+1
j =

1

∆x

{
∆x∗jϕ

n+1−
j −∆t

(
u∗j+1/2ϕ

n+1−
j+1/2+ε(j,n) − u

∗
j−1/2ϕ

n+1−
j−1/2+ε(j−1,n)

)}
=

∆t

∆x
(u∗j+1/2 − u

∗
j−1/2)ϕn+1−

j − ∆t

∆x

(
u∗j+1/2ϕ

n+1−
j+1/2+ε(j,n) − u

∗
j−1/2ϕ

n+1−
j−1/2+ε(j−1,n)

). (72)

The update formula (72) matches the classic upwind scheme. Consequently this is the same numerical scheme
as (14).

B Approximate Riemann solvers: Harten Lax and van Leer formal-
ism

We briefly recall the Harten, Lax and van Leer formalism associated with the numerical approximation of the
solutions (x, t) ∈ R× [0,+∞) 7→ U ∈ Rm of the general hyperbolic system of conservation laws

∂tU + ∂xG(U) = 0, x ∈ R, t > 0, (73)

by means of the so-called approximate Riemann solvers and Godunov-type methods, where G : Rm → Rm is a
smooth function. System (73) is supplemented with the validity of an entropy inequality

∂tη(U) + ∂xq(U) ≤ 0, (74)

where U 7→ (η, q) is a strictly convex entropy-entropy flux pair (see [15]).
Solving the Riemann problem amounts to find the solution of (73) with the following piecewise constant

initial data

U(x, t = 0) =

{
UL, if x < 0,

UR, if x > 0,

for any given UL and UR in the phase space. It is well-known that the exact Riemann solution U(x/t; UL,UR)
is self-similar, i.e. depends only on the ration x/t. In order to approximate this solution, we consider a (self-
similar) simple approximate Riemann solver URP(xt ; UL,UR) made of l + 1 intermediate states Uk separated
by discontinuities propagating with velocities λ1 ≤ · · · ≤ λl, namely

URP

(x
t

; UL,UR

)
=



U1 = UL, if x/t < λ1,
...

Uk, if λk−1 < x/t < λk,
...

Ul+1 = UR, if x/t > λl.

(75)
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From [17, 1], if ∆x = 1
2 (∆xL+ ∆xR) with ∆xL > 0, ∆xR > 0 and ∆t > 0 are respectively space and time steps

that verify the CFL condition

max
1≤k≤l

|λk|
∆t

min(∆xL,∆xR)
≤ 1

2
, (76)

such an approximate Riemann solver is said to be consistent with the integral form of (73) over the interval
[−∆xL

2 , ∆xR

2 ]× [0,∆t] if
∫∫

[
−∆xL

2 ,
∆xR

2 ]×[0,∆t]
[∂tURP + ∂xG(URP)] dxdt = 0, in other words if

G(UR)−G(UL) =

l∑
k=1

λk(Uk+1 −Uk). (77)

Regarding the consistency with the entropy inequality (74), the simple approximate Riemann solver is said to
be consistent with the integral form of (74) if and only if under the CFL condition (76) we have

q(UR)− q(UL) ≤
l∑

k=1

λk
(
η(Uk+1)− η(Uk)

)
. (78)

Hereafter and using classic notations, (∆xj)j∈Z and ∆t represent the space steps and constant time step of
the mesh under consideration to define the approximate solutions. More precisely, we define the mesh interfaces
xj+1/2 = xj−1/2 + ∆xj for j ∈ Z, the intermediate times tn = n∆t for n ∈ N, and we note Un

j the approximate

value of U at time tn and on the cell [xj−1/2, xj+1/2). For n = 0 and j ∈ Z, we set U0
j = 1

∆x

∫ xj+1/2

xj−1/2
U0(x) dx

where U0(x) is the initial condition. Then, the explicit in time Godunov-type scheme reads
Un+1
j = Un

j −
∆t

∆xj
(Gn

j+ 1
2
−Gn

j− 1
2
),

Gn
j+ 1

2
= G(Un

j ,U
n
j+1),

(79a)

(79b)

with

G(UL,UR) =
1

2

[
G(UL) + G(UR)−

l∑
k=1

|λk|(Uk+1 −Uk)

]
. (80)

Moreover, if the simple approximate Riemann solver is consistent with the entropy inequality (74), then the
numerical scheme defined by (79) satisfies the following discrete entropy inequality

η(Un+1
j ) ≤ η(Un

j )− ∆t

∆xj
(qnj+ 1

2
− qnj− 1

2
),

qnj+ 1
2

= q̃(Un
j ,U

n
j+1),

with

q̃(UL,UR) =
1

2

[
q(UL) + q(UR)−

l∑
k=1

|λk|
(
S(Uk+1)− S(Uk)

)]
. (82)

The CFL condition associated with this (explicit in time) Godunov-type scheme reads

max
1≤k≤l

| λk(Un
j ,U

n
j+1) | ∆t

min(∆xj ,∆xj+1)
≤ 1

2
,

for all j. Again, we refer to [17, 1] for more details. To conclude this paragraph, let us observe that the
numerical flux G(UL,UR) and the entropy numerical flux q̃(UL,UR) are clearly consistent in the classical
sense, namely G(U,U) = G(U) and q̃(U,U) = q(U) provided that the intermediate states of the approximate
Riemann solver are such that Uk = U for all k = 1, ..., l as soon as UL = UR = U.
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C Riemann problem for the relaxation approximation of the acous-
tic system

We consider the Suliciu relaxation approximation of the Lagrangian gas dynamics equations expressed using a
mass coordinate. The system reads 

∂tτ − ∂mu = 0,

∂tu+ ∂mΠ = 0,

∂tv = 0,

∂tE + ∂m(Πu) = 0,

∂tΠ + a2∂mu = λ(p−Π),

(83a)

(83b)

(83c)

(83d)

(83e)

where a is a constant that verifies the subcharacteristic condition a > max (ρc) in order to prevent instabilities
(see for instance [3] for a rigorous proof). It is easy to prove that the convective part of (83) is strictly hyperbolic
with three eigenvalues given by −a, 0 and a which correspond to linearizations of the exact eigenvalues −ρc,
0 and ρc for system (67). Interestingly, the characteristic fields are linearly degenerate, which allows to solve
analytically the Riemann problem associated with (83) with λ = 0. More precisely, the exact Riemann solution

W(
m

t
; UL,UR) = (τ, u, v, E,Π)T (

m

t
; UL,UR)

associated with given left state UL = (τ, u, v, E,Π)TL and right state UR = (τ, u, v, E,Π)TR, is made of three

contact discontinuities propagating with velocities −a, a and 0 and separating two intermediate states U
∗
L and

U
∗
R, namely

W
(m
t

; UL,UR

)
=


UL, if m

t < −a,

U
∗
L, if −a < m

t < 0,

U
∗
R, if 0 < m

t < a,

UR, if m
t > a.

(84)

The intermediate states are easily recovered from the following formulas

u∗ = u∗L = u∗R =
uR + uL

2
− ΠR −ΠL

2a
, Π∗L = Π∗R = Π∗ =

ΠR + ΠL

2
− auR − uL

2
,

v∗L = vL, v∗R = vR,

τ∗L = τL +
u∗ − uL

a
, τ∗R = τR +

uR − u∗

a
,

E∗L = EL +
1

a

(
pLuL − u∗Π∗

)
, E∗R = ER −

1

a

(
pRuR − u∗Π∗

)
.

(85a)

(85b)

(85c)

(85d)

Then, setting UL = (τ, u, v, E)T , the classical scheme can be understood in the Harten, Lax and van Leer for-
malism by considering the following approximate Riemann solver W

(
m
t ; UL,UR

)
obtained by simply extracting

the first four components from W
(
m
t ; UL,UR

)
, in which we take Π at equilibrium, namely

ΠL = pL, ΠR = pR.

More precisely, we have

W
(m
t

; UL,UR

)
=


UL,

m
t < −a,

U∗L, −a < m
t < 0,

U∗R, 0 < m
t < a,

UR,
m
t > a,

(86)

where the intermediate states are given by (85), together with ΠL = pL and ΠR = pR.
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