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Introduction

The objective of this course is to introduce the differences between the Euler Bernoulli and Timoshenko theories, to present various finite element beam formulations and to show the equations of displacement based Timoshenko multifiber beam elements. The paper follows mainly the work and ideas exposed in [START_REF] Pegon | A timoshenko simple beam element in castem[END_REF], [START_REF] Guedes | A fibre timoshenko beam element in castem[END_REF], [START_REF] Kotronis | Simplified modelling strategies to simulate the dynamic behaviour of r/c walls[END_REF], [START_REF] Mazars | Using multifiber beams to account for shear and torsion: Applications to concrete struc-tural elements[END_REF], [START_REF] Bitar | Un nouvel élément fini poutre pour la modélisation des structures sous sollicitations complexes[END_REF], [CKCed]. The important subject of force based beam finite elements is not discussed hereafter. The reader can find information on this subject in the following references [START_REF] Spacone | Fiber beam-column model for nonlinear analysis of r/c frames. i[END_REF], [START_REF] Spacone | Fiber beam-column model for nonlinear analysis of r/c frames[END_REF].

1 2 Classical beam theories

Kinematics

We consider hereafter a beam of length L and section S(x) (figure 1). G(x, y, z) is the center of gravity of the section S(x) and P (x, y, z) a point in the section. We define as neutral axis the line that links the center of gravities of all the sections. We also suppose that G x , G y , G z are principal axes. For the 2D case studied hereafter (loadings are in the xy plane), the displacements u T = {u x , u y } of the point P (x, y, z) can be expressed as a function of the displacements U x (x), U y (x) and the rotation Θ z (x) of the section S(x) (often defined in the literature as generalised displacements, see also equations ( 8) and ( 16)) considering the following two kinematic hypotheses: • Euler Bernoulli theory: In this theory, the section remains plane and perpendicular to the neutral axis (figure 2).

Figure 2: Euler Bernoulli theory [START_REF] Bitar | Un nouvel élément fini poutre pour la modélisation des structures sous sollicitations complexes[END_REF] A consequence of the previous kinematic assumption is that the rotation of the section Θ z (x) equals U y (x) (the symbol defines hereafter the first derivative with respect to x and the symbol the second derivative with respect to x)

(figure 2). The displacements of the point P (x, y, z) take thus the following form [START_REF] Guedes | A fibre timoshenko beam element in castem[END_REF]:

u x (x, y) = U x (x) -yΘ z (x) = U x (x) -yU y (x) u y (x, y) = U y (x) (1) 
and the strains are calculated as (infinitesimal strain theory assumption):

ε x = ∂u x ∂x = U x (x) -yΘ z (x) = U x (x) -yU y (x) γ xy = ∂u x ∂y + ∂u y ∂x = U y (x) -Θ z (x) = 0 (2) 
One can notice that due to the adopted kinematic hypothesis shear strains are found equal to zero.

• Timoshenko theory: In this theory, the kinematic assumption is that the section remains plane but not necessarily perpendicular to the neutral axis. In other words, Θ z = U y (x), see figure 3. Displacements and strains (infinitesimal strain theory assumption) are now calculated as [START_REF] Guedes | A fibre timoshenko beam element in castem[END_REF]:

u x (x, y) = U x (x) -yΘ z (x) u y (x, y) = U y (x) (3) 
ε x = ∂u x ∂x = U x (x) -yΘ z (x) γ xy = ∂u x ∂y + ∂u y ∂x = U y (x) -Θ z (x) (4) 
Figure 3: Timoshenko theory (Wikipedia)

We define hereafter

β y = U y (x) -Θ z (x) (5) 
The variable β y represents the rotation of the section due to shear. From equation (4) one can notice that shear strains are now constant in the section (and not as in the Euler Bernoulli theory necessarily equal to zero).

Euler Bernoulli theory: Principal work principle and generalised forces

The virtual work principle is written as (body forces and inertial forces are hereafter neglected. The symbol σ defines stresses):

L 0 S δε x σ x dSdx -w exter = 0 (6)
with w exter the work of the external forces.

Replacing (2) in (6) we get:

L 0 S δ(U x (x) -yΘ z (x))σ x dSdx -w exter = 0 (7) 
We define hereafter the generalised forces in the section as:

Normal force:

F x = S σ x dS
Bending moment :

M z = - S yσ x dS (8) 
and equation (7) becomes:

L 0 (F x δU x + M z δΘ z )dx -w exter = 0 (9)
Within a beam theory σ y = σ z = σ yz = 0. Furthermore and because of equation (2) σ xz = σ xy = 0. Hooke's law thus becomes (with E the Young's modulus and ν the Poisson's coefficient):

σ x = Eε x ε y = ε z = -νε x (10)
Finally, using equations (2), ( 8) and (10) the generalised forces become:

F x = S Eε x dS = S E(U x (x) -yΘ z (x))dS = S EU x (x)dS = ESU x (x) M z = - S yEε x dS = - S yE(U x (x) -yΘ z (x))dS = S y 2 EΘ z (x)dS = EI z Θ z (x) (11) 
Remarks:

• The axis z is a principal axis and therefore S ydS = 0.

• An homogeneous section is considered.

Introducing equation (11) in the virtual work principle (9) we have:

L 0 (δU x (x)ESU x (x) + δΘ z (x)EIΘ z (x))dx -w exter = 0 (12) 
If F s T = {F x , M z } the generalised force vector and D s T = {U x , Θ z } the generalised displacement vector we define the stiffness matrix of the section K s as:

F s = K s D s = F x M z = ES 0 0 EI z U x Θ z = ES 0 0 EI z U x U y (13) 

Timoshenko theory: Principal work principle and generalised forces

The principle work principle now becomes:

L 0 S (δε x σ x + 2δε xy σ xy )dSdx -w exter = 0 (14) 
Using equation (4) we get:

L 0 S (δ(U x (x) -yΘ z (x))σ x + (δU y (x) -δΘ z (x))σ xy dSdx -w exter = 0 (15)
where the generalised forces are:

Normal force: 

F x = S σ x dS
F x = S σ x dS = S Eε x dS = S E( dU x dx -y dΘ z dx )dS = S EU x ds = ESU x (18) 
In a similar way we have:

F y = GSβ y M z = EI z Θ z (19) 
If F s T = {F x , F y , M z } the generalised force vector and D s T = {U x , β y , Θ z } the generalised strain vector we define the stiffness matrix of the section K s as:

F s = K s D s = ⎧ ⎨ ⎩ F x F y M z ⎫ ⎬ ⎭ = ⎡ ⎣ ES 0 0 0 GS 0 0 0 EI z ⎤ ⎦ ⎧ ⎨ ⎩ U x β y Θ z ⎫ ⎬ ⎭ (20) 
Remark: The Timoshenko beam theory provides constant shear strains and stresses in the section (see equation (4) and Hooke's law). This result violates the boundary conditions of the beam theory (σ y = σ z = 0) and does not agree with the theoretical distribution of stresses which is parabolic for a rectangular cross section. A simplified way to deal with this inconsistency is to change the definition of the shear force by adding a shear corrector factor (or Reissner corrector factor) k that depends on the cross section geometry and the material characteristics [START_REF] Cowper | The shear coefficient in timoshenko's beam theory[END_REF]. The modified expressions take thus the following form:

Shear force:

F y = S kσ xy dS (21) 
F s = K s D s = ⎧ ⎨ ⎩ F x F y M z ⎫ ⎬ ⎭ = ⎡ ⎣ ES 0 0 0 kGS 0 0 0 EI z ⎤ ⎦ ⎧ ⎨ ⎩ U x β y Θ z ⎫ ⎬ ⎭ (22)

A 2 node beam finite element formulation

Consider a 2D beam finite element with two nodes and three degrees of freedom per node (figure 4). Displacements U x (x), U y (x) and rotations Θ z (x) along the beam are discretized using the nodal displacements as follows:

U = N Φ (23) or ⎧ ⎨ ⎩ U x U y Θ z ⎫ ⎬ ⎭ = ⎡ ⎣ N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N 10 N 11 N 12 N 13 N 14 N 15 N 16 N 17 N 18 ⎤ ⎦ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ U x1 U y1 Θ z1 U x2 U y2 Θ z2 ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ (24) 
where N i (x), i = 1, 18 the shape functions and Φ the nodal displacements. The equation providing the generalised strain vector D s becomes (a for axial, s for shear and b for bending):

D s = ⎧ ⎨ ⎩ U x β y Θ z ⎫ ⎬ ⎭ = ⎡ ⎣ B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 ⎤ ⎦ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ U x1 U y1 Θ z1 U x2 U y2 Θ z2 ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ = ⎡ ⎣ B a B s B b ⎤ ⎦ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ U x1 U y1 Θ z1 U x2 U y2 Θ z2 ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ (25)
Using the previous equation in the virtual work principle we get a system of linear equations that take the following form (with F the vector of nodal forces at the element level and K e the element stiffness matrix):

F = K e Φ (26) 
The element stiffness matrix K e is given by (where the symbol + means matrix assembly, adding in an adequate way the different degrees of freedom) :

K e = K a + K s + K b (27) K a = L 0 B T a ESB a dx K s = L 0 B T s kGSB s dx K b = L 0 B T b EIB b dx (28) 

An Euler Bernoulli 2 node finite element beam

Consider for example the following classical shape functions for the horizontal, vertical and rotational degrees of freedom [START_REF] Frey | Analyse des structures et milieux continus: mécanique des structures[END_REF]:

N 1 = 1 - x l and N 4 = x l N 8 = 1 -3( x l ) 2 + 2( x l ) 3 and N 9 = x -2 x 2 l + x 3 l 2 N 11 = 3( x l ) 2 -2( x l ) 3 and N 12 = - x 2 l + x 3 l 2 N 14 = N 8 and N 15 = N 9 N 17 = N 11 and N 18 = N 12 (29)
In this formulation the rotational and vertical displacements are made interdependent. The other shape functions are considered equal to zero and so equation (24) becomes:

⎧ ⎨ ⎩ U x U y θ z ⎫ ⎬ ⎭ = ⎡ ⎣ N 1 0 0 N 4 0 0 0 N 8 N 9 0 N 11 N 12 0 N 8 N 9 0 N 11 N 12 ⎤ ⎦ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ U x 1 U y 1 Θ z 1 U x 2 U y 2 Θ z 2 ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ (30) 
The different stiffness matrices, for a constant homogeneous section S, take the following form (the matrix due to shear is equal to the zero matrix):

K a = ES l 1 -1 -1 1 K b = EI l 3 ⎡ ⎢ ⎢ ⎣ 12 6l -12 6l 6l 4l 2 -6l 2l 2 -12 -6l 12 -6l 6l 2l 2 -6l 4l 2 ⎤ ⎥ ⎥ ⎦ (31) 
K e = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ES/l 0 0 -ES/l 0 0 0 12EI/l 3 6EI/l 2 0 -12EI/l 3 6EI/l 2 0 6EI/l 2 4EI/l 0 -6EI/l 2 2EI/l -ES/l 0 0 ES/l 0 0 0 -12EI/l 3 -6EI/l 2 0 12EI/l 3 -6EI/l 2 0 6EI/l 2 2EI/l 0 -6EI/l 2 4EI/l ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (32)

A Timoshenko 2 node finite element beam (1st formulation)

For the case of a Timoshenko beam finite element, the choice of the shape functions is crucial because of the possible shear locking numerical problem [START_REF] Hughes | A simple and efficient finite element for plate bending[END_REF], [START_REF] Donea | A modified representation of transverse shear in c 0 quadrilateral plate elements[END_REF], [START_REF] Zienkiewicz | The finite element method for solid and structural mechanics[END_REF]. If these functions are not appropriately chosen, the finite element beam presents a spurious stiffness for the case of elongated beams. A simple adequate set of shape functions is presented hereafter [START_REF] Pegon | A timoshenko simple beam element in castem[END_REF], [START_REF] Guedes | A fibre timoshenko beam element in castem[END_REF]:

N 1 = N 8 = N 15 = x 2 -x L N 4 = N 11 = N 18 = x -x 1 L (33) ⎧ ⎨ ⎩ U x U y θ z ⎫ ⎬ ⎭ = ⎡ ⎣ N 1 0 0 N 4 0 0 0 N 8 0 0 N 11 0 0 0 N 15 0 0 N 18 ⎤ ⎦ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ U x 1 U y 1 Θ z 1 U x 2 U y 2 Θ z 2 ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ (34) 
The generalised strains become:

D s = ⎡ ⎣ B a B s B b ⎤ ⎦ Φ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ -1 l 0 0 1 l 0 0 0 -1 l -x 2 -x l 0 1 l -x-x 1 l 0 0 -1 l 0 0 1 l ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ U x 1 U y 1 Θ z 1 U x 2 U y 2 Θ z 2 ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ (35) 
In order to avoid shear locking problems, [START_REF] Donea | A modified representation of transverse shear in c 0 quadrilateral plate elements[END_REF] propose to eliminate the linear term in B s or [START_REF] Hughes | A simple and efficient finite element for plate bending[END_REF] to sub-integrate the K s using only 1 Gauss integration point. According to the solution proposed by [START_REF] Donea | A modified representation of transverse shear in c 0 quadrilateral plate elements[END_REF], [START_REF] Guedes | A fibre timoshenko beam element in castem[END_REF], β y is now corrected as:

β y = - 1 l U y 1 - 1 2 Θ z 1 + 1 l U y 2 - 1 2 Θ z 2 = B s Φ (36)
Finally, the element stiffness matrix, for a constant homogeneous section, takes the following form:

K e = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ES L 0 0 -ES L 0 0 0 kSG L kSG 2 0 -kSG L kSG 2 0 kSG 2 EI L + kSGL 4 0 -kSG 2 -EI L + kSGL 4 -ES L 0 0 ES L 0 0 0 -kSG L -kSG 2 0 kSG L -kSG 2 0 kSG 2 -EI L + kSGL 4 0 -kSG 2 EI L + kSGL 4 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (37) 

A Timoshenko 2 node finite element beam (2nd formulation)

Another way to avoid shear locking problems is to use higher order functions and to integrate exactly the stiffness matrix. For a 2 node finite element this leads to shape functions that depend on the material properties [START_REF] Ville De Goyet | L'analyse statique non linéaire par la méthode des éléments finis des structures spatiales formées de poutres à section non symétrique[END_REF], [START_REF] Friedman | An improved two-node timoshenko beam finite element[END_REF], [START_REF] Kotronis | Simplified modelling strategies to simulate the dynamic behaviour of r/c walls[END_REF], [START_REF] Mazars | Using multifiber beams to account for shear and torsion: Applications to concrete struc-tural elements[END_REF]. For example, according to [START_REF] Friedman | An improved two-node timoshenko beam finite element[END_REF] the shape functions become:

N = ⎡ ⎣ N 1 0 0 N 4 0 0 0 N 8 N 9 0 N 11 N 12 0 N 14 N 15 0 N 17 N 18 ⎤ ⎦ (38) 
with:

N 1 =1 - x L N 4 = x L N 8 = 1 1 + φ [2( x L ) 3 -3( x L ) 2 -φ( x L ) + 1 + φ] N 9 = L 1 + φ [( x L ) 3 -(2 + φ 2 )( x L ) 2 + (1 + φ 2 )( x L )] N 11 = -1 1 + φ [2( x L ) 3 -3( x L ) 2 -φ( x L )] N 12 = L 1 + φ [( x L ) 3 -(1 - φ 2 )( x L ) 2 - φ 2 ( x L )] N 14 = 6 (1 + φ)L [( x L ) 2 -( x L )] N 15 = 1 1 + φ [3( x L ) 2 -(4 + φ)( x L ) + (1 + φ)] N 17 = -6 (1 + φ)L [( x L ) 2 -( x L )] N 18 = L 1 + φ [3( x L ) 2 -(2 -φ)( x L )] (39) 
φ is the ratio between bending and shear stiffnesses. For an homogeneous section we get:

φ = 12 L 2 S Ey 2 dS S kGdS = 12 L 2 EI kGS (40) 
The generalised strains now become:

D s = ⎡ ⎣ N 1 0 0 N 4 0 0 0 N 8 -N 14 N 9 -N 15 0 N 11 -N 17 N 12 -N 18 0 N 14 N 15 0 N 17 N 18 ⎤ ⎦ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ U x 1 U y 1 Θ z 1 U x 2 U y 2 Θ z 2 ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ (41) 
Finally, the stiffness matrix of the element takes the following form:

K e = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ES L 0 0 -ES L 0 0 0 12EI (1+φ)L 3 6EI (1+φ)L 2 0 -12EI (1+φ)L 3 6EI (1+φ)L 2 0 6EI (1+φ)L 2 (4+φ)EI (1+φ)L 0 -6EI (1+φ)L 2 (2-φ)EI (1+φ)L -ES L 0 0 ES L 0 0 0 -12EI (1+φ)L 3 -6EI (1+φ)L 2 0 12EI (1+φ)L 3 -6EI (1+φ)L 2 0 6EI (1+φ)L 2 (2-φ)EI (1+φ)L 0 -6EI (1+φ)L 2 (4+φ)EI (1+φ)L ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (42) 
For elongated beams, φ is almost zero and the matrix reduces to the classical Euler Bernoulli stiffness matrix, see equation (32). The main problem of this finite element formulation is that it is not appropriate for non linear calculations as the shape functions depend on the material properties that evolve with the loading. Nevertheless, some good results where obtained by keeping the initial shape functions (calculated at the first step -elasticity) unchanged, [START_REF] Kotronis | Simplified modelling strategies to simulate the dynamic behaviour of r/c walls[END_REF], [START_REF] Mazars | Using multifiber beams to account for shear and torsion: Applications to concrete struc-tural elements[END_REF].

Timoshenko finite elements with internal degrees of freedom

Another way to avoid shear locking problems is to enrich the displacements field [START_REF] Ibrahimbegovic | A modified method of incompatible modes[END_REF] and to add internal nodes in the element [START_REF] Ibrahimbegović | Geometrically non-linear method of incompatible modes in application to finite elasticity with independent rotations[END_REF], [CKCed]. In that way higher order shape functions are obtained that do not depend on the material properties. The numerical integration is exactly performed and the elements are suitable for non linear calculations.

The finite element presented in [CKCed] (named "FCQ" Timoshenko beam for "Full Cubic Quadratic") has additional internal degrees of freedom, cubic shape functions for the vertical displacements and quadratic for the rotations. The element is free of shear locking and one element is able to predict the exact tip displacements for any complex distributed loadings and any suitable boundary conditions. One element gives the exact solution for the case of bending of a Timoshenko beam free of distributed loadings. It is also proven that the element presented in [START_REF] Friedman | An improved two-node timoshenko beam finite element[END_REF] is a particular case of the more general FCQ Timoshenko beam element. For more information the reader is invited to read the relevant reference.

Multifiber beam formulation

The section of the finite element beam (Euler Bernoulli or Timoshenko) is divided in different "fibers" [START_REF] Owen | Finite elements in plasticity: Theory and practice[END_REF]. In each fiber a constitutive law is introduced (e.g. concrete, steel...). Depending on the mesh discretization of the section (e.g. with triangular or rectangular finite elements) one or more Gauss points are associated in each fiber, see figure 5.

Figure 5: Multifiber beam modelling [START_REF] Guedes | A fibre timoshenko beam element in castem[END_REF], [START_REF] Mazars | Using multifiber beams to account for shear and torsion: Applications to concrete struc-tural elements[END_REF] The different formulations of the finite element beams presented in section 2 (expressed now in 3D) can be used for the multifiber element. Consider equations (1) and (3) expressing the kinematic assumptions: the y (and z in 3D) are replaced with y f (and z f ), the coordinates of the fiber f in the section. The generalised forces take the following forms (where E f and G f the Young's and the shear moduli of the fiber respectively):

F x = S E f ε x dS = S E f ( dU x dx -y f dΘ z dx )dS = S E f dSU x - S E f y f dSΘ z (43)
and in a similar way:

⎧ ⎨ ⎩ F x F y M z ⎫ ⎬ ⎭ = ⎡ ⎣ S E f dS 0 -S E f y f dS 0 S kG f dS 0 -S E f y f dS S E f y 2 f dS ⎤ ⎦ ⎧ ⎨ ⎩ U x β y Θ z ⎫ ⎬ ⎭ (44)
By introducing the previous equation of the virtual work principle we obtain:

L 0 δD s T K s D s dx -w exter = 0 (45) Considering that D s = ⎡ ⎣ B a B s B b ⎤ ⎦ Φ = B Φ (46)
the virtual work principle becomes:

L 0 δΦ T B T K s B Φdx -w exter = 0 (47) 
The section stiffness matrix presented hereafter is valid for homogeneous and non homogeneous sections even if the chosen axes are not the principal ones [START_REF] Guedes | A fibre timoshenko beam element in castem[END_REF]:

K e = L 0 B T K s Bdx (48) 
The numerical implementation of a multifiber beam is similar to a classical beam with the main difference that further loops are needed in the section level (scanning all the fibers) in order to construct the section stiffness matrix

K s [GPP94], [KM05], [ MKRC06]. 
In the following chapter, a case study is presented on a reinforced concrete viaduct considering soil-structure interaction [START_REF] Grange | The effects of soil-structure interaction on a reinforced concrete viaduct[END_REF]. For this, a multifiber Timosheko beam is coupled with macro-elements [START_REF] Grange | A macro-element to simulate 3d soil-structure interaction considering plasticity and uplift[END_REF], [START_REF] Grange | A macro-element to simulate dynamic soil-structure interaction[END_REF], [START_REF] Grange | Simplified modeling strategies for soil-structure interaction problems: The macro-element concept[END_REF]. The reader can find other applications of the multifiber beam concept in the recent literature: non linear shear [START_REF] Combescure | A fibre model accounting for transverse shear in castem[END_REF], non linear torsion [START_REF] Mazars | Using multifiber beams to account for shear and torsion: Applications to concrete struc-tural elements[END_REF], shaking Table 1: Viaduct: characteristics of deck cross section.

A(m 2 ) I x (m 4 ) I y (m 4 ) J(m 4 ) 1.11 0.13 2.26 2.39

Finite element mesh

A finite element model using multifiber beams and concentrated masses is chosen to reproduce the structure (figure 8). The piers are at first considered fixed at the base. The mass and rotational inertia details are given in Table 2 [START_REF] Grange | The effects of soil-structure interaction on a reinforced concrete viaduct[END_REF].

Figure 8: Viaduct: finite element mesh. Non linear Timoshenko multifiber beam elements are used to reproduce the behaviour of the piers [START_REF] Kotronis | Simplified modelling strategies to simulate the dynamic behaviour of r/c walls[END_REF], [START_REF] Mazars | Using multifiber beams to account for shear and torsion: Applications to concrete struc-tural elements[END_REF]. Six (6) elements are used for the piers P1 and P3 and nine (9) elements for the pier P2. Forty (40) concrete fibers and eighty (80) steel fibers are assumed in the sections, (figure 9). The deck is simulated using elastic linear beam elements. Calculations are made with FEDEASLab, a finite element MATLAB toolbox [START_REF] Filippou | Fedeaslab, getting started guide and simulations examples[END_REF]. 

Material parameters

A damage model with two scalar variables, one in compression and one in tension is adopted for concrete [START_REF] Borderie | Phénomènes unilatéraux dans un matériau endommageable: modélisation et application l'analyse des structures en béton[END_REF]. The model is able to reproduce the unilateral effect, the permanent strains and the stiffness recovery. A modified version of the classical Menegotto-Pinto model [START_REF] Menegotto | Method of analysis of cyclically loaded reinforced concrete plane frames including changes in geometry and nonelastic behaviour of elements under combined normal force and bending[END_REF] with an isotropic hardening is used for steel. It is worth noting that as the tests are pseudo-dynamic, the damping coefficient adopted in the numerical simulations has to be small [START_REF] Grange | The effects of soil-structure interaction on a reinforced concrete viaduct[END_REF].

Loading sequence

The accelerations imposed at the base of the structure derive from a synthetic accelerogram consistent with a 5% damping response specturm selected according to Eurocode 8 for a soil of class B. The peak of accelerations is situated at 0.35g ("weak" earthquake). A second similar accelerogram (dilated) is also imposed at the base of the structure. Its peak of acceleration is equal to 0.7g ("strong" earthquake) [START_REF] Grange | The effects of soil-structure interaction on a reinforced concrete viaduct[END_REF]. One can clearly see that despite the small number of degrees of freedom of the finite element model the non linear behaviour of the viaduct is reproduced quite satisfactorily. Not only the peaks in both directions are well reproduced but the frequency content of the response is correctly matched.

Experimental versus numerical results: dynamic analysis

Dynamic analysis considering soil-structure interaction

Two modelling strategies are studied hereafter to take into account soil-structure interaction. The first uses the macro-element approach [GKM09a], [START_REF] Grange | A macro-element to simulate dynamic soil-structure interaction[END_REF], [START_REF] Grange | Simplified modeling strategies for soil-structure interaction problems: The macro-element concept[END_REF] and the second linear elastic springs applied at the base of each pier. The elastic stiffness of the springs is calibrated such as that they accumulate the same energy as the non-linear macro-element [START_REF] Grange | The effects of soil-structure interaction on a reinforced concrete viaduct[END_REF]. The three types of boundary conditions are denominated hereafter as follows: linear springs (EL), macro-element (ME) and fixed (Fixed).

The results for the weak earthquake are presented in figure 12 for a class C soil. The predicted numerical behaviour of the viaduct differs depending on the assumed boundary conditions. The displacements are strongly amplified for the case of the structure resting on the macro-element and on the linear elastic springs. The results are more pronounced for the internal forces at the base of the piers (moments and shear forces). Loads on the structure are significantly reduced for the case of the macro-element.

Results obtained with the elastic linear springs are similar to the ones found for the fixed piers [START_REF] Grange | The effects of soil-structure interaction on a reinforced concrete viaduct[END_REF].

The limits of the classical engineering approach based on elastic linear springs are thus evident. For the case of the reinforced concrete viaduct internal forces and displacements are higher than the ones obtained using the macro-element, which allows a more appropriate description of the non linear behaviour of the foundation soil system.

Figure 12: Viaduct -soil-structure interaction: comparison of the displacements, moments and shear forces for the weak motion and for a class C soil [START_REF] Grange | The effects of soil-structure interaction on a reinforced concrete viaduct[END_REF].

Conclusions

In this course, the formulation of a multifiber beam element was presented in detail. Adopting an Euler Bernoulli or a Timoshenko kinematic assumption, the element is able to reproduce the non linear behaviour of composite structures. A case study on a reinforced concrete viaduct subjected to earthquake loadings showed the performance of the approach. Combined with macro-elements [START_REF] Grange | Simplified modeling strategies for soil-structure interaction problems: The macro-element concept[END_REF], it can take into account in a efficient, fast and robust way soil-structure interaction phenomena.
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 1 Figure 1: Beam [Bit13]
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 4 Figure4: A 2 node finite element beam[START_REF] Bitar | Un nouvel élément fini poutre pour la modélisation des structures sous sollicitations complexes[END_REF] 
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 67 Figure 6: Viaduct: plan view (scale 1:2.5) [PVP + 96].
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 9 Figure 9: Viaduct: details of the multifiber beam element mesh (piers P1, P2 et P3).

FiguresFigure 10 :

 10 Figures10 and 11show the comparison between the experimental and the numerical results of the dynamic analysis considering the piers fixed at the base. The two earthquakes (weak and strong) are imposed. The figures show the evolution with time of the shear forces at the base and the lateral displacements at the top of the piers P1, P2 and P3[START_REF] Grange | The effects of soil-structure interaction on a reinforced concrete viaduct[END_REF].

Figure 11 :

 11 Figure 11: Viaduct -fixed base: comparison between experimental and numerical displacements and shear forces for the strong earthquake [GBKT11].

  

  Eε x , σ xy = Gγ xy , with G the shear coefficient) we obtain:

	Equation (15) becomes:					
	0	L	(F x	d dx	δU x + F y	d dx	δβ y + M z	d dx	δΘ z )dx -w exter = 0	(17)
	Using Hooke's law (σ x =					
				Shear force: F y =			(16)

S σ xy dS

Bending moment :

M z = -S yσ x dS

table tests

 tests PVP + 96]). Inertial forces were calculated numerically and imposed to the model piers through actuators by applying the adequate displacements. Details of the deck and piers are given (scaled) in figures 7(a) and 7(b). Piers are made of reinforced concrete and present hollow rectangular section shapes. The characteristics of the section of the deck are given in Table1.
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Table 2 :

 2 Viaduct: masses and rotational inertia.Mass M (kg) Rotational inertia I x (kg.m 2 ) Rotat. inertia I z (kg.m 2 )

	M A	27.5	285	234
	M B	32	287	271
	M C	34	288	322
	M D	13.75	143	117