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Abstract. In this paper we review some of the authors’ more recent developments in the field
of Forming Processes simulation by means of meshless methods. In particular, all simulations
are performed by employing the Natural Element Method (NEM), which has shown some
particular characteristics that make it appear as an appealing tool for this kind of problems.
Applications include forging, aluminum extrusion and other related forming processes. Partic-
ularly, the treatment of the free surface deserves some comments, since it is done in this work
by means of alpha-shapes, a particular shape constructor.
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1 Introduction

Forming processes constitute a field of engineering where very complex phenomena
occur and where very often multi-physic and coupled problems arise. In addition,
these usually involve large transformations (i.e., large strains or large displacements.)
This has traditionally posed some problems to the Finite Element technology, related
to mesh distortion, remeshing, etc. Thus, forming processes seem to be a natural
candidate for the use of meshless methods.

In this article we review some of the authors’ work on meshless simulation of
forming processes, particularly those related to aluminium extrusion and other pro-
cesses where coupled thermo-mechanical problems are of utmost importance.

Although many different meshless methods exist nowadays, our developments
have been focused on the so-called Natural Element Method (NEM) or, equivalently,
Natural Neighbour Galerkin methods [4, 18]. This choice has been motivated mainly
by the unique features of the NEM among meshless methods, that include, for in-
stance, its ability to exactly reproduce essential boundary conditions.
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The NEM also allows for an updated Lagrangian description of the movement,
and this is especially interesting when dealing with free surface flows, for instance.
This framework can thus be competitive to existing ALE formulations, avoiding ad-
vection terms in the equations of conservation and their associated numerical com-
plexity.

This article is organized as follows. Firstly, we describe the NEM and its main
properties. In Section 3 we describe the technique used to track the free-surface
during extrusion, forging or related processes. We then include some numerical ex-
amples showing the performance of the proposed method. The article is finished with
some conclusions.

2 The Natural Element Method

The NEM is basically a Galerkin procedure where the essential field is approximated
by any of the existing natural neighbour interpolation schemes [9, 15, 20]. Prior to
the description of these schemes, it is necessary to review some basic geometrical
concepts, such as the Voronoi diagram of a cloud of points or the Delaunay triangu-
lation.

2.1 Natural Neighbour Interpolation

Models are constructed in our version of the NEM based on nodes only. Consider a
cloud of irregularly distributed nodes N = {n1, n2, . . . , nN }. The Delaunay triangu-
lation [5] of the set N , D , is the only triangulation of the cloud that verifies the empty
circumcircle criterion, i.e., no circle containing the three nodes of a triangle contains
an additional node of the cloud, see Figure 1. The dual structure of a Delaunay trian-
gulation is the so-called Voronoi diagram [21], which is the unique decomposition of
the space into non-overlapping cells containing the locus of points closer to a given
node than to any other. Formally,

TI = {x ∈ R
n : d(x, xI ) < d(x, xJ ) ∀ J �= I }, (1)

where TI is the Voronoi cell and d(·, ·) represents the Euclidean distance. n repres-
ents the space dimension (two or three in the examples presented in this article). Two
nodes whose Voronoi cells share one edge are called natural neighbours and hence
the name of these interpolation schemes.

The first, and most obvious, interpolation scheme based on natural neighbours is
the so-called nearest neighbour or Thiessen interpolation [20]. If we give the nodal
value to the whole associated Voronoi cell, we obtain a C−1 interpolation scheme.
This interpolation scheme is not suitable for solving second-order partial differen-
tial equations, but has been employed in [8] to construct mixed velocity-pressure
approximations for the simulation of incompressible media.
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Fig. 1. Delaunay triangulation and Voronoi diagram of a cloud of points. On the right, an
example of a degenerate distribution of nodes, with the two possible triangulations depicted.
In this last case, four points lie in the same circumcircle and thus no single triangulation exists.

Fig. 2. Definition of the Natural Neighbour coordinates of a point x.

The most extended form of natural neighbour-based interpolation is due to Sib-
son [16]. For the definition of Sibson interpolation it is necessary to previously intro-
duce the concept of second-order Voronoi cell. It is defined as the locus of the points
that have the node nI as the closest node and the node nJ as the second closest node:

TIJ = {x ∈ R
n : d(x, xI ) < d(x, xJ ) < d(x, xK) ∀ K �= J ; ∀ K �= I }. (2)

If a new point is added to a given cloud of points, the Voronoi cells will be
modified by its presence. Sibson [15] defined the natural neighbour coordinates of
a point x with respect to one of its neighbours I as the ratio of the cell TI that is
transferred to Tx to the initial cloud of points to the total area of Tx . In other words,
being κ(x) and κI (x) the Lebesgue measures of Tx and TxI respectively, the natural
neighbour coordinates of x with respect to the node I is defined as

φsib
I (x) = κI (x)

κ(x)
. (3)
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Fig. 3. Natural Element (Sibson) shape function (courtesy N. Sukumar).

The resultant shape function depends obviously on the relative position of the nodes.
An example of a node surrounded by other six is depicted in Figure 3.

Recently, some new interpolation schemes based on the concept of natural neigh-
bors have been proposed [9]. One of them, coined as Laplace or non-Sibsonian in-
terpolation, has received considerable attention, since it involves magnitudes of one
order less of the space dimension (i.e., the calculus of areas in three-dimensional
problems, for instance, instead of volumes). If we define the cell intersection tIJ =
{x ∈ TI

⋂
TJ , J �= I } (note that tIJ may be an empty set) we can define the value

αJ (x) = |tIJ |
d(x, xJ )

. (4)

Thus, the point x shape function value with respect to node 4 in Figure 4 is
defined as

φns
4 (x) = α4(x)∑n

J=1 αJ (x)
= s4(x)/h4(x)∑n

J=1

[
sJ (x)/hJ (x)

] , (5)

where sJ represent the length of the Voronoi segment associated to node J and n

represents the number of natural neighbours of the point under consideration, x.
Derivatives of the Laplace shape function are not defined along the edges of the

Delaunay triangles that lie inside its support (see [19]). For the purposes of the work
here presented, Sibson’s interpolation has been considered.
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Fig. 4. Definition of non-Sibsonian coordinates.

2.2 Main Properties of the NEM

Firstly, unlike most approximation techniques used in meshless methods, Sibson’s
interpolation scheme is strictly interpolant, i.e., the approximated surface pass
through the data. This can be expressed as

φI (xJ ) = δIJ (6)

with δIJ the Kronecker delta tensor.
The natural neighbour (Sibson) interpolant possesses linear consistency, and thus

it is amenable to be used in the approximation of second-order partial differential
equations. This can be demonstrated from the before mentioned partition of unity
property and its ability to exactly reproduce linear fields (also known as local co-
ordinate property, see [16]):

n∑
I=1

φI (x)xI = x (7)

One important property that derives from Equation (6) is that the imposition of
essential boundary conditions in NE methods is straightforward. Like in the FEM,
it is sufficient to prescribe nodal values to reproduce essential boundary conditions.
In addition, natural neighbour interpolants can be strictly interpolant (up to linear
precision) on the boundaries (convex or not), under very weak conditions, as demon-
strated in [3] by using the theory of α-shapes. This proof was later generalised in
[2]. Idelsohn and co-workers later adopted this same approach based on α-shapes in
the context of the Meshless Finite Element Method [10]. Another method to impose
essential boundary conditions in the context of the NEM by employing visibility
criteria was developed by Chinesta and co-workers [22].

The exact imposition of essential boundary conditions means that no interior
point of the domain takes influence on the boundary. This is of first importance in the
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simulation of processes where friction or other phenomena occurring on the bound-
ary are significant.

In its application to two- and three-dimensional linear elasticity, the natural ele-
ment method has proved to render more accurate results than linear triangular and
tetrahedral finite elements respectively [1, 19].

But, maybe the most important characteristic of the Galerkin scheme obtained
by using natural neighbour interpolation is that the accuracy of the approximation is
not affected by the distortion of the triangulation [18]. This confers the method the
“meshless” character that allows us to implement updated Lagrangian descriptions
of the processes. It is also important to note that natural neighbour interpolation is
continuous when the data sites move continuously, while other mesh-based methods
(i.e., finite elements based on a Delaunay triangulation) are not. This is especially
important when dealing when updated Lagrangian descriptions of the movement.

In the following section we describe the technique used to track the free surface
appearing in the description of the different forming processes.

3 The α-Shapes-Based Natural Element Method

When dealing with processes involving a free surface – which is commonly the case
in classic forming processes simulations, such as forging or extrusion – it is ex-
tremely important to accurately track its position. In aluminium extrusion, for in-
stance, non-uniform fluxes of the hot billet through the die can lead to non-straight
profiles. Extrusion of hollow profiles, such as tubes, is particularly interesting from a
geometrical point of view, since the flow of the hot metal should divide in the interior
of the die and re-join just before exiting it.

In many Lagrangian or Lagrangian–Eulerian codes tracking of the free-surface
is done by means of markers. The free surface segments (in 2d) or facets (in 3d)
are detected and stored at each time step, see [11] for an elegant description of such
algorithms in mould filling simulations. Previously, checking of inter-penetration of
free-surfaces or development of holes should also be done. This is usually a cumber-
some process.

In our approach a different approach has been developed, based on the use of
shape constructors. Shape constructors are geometrical entities that give a continu-
ous shape to a discrete cloud of nodes. One of such constructors is the family of
α-shapes of the cloud [6].

3.1 The Family of α-Shapes of a Cloud of Points

A cloud of points defines a finite set of shapes that can be parameterized by the level
of detail up to which we want to represent the geometry. The idea behind α-shapes
is simple: the Delaunay triangulation will provide a straightforward connectivity of
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the nodes. We will eliminate from this triangulation those triangles (or tetrahedra)
whose circumradius is greater than the desired level of detail, say α.

Formally, an α-shape is a polytope that is not necessarily convex nor connected,
being triangulated by a subset of the Delaunay triangulation of the points. Let N be a
finite set of points in R

3 and α a real number, with 0 ≤ α <∞. A k-simplex σT with
0 ≤ k ≤ 3 is defined as the convex hull of a subset T ⊆ N of size | T |= k+1. Let b
be an α-ball, that is, an open ball of radius α. A k-simplex σT is said to be α-exposed
if there exist an empty α-ball b with T = ∂b

⋂
N where ∂ means the boundary of

the ball. In other words, a k-simplex is said to be α-exposed if an α-ball that passes
through its defining points contains no other point of the set N .

Thus, we can define the family of sets Fk,α as the sets of α-exposed k-simplices
for the given set N . This allows us to define an α-shape of the set N as the polytope
whose boundary consists on the triangles in F2,α , the edges in F1,α and the vertices
or nodes in F0,α.

A three-dimensional simplicial complex is a collection, C, of closed k-simplices
(0 ≤ k ≤ 3) that satisfies:

(i) If σT ∈ C then σT ′ ∈ C for every T ′ ⊆ T .
(ii) The intersection of two simplexes in C is empty or is a face of both.

Each k-simplex σT included in the Delaunay triangulation, D , defines an open
ball bT whose bounding spherical surface (in the general case) ∂bT passes through
the k + 1 points of the simplex. Let �T be the radius of that bounding sphere, then,
the family Gk,α , is formed by all the k-simplexes σT ∈ D whose ball bT is empty
and �T < α . The family Gk,α does not necessarily form simplicial complexes, so
Edelsbrunner and Mücke [6] defined the α-complex, Cα, as the simplicial complex
whose k-simplexes are either in Gk,α, or else they bound (k+ 1)-simplexes of Cα . If
we define the underlying space of Cα, |Cα|, as the union of all simplexes in Cα , the
following relationship between α-shapes and α-complexes is found:

Sα = |Cα| ∀0 ≤ α <∞ (8)

In order to clarify the before presented concepts, consider some examples of α-
shapes computed from a cloud of points corresponding to one particular simulation
of a two-dimensional extrusion process. We restrict ourselves to geometrical con-
cepts only.

Consider the extrusion example shown in Figure 5, where the contour plot of
equivalent plastic strain rate is depicted. The key idea of the method here proposed
is to extract the shape of the domain at each time step by invoking the concept of
α-shape of the cloud of points. The α parameter will be obtained by geometrical
considerations. In this case the radius at the inlet of the die, for instance, seems
to be the smallest level of detail up to which the domain (i.e., the billet) must be
represented. In order to appropriately represent this value, the nodal distance h must
be accordingly chosen.
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Fig. 5. Two snapshots of a two-dimensional simulation of an extrusion process. Equivalent
plastic strain rate is depicted.

In Figure 6 some members of the family of α-shapes of the cloud of points in
its final configuration (corresponding to Figure 5(b)) are depicted. In Figure 6(a)
the member for α = 0, i.e., the cloud of points itself, is shown. Note how, as α is
increased, the number and size of the simplexes (in this case, triangles) that belong
to the shape is increasing. For α = 1.0 we obtain an appropriate shape for the cloud.
Note, however, that this is not an exact value to be determined at each time step.
Since the number of α-shapes is finite, there generally exists an interval of valid α

values for a single shape. Finally, by increasing the α value, we arrive to the convex
hull of the cloud of points (Figure 6(f)).

3.2 Properties of the α-Shapes-Based Natural Element Method

Constructing the model by taking into account the actual shape of the domain has
consequences not only in geometrical aspects of the method, but also in the qual-
ity of the approximation. As demonstrated in [3], the use of a proper α-shape for
the definition of the domain – which means that we reproduce the geometry to the
desired level of detail – ensures the linear interpolation of the essential field along
the boundary. This is extremely important, since many of the meshless methods lack
of the so-called Kronecker delta property, i.e., do not interpolate the field along the
boundary, thus complicating the imposition of essential boundary conditions.

In practice, this requirement means that an appropriate cloud of points should
be used in order to achieve a correct interpolation on the boundary. Here, the term
“appropriate” should be understood in the sense that the cloud of points is dense
enough so as to properly reproduce the geometry up to the desired level of detail.

Other methods exist to impose essential boundary conditions in the NEM, such
as the so-called C-NEM [22], that uses visibility criteria and renders exactly the same
approximation. Both methods can be considered equivalent.
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Fig. 6. Some members of the family of α-shapes of the cloud of points used in the extrusion
example. (a) S0 (the cloud of points) (b) S0.3 (c) S0.5 (d) S1.0 (e) S1.5 and (f) S∞ (the convex
hull of the set).
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4 Numerical Examples

4.1 Governing Equations

Many of the existing codes consider rigid-viscoplastic models for the constitutive
equations of metals during forming processes. The obvious advantage of this method
is that the material can be modelled as a non-Newtonian fluid. This approach is
usually known as the flow formulation of the problem [23]. Thus a mixed Sibson–
Thiessen approximation is used for the essential variables of the problem, namely,
velocity and pressure. Details of the stability of this formulation can be found in [8].

The deviatoric stresses will be, under this assumption,

s = 2μd, (9)

being, as usual,
σ = s − pI (10)

where p = −tr(σ )/3 and I stands for the second-order identity tensor. Obviously,
in the most general case, the parameter μ will depend on both the level of strain (and
hence the non-linear character of the behavior) and the temperature. To derive the
expression of the parameter μ it is a common practice to write the strain rate tensor
as emerging from a visco-plastic potential. Following Perzyna [13]

dvp = γ̇
∂Y (σ , q)

∂σ
, (11)

where Y is the viscoplastic potential – usually coincident with the plastic criterion as
has been considered here – γ̇ is a scalar function given by

γ̇ = 〈g(Y (σ , q))〉
η

with 〈x〉 = x + |x|
2

, (12)

〈g〉 is a monotonic function that takes zero value only if Y (σ , q) ≤ 0, η is a positive
parameter often called viscosity and q represents the hardening parameters. In what
follows we will avoid the use of the vp superscript to indicate viscoplastic if there is
no risk of confusion.

For metals, there exist well-defined plastic yield rules and for aluminium it is a
common practice to employ a von Mises criterion:

Y (σ , q) = σ(s)− σy(d, T ), (13)

where

σ =
√

3

2
s : s = √

3J2

represents the effective stress and σy represents the uniaxial yield stress. d is the only
internal variable in this model and is sometimes called effective strain rate:
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d =
√

2

3
d : d. (14)

Among the most extended laws to account for the aluminium yield stress is the
so-called hyperbolic sine or Sellars–Tegart law [14]

σy(d) = Sm arcsinh

[[(
d

A

)
eQ/RT

]1/m
]
. (15)

Sm, m and A are material parameters. A is a factor that depends on the magnesium
and silicium matrix solute content (see [12] and references therein), Q represents the
activation energy of the deformation process, R is the universal gas constant and,
finally, T is the absolute temperature. Note that, as the temperature increases, the
yield stress decreases, as expected.

Following this model, a state of null strain rate will give a null yield stress, and
this is not in accordance to the well-known behavior of metals in general, and alu-
minium in particular. So it is a common practice to correct this effect by adding to
Equation (15) a initial strain rate, d0 so as to render a modified Sellars–Tegart law:

σy(d) = Sm arcsinh

[[(
d1

A

)
eQ/RT

]1/m
]

with d1 = max{d, d0}. (16)

If we combine now the general form of the strain rate tensor given in Equation
(11), with Equation (13), we arrive to

d = γ̇
3s

2σ
. (17)

It is immediate now, by combining Equation (14) and the definition of effective
stress, σ , to prove that γ̇ is precisely the effective strain rate:

d = γ̇

σ

√
3

2
s : s = γ̇ . (18)

On the other hand, and by following the Perzyna-like model employed in Equa-
tions (11) and (12) and taking g(f ) = f , we arrive to a relationship between equiv-
alent stress and equivalent strain rate:

d = γ̇ = 〈σ − σy〉
η

⇒ σ = ηd + σy if σ ≥ σy (19)

that, introduced in Equation (17), accounting Equation (18), gives the following
visco-plastic constitutive equation:

s = 2
ηd + σy(d)

3d
d. (20)
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Fig. 7. The piece to be forged (a) and schematic representation of the forging process (b)

Fig. 8. Geometry and dimensions of the forged piece.

Note that, depending on the η value, the return to the yield surface is done with
different velocity. Since it is common to describe aluminium behaviour as rigid-
plastic (rather than viscoplastic) we employ null viscosity, so as to enforce Y =
σ − σy = 0, leading to

s = 2σy
3d

d. (21)

Finally, the constitutive equation, accounting the incompressibility of plastic flow
results:

σ = 2μd − pI with μ = σy

3d
. (22)

Of course, this simple model has important limitations. Undoubtedly, the lack
of elastic behaviour is one of the most important. Thus, spring-back cannot be pre-
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Fig. 9. Equivalent strain rate distribution (s−1) throughout the forging process.

dicted. However, as mentioned before, it has rendered good results and seems to be
widely accepted in the forming processes community [12, 23, 24].

This same model can be employed to model a wide variety of polymers, for
instance, governed by a power law (also known as Norton–Hoff model):

μ = μ0d
n−1

(23)

where n is the so-called sensitivity index. The interested reader can consult [17] for
some applications on this class of problems.
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Fig. 10. Geometry and dimensions of the container and the die for the cross-shaped profile
problem.

4.2 Simulation of a Forging Process

In this example we consider the application of the proposed α-NEM method to the
simulation of the forge of a complex piece. In this case a viscoplastic behaviour
is assumed, given by Equation (23). We have considered μ0 = 1.0 and n = 0.3.
These values are obviously non-physical, but can help us to show the behavior of the
proposed technique when extremely high deformations are present.

The geometry of the piece is shown in Figure 7(a). The simulation deals with the
forging of the central region of the piece, justifying the assumption of plane strain
(see Figure 7(b)).

Accounting for the symmetry of the geometry, only one half of the domain was
simulated, by imposing appropriate boundary conditions. Slip boundary conditions
were assumed at the billet-punch-die contact region. The upper part of the punch, as-
sumed perfectly rigid, moves towards the lower part, fixed throughout the simulation.
Geometry and dimensions of the simulated region are shown in Figure 8.

The equivalent plastic strain at time steps 96, 120, 150 and 168 are shown in
Figure 9. Very accurate results were obtained in spite of the large strains and dis-
placements involved in the simulation.

It can be seen how the proposed method is a valuable tool to accurately predict
the formation of the flash.

4.3 Simulation of the Extrusion of a Cross-Shaped Profile

In [7] an analysis is made of the process of extrusion of a cross-shaped profile, with
particular interest on the effect of the misalignment between the die and the work-
piece. Geometry and dimensions of the die are shown in Figure 10.
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Fig. 11. Initial geometry of the mesh.

The hole of the die was misaligned 10 mm in order to study the influence of
this defects in the resulting quality of the extruded profile. The initial mesh is shown
in Figure 11. Only one half of the geometry was analyzed, by applying appropriate
symmetry boundary conditions.

The material is assumed to be lead, which is able to flow at room temperature, and
is therefore easily characterizable by simple experiments with an universal testing
machine. In [7], the flow rule of lead at room temperature was adjusted to a Norton–
Hoff law, giving

σ = 60ε̇0.05 [MPa] (24)

in a uniaxial test.
Various snapshots of the mesh at different time steps are shown in Figure 12. The

evolution of the equivalent strain rate is depicted in Figure 13.
Results are in good agreement with the experimental results performed by Filice

and colleagues [7] and the resulting deviation of the profile is only slightly underes-
timated.

This approach notably simplifies those of the ALE methods, especially when
large motion is produced in the direction perpendicular to the main flow of the ex-
trudate, which is traditionally treated as purely Eulerian, as in [24]. This is the case
when the flow is distorted by the misalignment of the die hole and the axis of the
extruder.

15



Fig. 12. Evolution of the geometry of the extrudate throughout the process.

5 Conclusions

Forming processes usually involve large deformations and are therefore specially
interesting as an objective for meshless methods. We have reviewed some of the
more important characteristics of the α-shape-based Natural Element Method (α-
NEM, see [3]) and studied the more interesting features of the method applied to
such problems.

We believe that meshless methods and, in particular, the α-NEM are particularly
well-suited to simulate that class of processes. As is well-known for all meshless
methods, distortion of the cloud of points does not greatly affect the quality of the
results, and therefore remeshing is avoided, in the sense that the cloud of nodes is –
or can be – the same throughout the whole simulation. The connectivity is updated
by the method in a process transparent to the user, thus greatly alleviating the user
effort.
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Fig. 13. Evolution of the equivalent strain rate (s−1).

Other aspects, such as an improvement of the speed of calculation are currently
under investigation, since the computation of Sibson coordinates is known to be con-
siderably harder than the computation of FE shape functions.

In sum, we think that meshless methods, and particularly the NEM, are a good
choice for the simulation of problems involving large deformations in a Lagrangian
framework.
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