
HAL Id: hal-01007554
https://hal.science/hal-01007554

Preprint submitted on 16 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Posterior concentration rates for empirical Bayes
procedures, with applications to Dirichlet Process

mixtures. Supplementary material
Sophie Donnet, Judith Rousseau, Vincent Rivoirard, Catia Scricciolo

To cite this version:
Sophie Donnet, Judith Rousseau, Vincent Rivoirard, Catia Scricciolo. Posterior concentration rates for
empirical Bayes procedures, with applications to Dirichlet Process mixtures. Supplementary material.
2014. �hal-01007554�

https://hal.science/hal-01007554
https://hal.archives-ouvertes.fr


Posterior concentration rates for empirical Bayes procedures,

with applications to Dirichlet Process mixtures

Supplementary material

Sophie Donnet∗, Vincent Rivoirard†, Judith Rousseau‡and Catia Scricciolo§

June 16, 2014

Abstract

1 Gibbs algorithm

We detail the algorithm used to sample from the posterior distribution (λ,A, γ)|N in the
Poisson process context, in the most complete case (with a hierarchical level on γ). In case
where γ is set to a fixed value, then the corresponding part in the algorithm is removed.
As a standard Gibbs algorithm, the simulation is decomposed into three steps:

[1] λ|A, γ,N [2] A|λ, γ,N [3] γ|A, λ,N.

where N is the observed Poisson process over [0, T ], namely a number of jumps N(T ) and
jump instants (T1, . . . , TN(T )). In order to avoid an artificial truncation in λ, we use the
slice sampler strategy proposed by Fall and Barat (2012). More precisely, we consider the
stick breaking representation of λ. Let ci be the affectation variable of data Wi. The DPM
model is written as:

Wi|ci, θ
∗ ∼ hθ⋆

ci
, P (ci = k) = wk, ∀k ∈ N

∗ (wk)k∈N⋆ ∼ Stick(A), (θ∗k)k∈N⋆ ∼i.i.d Gγ .

The slice sampler strategy consists in introducing a latent variable ui such that the joint dis-
tribution of (Wi, ui) is p(Wi, ui|ω, θ

∗) =
∑∞

k=1 wkhθ∗
k
(Wi)

1
ξk
1l[0,ξk](ui) with ξk = min(wk, ζ),

which can be reformulated as:

p(Wi, ui|ω, θ
∗) =

1

ζ
1l[0,ζ](ui)

∞
∑

k=1,wk>ζ

wkhθ∗
k
(Wi) +

∞
∑

k=1,ui≤wk≤ζ

hθ∗
k
(Wi)1l[0,wk](ui) (1.1)

(wk)k≥1 verifying
∑

k≥1 wk = 1 (implying limk→∞ wk = 0), the cardinal of {k, wk > ε} is
finite for every ε > 0, and the sum in (1.1) is finite.

Remark 1 Note that the number of non-null terms in (1.1) is rigorously dependent of the
observation index i (denoted K∗

i ). But in the algorithm we will deal with the maximum of
the K∗

i :
K∗ = max{K∗

i , i = 1 . . .N(T )}

The Gibbs algorithm with the Slice sampler strategy now takes into account the latent
variable u = (u1, . . . , uN(T )) which is sampled conjointly with λ, resulting into the following
steps:

[1⋆] λ,u|A, γ,N [2⋆] A|λ,u, γ,N [3⋆] γ|A, λ,u, N.

We now detail steps [1⋆] , [2⋆] and [3⋆].
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1.1 Details of the algorithm

Initialisation The Gibbs algorithms are initialized on A(0) = 10 (0 referring to the iteration

number of the Gibbs algorithm). We set: K(0) = NT . for k = 1 . . .K, (θ∗)
(0)
k ∼ Gγ . When

the hierarchical approach is considered on γ (γ ∼ Γ(aγ , bγ)), we initialize γ on its prior
mean value: γ(0) =

aγ

bγ
.

[1⋆] Sampling from λ,u|A, γ,N

Step [1⋆] of the Gibbs algorithm is decomposed into 5 steps which are detailed below. Let
u = (u1, . . . , uN(T )), c = (c1, . . . , cN(T )), θ

∗ = (θ1, . . . , θK⋆), ω = (w1, . . . , wK⋆) –c, θ∗ and

ω representing λ– be the current object. We denote by KN(T ) the number of non-empty
classes:

KN(T ) = #{k ∈ {1 . . .K⋆}|∃j ∈ {1, . . . , N(T )} such that cj = k}

θ
∗ and ω are ordered such that the elements indexed from KN(T ) + 1 to K⋆ correspond to

empty classes. u, c, θ∗ and ω are iteratively sampled as follows:

[1⋆.a ] First we sample u|ω, θ∗, c, N,A, γ using the following identities:

p(u|ω, θ∗, c, N,A, γ) ∝ p(u, N |ω, θ∗, c) = p(u, N |θ∗, c) =

N(T )
∏

i=1

p(ui,Wi|ci, θ
⋆
ci)

=

N(T )
∏

i=1

hθ⋆
ci
(Wi)

1

ξci
1l[0,ξci ](ui) ∝

N(T )
∏

i=1

1

ξci
1l[0,ξci ](ui)

where ξci = min(wci , ζ). So for every i = 1 . . .N(T ), ui ∼ U[0,min(wci
,ζ)].

[1⋆.b ] Secondly, we sample the weights of the empty classes (wk)k≥KN(T )+1|N,ω, c, θ∗, A, γ.
Without the slice sampler strategy, there is an infinite number to sample. But, thanks
to the slice sampling, we only need to sample a finite number K⋆. The weights of the
empty classes follow the prior distribution (stick breaking). For k > KN(T ),

vk ∼ B(1, A)

wk = vkrk−1

rk = rk−1(1− vk)

As explained in Fall and Barat (2012), we know that we have to represent all the
components such that their weights wk > ui for all the ui. Assume that we have
sampled w1, . . . , wk, then the weights of the following components can not exceed the
rest 1 −

∑k
j=1 wj = rk. So if rk is such that rk < ui, for all i = 1 . . . n, i.e. if rk < u⋆

with u⋆ = min{u1, . . . , uN(T )} we are sure that there is no “interesting component”
after that, “interesting” meaning that they won’t appear in joint the distribution of
(N,u). We can stop and get

K⋆ = min{k, rk < u⋆}.

In the end we have sampled (wKN(T )+1, . . . , wK⋆).

[1⋆.c ] Sample the parameters of the empty classes, (θ∗KN(T)+1, . . . , θ
∗
K⋆)

∀k = KN(T ) + 1, . . . ,K⋆, θ∗k ∼i.i.d Gγ

[1⋆.d ] Sample the index c = (c1, . . . , cN(T ))|N,u, θ∗, ω, i.e. affect the observations to the
classes {1, . . . ,K⋆}. Note that we will get new empty classes. The affectations are
done using the following probabilities:

p(c|θ∗, ω,u, N) ∝ p(c, θ∗, ω,u, N) = p(N,u, c|θ∗, ω)p(ω)p(θ∗)

∝

N(T )
∏

i=1

p(Wi, ui, ci|θ
∗, ω)
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So, the ci are independent and, for i = 1 . . .N(T ), for k = 1 . . . ,K⋆

p(ci = k|θ∗, ω, ui,Wi) = wi,k ∝ hθ∗
k
(Wi)

wk

min(ζ, wk)
1l{k|ui<min(ζ,wk)}(k)

We obtain a new KN(T ), which is the number of non-empty classes. We re-arrange the
weights and the parameters by order of appearance in this affectation.

[1⋆.e ] Update (w1, . . . , wKN(T)
) and (θ1, . . . , θKN(T)

) for the non-empty classes.

p(θk|u, N, ω, c) ∝ Gγ(θk)

n
∏

i=1,ci=k

hθk(Wi), ∀k = 1 . . .KN(T ) (1.2)

w1, . . . , wKN(T)
, rKN(T )

∼ Dir(n1, . . . , nKN(T)
, A)

where nk = #{i|ci = k} and rKN(T)
= 1−

∑KN(T)

k=1 wk.

Note that when Gγ is the inverse of the translated inverse exponential distribution,
p(θk|u, N, ω, c) given in equation (1.2) is:

p(θk|u, N, ω, c) ∝
1

(

1
θk

− 1
T

)a−1 e
− γ

1
θk

− 1
T

1

θnk

k

1l[
1

maxi|ci=k Wi
,+∞

[(θk) (1.3)

Its simulation can not be performed directly and we resort to an accept-reject procedure
to simulate exactly under this distribution.

Remark 2 The accept-reject procedure we propose is detailed and discussed here after. Note
that (θk) changes of dimension at each iteration of the algorithm. As a consequence, a
Metropolis-Hastings procedure can not be considered easily, since it could jeopardize the
theoretical and practical convergence properties of the algorithm.

[2⋆.] Sampling from A|ω,θ∗, c,u, γ,N

Let KN(T ) be the current number of non-empty classes. West (1992) proves that under the
prior distribution A ∼ Γ(aα, bα), we have

A|x,KN(T ) ∼ πxΓ(aA+KN(T ), bA− log(x))+ (1−πx)Γ(aA+KN(T )− 1, bA− log(x)) (1.4)

where

x|A,KN(T ) ∼ B(A+ 1, N(T ))

πx

1− πx
=

aA +KN(T ) − 1

n(bA − log(x))

Note that the generation of the new value of A relies on the current value of A.

[3⋆.] Sampling from γ|ω,θ∗, c,u, A,N If a hierarchical level is set on γ, we have to
sample

γ|θ∗, ω,u, N, c

Using the previous conditional distributions, we have:

p(γ|θ∗, ω,u, N, c) ∝ p(u, N, θ∗, ω, c|γ)π(γ) = p(u, N |θ∗, c)p(c|ω)p(θ∗|γ)π(γ) = π(γ)

K⋆

∏

k=1

Gγ(θk)

∝ γaγ−1e−bγγ
K⋆

∏

k=1

γae
−γ/( 1

θ⋆
k
− 1

T
)
= γaγ+aK⋆−1e

−γ

(

bγ+
∑K⋆

k=1
1

( 1
θ⋆
k

− 1
T

)

)
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where K⋆ is the total number of classes used to represent λ. Finally, we get:

γ|θ∗, ω,u, N, c ∼ Γ

(

aγ + aK⋆, bγ +

K⋆

∑

k=1

1

( 1
θ⋆
k

− 1
T )

)

(1.5)
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