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Posterior concentration rates for empirical Bayes procedures, with applications to Dirichlet Process mixtures.

[1] λ|A, γ, N

[2] A|λ, γ, N

[3] γ|A, λ, N.

where N is the observed Poisson process over [0, T ], namely a number of jumps N (T ) and jump instants (T 1 , . . . , T N (T ) ). In order to avoid an artificial truncation in λ, we use the slice sampler strategy proposed by [START_REF] Fall | Gibbs sampling methods for Pitman-Yor mixture models[END_REF]. More precisely, we consider the stick breaking representation of λ. Let c i be the affectation variable of data W i . The DPM model is written as:

W i |c i , θ * ∼ h θ ⋆ c i , P (c i = k) = w k , ∀k ∈ N * (w k ) k∈N ⋆ ∼ Stick(A), (θ * k ) k∈N ⋆ ∼ i.i.d G γ .
The slice sampler strategy consists in introducing a latent variable u i such that the joint distribution of (W

i , u i ) is p(W i , u i |ω, θ * ) = ∞ k=1 w k h θ * k (W i ) 1 ξ k 1l [0,ξ k ] (u i ) with ξ k = min(w k , ζ
), which can be reformulated as:

p(W i , u i |ω, θ * ) = 1 ζ 1l [0,ζ] (u i ) ∞ k=1,w k >ζ w k h θ * k (W i ) + ∞ k=1,ui≤w k ≤ζ h θ * k (W i )1l [0,w k ] (u i ) (1.1) (w k ) k≥1 verifying k≥1 w k = 1 (implying lim k→∞ w k = 0)
, the cardinal of {k, w k > ε} is finite for every ε > 0, and the sum in (1.1) is finite.

Remark 1 Note that the number of non-null terms in (1.1) is rigorously dependent of the observation index i (denoted K * i ). But in the algorithm we will deal with the maximum of the K * i :

K * = max{K * i , i = 1 . . . N (T )}
The Gibbs algorithm with the Slice sampler strategy now takes into account the latent variable u = (u 1 , . . . , u N (T ) ) which is sampled conjointly with λ, resulting into the following steps:

[

1 ⋆ ] λ, u|A, γ, N [2 ⋆ ] A|λ, u, γ, N [3 ⋆ ] γ|A, λ, u, N.
We now detail steps [1 ⋆ ] , [2 ⋆ ] and [3 ⋆ ].

Details of the algorithm

Initialisation The Gibbs algorithms are initialized on A (0) = 10 (0 referring to the iteration number of the Gibbs algorithm). We set:

K (0) = N T . for k = 1 . . . K, (θ * ) (0) k ∼ G γ .
When the hierarchical approach is considered on γ (γ ∼ Γ(a γ , b γ )), we initialize γ on its prior mean value: γ (0) = aγ bγ .

[1 ⋆ ] Sampling from λ, u|A, γ, N

Step [1 ⋆ ] of the Gibbs algorithm is decomposed into 5 steps which are detailed below. Let u = (u 1 , . . . , u N (T ) ), c = (c 1 , . . . , c N (T ) ), θ * = (θ 1 , . . . , θ K ⋆ ), ω = (w 1 , . . . , w K ⋆ ) -c, θ * and ω representing λ-be the current object. We denote by K N (T ) the number of non-empty classes:

K N (T ) = #{k ∈ {1 . . . K ⋆ }|∃j ∈ {1, . . . , N (T )} such that c j = k}
θ * and ω are ordered such that the elements indexed from K N (T ) + 1 to K ⋆ correspond to empty classes. u, c, θ * and ω are iteratively sampled as follows:

[1 ⋆ .a ] First we sample u|ω, θ * , c, N, A, γ using the following identities:

p(u|ω, θ * , c, N, A, γ) ∝ p(u, N |ω, θ * , c) = p(u, N |θ * , c) = N (T ) i=1 p(u i , W i |c i , θ ⋆ ci ) = N (T ) i=1 h θ ⋆ c i (W i ) 1 ξ ci 1l [0,ξc i ] (u i ) ∝ N (T ) i=1 1 ξ ci 1l [0,ξc i ] (u i )
where

ξ ci = min(w ci , ζ). So for every i = 1 . . . N (T ), u i ∼ U [0,min(wc i ,ζ)]
.

[1 ⋆ .b ] Secondly, we sample the weights of the empty classes (w k ) k≥K N (T ) +1 |N, ω, c, θ * , A, γ.

Without the slice sampler strategy, there is an infinite number to sample. But, thanks to the slice sampling, we only need to sample a finite number K ⋆ . The weights of the empty classes follow the prior distribution (stick breaking). For k > K N (T ) ,

v k ∼ B(1, A) w k = v k r k-1 r k = r k-1 (1 -v k )
As explained in [START_REF] Fall | Gibbs sampling methods for Pitman-Yor mixture models[END_REF], we know that we have to represent all the components such that their weights w k > u i for all the u i . Assume that we have sampled w 1 , . . . , w k , then the weights of the following components can not exceed the rest 1 -k j=1 w j = r k . So if r k is such that r k < u i , for all i = 1 . . . n, i.e. if r k < u ⋆ with u ⋆ = min{u 1 , . . . , u N (T ) } we are sure that there is no "interesting component" after that, "interesting" meaning that they won't appear in joint the distribution of (N, u). We can stop and get

K ⋆ = min{k, r k < u ⋆ }.
In the end we have sampled (w

K N (T ) +1 , . . . , w K ⋆ ). [1 ⋆ .c ] Sample the parameters of the empty classes, (θ * K N (T ) +1 , . . . , θ * K ⋆ ) ∀k = K N (T ) + 1, . . . , K ⋆ , θ * k ∼ i.i.d G γ [1 ⋆ .d ] Sample the index c = (c 1 , . . . , c N (T ) )|N, u, θ * ,
ω, i.e. affect the observations to the classes {1, . . . , K ⋆ }. Note that we will get new empty classes. The affectations are done using the following probabilities:

p(c|θ * , ω, u, N ) ∝ p(c, θ * , ω, u, N ) = p(N, u, c|θ * , ω)p(ω)p(θ * ) ∝ N (T ) i=1 p(W i , u i , c i |θ * , ω) p(c i = k|θ * , ω, u i , W i ) = w i,k ∝ h θ * k (W i ) w k min(ζ, w k ) 1l {k|ui<min(ζ,w k )} (k)
We obtain a new K N (T ) , which is the number of non-empty classes. We re-arrange the weights and the parameters by order of appearance in this affectation.

[1 ⋆ .e ] Update (w 1 , . . . , w K N (T ) ) and (θ 1 , . . . , θ K N (T ) ) for the non-empty classes.

p(θ k |u, N, ω, c) ∝ G γ (θ k ) n i=1,ci=k h θ k (W i ), ∀k = 1 . . . K N (T ) (1.2) w 1 , . . . , w K N (T ) , r K N (T ) ∼ Dir(n 1 , . . . , n K N (T ) , A)
where

n k = #{i|c i = k} and r K N (T ) = 1 - K N (T ) k=1
w k . Note that when G γ is the inverse of the translated inverse exponential distribution, p(θ k |u, N, ω, c) given in equation (1.2) is:

p(θ k |u, N, ω, c) ∝ 1 1 θ k -1 T a-1 e - γ 1 θ k -1 T 1 θ n k k 1l 1 max i|c i =k W i ,+∞ (θ k ) (1.3)
Its simulation can not be performed directly and we resort to an accept-reject procedure to simulate exactly under this distribution.

Remark 2 The accept-reject procedure we propose is detailed and discussed here after. Note that (θ k ) changes of dimension at each iteration of the algorithm. As a consequence, a Metropolis-Hastings procedure can not be considered easily, since it could jeopardize the theoretical and practical convergence properties of the algorithm.

[2 ⋆ .] Sampling from A|ω, θ * , c, u, γ, N

Let K N (T ) be the current number of non-empty classes. [START_REF] West | Hyperparameter estimation in Dirichlet Process Mixture models[END_REF] proves that under the prior distribution A ∼ Γ(a α , b α ), we have

A|x, K N (T ) ∼ π x Γ(a A + K N (T ) , b A -log(x)) + (1 -π x )Γ(a A + K N (T ) -1, b A -log(x)) (1.4) where x|A, K N (T ) ∼ B(A + 1, N (T )) π x 1 -π x = a A + K N (T ) -1 n(b A -log(x))
Note that the generation of the new value of A relies on the current value of A. 

[ 3 ⋆T

 3 .] Sampling from γ|ω, θ * , c, u, A, N If a hierarchical level is set on γ, we have to sample γ|θ * , ω, u, N, cUsing the previous conditional distributions, we have:p(γ|θ * , ω, u, N, c) ∝ p(u, N, θ * , ω, c|γ)π(γ) = p(u, N |θ * , c)p(c|ω)p(θ * |γ)π(γ) = π(γ) K ⋆ k=1 G γ (θ k )∝ γ aγ -1 e -bγ γ ) = γ aγ +aK ⋆ -1 e -γ bγ + K
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