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Simplified modeling strategies for
soil-structure interaction problems: The
multifiber beam concept

Panagiotis Kotronis

LUNAM Université, Ecole Centrale de Nantes, Université de Nantes,
CNRS UMR 6183, GeM (Institut de Recherche en Génie Civil et
Mécanique), 1 rue de la Noë, BP 92101, 44321, Nantes, cedex 3,
France

Starting with the study of different Euler Bernoulli and Timoshenko beam finite ele-

ment formulations, a displacement based multifiber Timoshenko beam is presented.

The element is free of shear locking problems and it is able to reproduce the non lin-

ear behaviour of composite structures. It is validated using the experimental results

of a reinforced concrete viaduct subjected to earthquake loadings. Despite the small

number of degrees of freedom of the finite element model, the non linear behaviour of

the viaduct is predicted satisfactorily. Not only the peaks in both directions are well

reproduced but the frequency content of the response is correctly matched. Multifiber

beams combined with macro-elements [Gra13] can take into account in a efficient,

fast and robust way soil-structure interaction phenomena. This is shown in the last

section of the article where the influence of the soil-structure interaction on the be-

haviour of the reinforced viaduct is highlighted.

1 Introduction

The objective of this course is to introduce the differences between the Euler Bernoulli

and Timoshenko theories, to present various finite element beam formulations and

to show the equations of displacement based Timoshenko multifiber beam elements.

The paper follows mainly the work and ideas exposed in [Peg94], [GPP94], [KM05],

[MKRC06], [Bit13], [CKCed]. The important subject of force based beam finite el-

ements is not discussed hereafter. The reader can find information on this subject in

the following references [SFT96a], [SFT96b].
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2 Classical beam theories

2.1 Kinematics

We consider hereafter a beam of length L and section S(x) (figure 1). G(x, y, z) is the

center of gravity of the section S(x) and P (x, y, z) a point in the section. We define as

neutral axis the line that links the center of gravities of all the sections. We also sup-

pose that Gx, Gy, Gz are principal axes. For the 2D case studied hereafter (loadings

are in the x − y plane), the displacements uT = {ux, uy} of the point P (x, y, z) can

be expressed as a function of the displacements Ux(x), Uy(x) and the rotation Θz(x)
of the section S(x) (often defined in the literature as generalised displacements, see

also equations (8) and (16)) considering the following two kinematic hypotheses:

Figure 1: Beam [Bit13]

• Euler Bernoulli theory: In this theory, the section remains plane and perpendic-

ular to the neutral axis (figure 2).

Figure 2: Euler Bernoulli theory [Bit13]

A consequence of the previous kinematic assumption is that the rotation of the

section Θz(x) equals U ′

y(x) (the symbol ′ defines hereafter the first derivative

with respect to x and the symbol ′′ the second derivative with respect to x)
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(figure 2). The displacements of the point P (x, y, z) take thus the following

form [GPP94]:

ux(x, y) = Ux(x) − yΘz(x) = Ux(x) − yU ′

y(x)

uy(x, y) = Uy(x)
(1)

and the strains are calculated as (infinitesimal strain theory assumption):

εx =
∂ux

∂x
= U ′

x(x)− yΘ′

z(x) = U ′

x(x) − yU ′′

y (x)

γxy =
∂ux

∂y
+

∂uy

∂x
= U ′

y(x)−Θz(x) = 0
(2)

One can notice that due to the adopted kinematic hypothesis shear strains are

found equal to zero.

• Timoshenko theory: In this theory, the kinematic assumption is that the section

remains plane but not necessarily perpendicular to the neutral axis. In other

words, Θz �= U ′

y(x), see figure 3. Displacements and strains (infinitesimal

strain theory assumption) are now calculated as [GPP94]:

ux(x, y) = Ux(x)− yΘz(x)

uy(x, y) = Uy(x)
(3)

εx =
∂ux

∂x
= U ′

x(x)− yΘ′

z(x)

γxy =
∂ux

∂y
+

∂uy

∂x
= U ′

y(x) −Θz(x)
(4)

Figure 3: Timoshenko theory (Wikipedia)
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We define hereafter

βy = U ′

y(x)−Θz(x) (5)

The variable βy represents the rotation of the section due to shear. From equa-

tion (4) one can notice that shear strains are now constant in the section (and

not as in the Euler Bernoulli theory necessarily equal to zero).

2.2 Euler Bernoulli theory: Principal work principle and gener-

alised forces

The virtual work principle is written as (body forces and inertial forces are hereafter

neglected. The symbol σ defines stresses):

∫ L

0

∫
S

δεxσxdSdx− wexter = 0 (6)

with wexter the work of the external forces.

Replacing (2) in (6) we get:

∫ L

0

∫
S

δ(U ′

x(x)− yΘ′

z(x))σxdSdx− wexter = 0 (7)

We define hereafter the generalised forces in the section as:

Normal force: Fx =

∫
S

σxdS

Bending moment : Mz = −

∫
S

yσxdS

(8)

and equation (7) becomes:

∫ L

0

(FxδU
′

x +MzδΘ
′

z)dx− wexter = 0 (9)

Within a beam theory σy = σz = σyz = 0. Furthermore and because of equation (2)

σxz = σxy = 0. Hooke’s law thus becomes (with E the Young’s modulus and ν the

Poisson’s coefficient):

σx = Eεx

εy = εz = −νεx
(10)
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Finally, using equations (2), (8) and (10) the generalised forces become:

Fx =

∫
S

EεxdS =

∫
S

E(U ′

x(x)− yΘ′

z(x))dS =

∫
S

EU ′

x(x)dS = ESU ′

x(x)

Mz = −

∫
S

yEεxdS = −

∫
S

yE(U ′

x(x)− yΘ′

z(x))dS =

∫
S

y2EΘ′

z(x)dS = EIzΘ
′

z(x)

(11)

Remarks:

• The axis z is a principal axis and therefore
∫
S
ydS = 0.

• An homogeneous section is considered.

Introducing equation (11) in the virtual work principle (9) we have:

∫ L

0

(δU ′

x(x)ESU ′

x(x) + δΘ′

z(x)EIΘ′

z(x))dx − wexter = 0 (12)

If Fs
T = {Fx,Mz} the generalised force vector and Ds

T = {U ′

x,Θ
′

z} the gener-

alised displacement vector we define the stiffness matrix of the section Ks as:

Fs = Ks Ds =

{
Fx

Mz

}
=

[
ES 0
0 EIz

]{
U ′

x

Θ′

z

}
=

[
ES 0
0 EIz

]{
U ′

x

U ′′

y

}
(13)

2.3 Timoshenko theory: Principal work principle and generalised

forces

The principle work principle now becomes:

∫ L

0

∫
S

(δεxσx + 2δεxyσxy)dSdx − wexter = 0 (14)

Using equation (4) we get:

∫ L

0

∫
S

(δ(U ′

x(x)− yΘ′

z(x))σx + (δU ′

y(x)− δΘz(x))σxydSdx− wexter = 0 (15)

where the generalised forces are:

Normal force: Fx =

∫
S

σxdS

Shear force: Fy =

∫
S

σxydS

Bending moment : Mz = −

∫
S

yσxdS

(16)
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Equation (15) becomes:

∫ L

0

(Fx

d

dx
δUx + Fy

d

dx
δβy +Mz

d

dx
δΘz)dx− wexter = 0 (17)

Using Hooke’s law (σx = Eεx, σxy = Gγxy , with G the shear coefficient) we obtain:

Fx =

∫
S

σxdS =

∫
S

EεxdS =

∫
S

E(
dUx

dx
− y

dΘz

dx
)dS =

∫
S

EU ′

xds = ESU ′

x

(18)

In a similar way we have:

Fy = GSβy

Mz = EIzΘ
′

z

(19)

If Fs
T = {Fx, Fy,Mz} the generalised force vector and Ds

T = {U ′

x, βy,Θ
′

z} the

generalised strain vector we define the stiffness matrix of the section Ks as:

Fs = Ks Ds =

⎧⎨
⎩

Fx

Fy

Mz

⎫⎬
⎭ =

⎡
⎣ES 0 0

0 GS 0
0 0 EIz

⎤
⎦
⎧⎨
⎩
U ′

x

βy

Θ′

z

⎫⎬
⎭ (20)

Remark: The Timoshenko beam theory provides constant shear strains and stresses

in the section (see equation (4) and Hooke’s law). This result violates the boundary

conditions of the beam theory (σy = σz = 0) and does not agree with the theoretical

distribution of stresses which is parabolic for a rectangular cross section. A simpli-

fied way to deal with this inconsistency is to change the definition of the shear force

by adding a shear corrector factor (or Reissner corrector factor) k that depends on

the cross section geometry and the material characteristics [Cow66]. The modified

expressions take thus the following form:

Shear force: Fy =

∫
S

kσxydS (21)

Fs = Ks Ds =

⎧⎨
⎩

Fx

Fy

Mz

⎫⎬
⎭ =

⎡
⎣ES 0 0

0 kGS 0
0 0 EIz

⎤
⎦
⎧⎨
⎩
U ′

x

βy

Θ′

z

⎫⎬
⎭ (22)

2.4 A 2 node beam finite element formulation

Consider a 2D beam finite element with two nodes and three degrees of freedom per

node (figure 4).
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Figure 4: A 2 node finite element beam [Bit13]

DisplacementsUx(x), Uy(x) and rotationsΘz(x) along the beam are discretized using

the nodal displacements as follows:

U = N Φ (23)

or

⎧⎨
⎩
Ux

Uy

Θz

⎫⎬
⎭ =

⎡
⎣ N1 N2 N3 N4 N5 N6
N7 N8 N9 N10 N11 N12
N13 N14 N15 N16 N17 N18

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ux1

Uy1

Θz1

Ux2

Uy2

Θz2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(24)

where Ni(x), i = 1, 18 the shape functions and Φ the nodal displacements. The

equation providing the generalised strain vector Ds becomes (a for axial, s for shear

and b for bending):

Ds =

⎧⎨
⎩
U ′

x

βy

Θ′

z

⎫⎬
⎭ =

⎡
⎣ B1 B2 B3 B4 B5 B6
B7 B8 B9 B10 B11 B12
B13 B14 B15 B16 B17 B18

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ux1

Uy1

Θz1

Ux2

Uy2

Θz2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎣Ba

Bs

Bb

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ux1

Uy1

Θz1

Ux2

Uy2

Θz2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(25)

Using the previous equation in the virtual work principle we get a system of linear

equations that take the following form (with F the vector of nodal forces at the element

level and Ke the element stiffness matrix):
7



F = Ke Φ (26)

The element stiffness matrix Ke is given by (where the symbol + means matrix as-

sembly, adding in an adequate way the different degrees of freedom) :

Ke = Ka +Ks +Kb (27)

Ka =

∫ L

0

BT
a ESBadx

Ks =

∫ L

0

BT
s kGSBsdx

Kb =

∫ L

0

BT
b EIBbdx

(28)

2.4.1 An Euler Bernoulli 2 node finite element beam

Consider for example the following classical shape functions for the horizontal, verti-

cal and rotational degrees of freedom [Fre00]:

N1 = 1−
x

l
and N4 =

x

l

N8 = 1− 3(
x

l
)2 + 2(

x

l
)3 and N9 = x− 2

x2

l
+

x3

l2

N11 = 3(
x

l
)2 − 2(

x

l
)3 and N12 = −

x2

l
+

x3

l2

N14 = N ′

8 and N15 = N ′

9

N17 = N ′

11 and N18 = N ′

12

(29)

In this formulation the rotational and vertical displacements are made interdependent.

The other shape functions are considered equal to zero and so equation (24) becomes:

⎧⎨
⎩
Ux

Uy

θz

⎫⎬
⎭ =

⎡
⎣N1 0 0 N4 0 0

0 N8 N9 0 N11 N12

0 N ′

8 N ′

9 0 N ′

11 N ′

12

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ux1

Uy1

Θz1

Ux2

Uy2

Θz2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(30)
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The different stiffness matrices, for a constant homogeneous section S, take the fol-

lowing form (the matrix due to shear is equal to the zero matrix):

Ka =
ES

l

[
1 −1
−1 1

]

Kb =
EI

l3

⎡
⎢⎢⎣

12 6l −12 6l
6l 4l2 −6l 2l2

−12 −6l 12 −6l
6l 2l2 −6l 4l2

⎤
⎥⎥⎦

(31)

Ke =

⎡
⎢⎢⎢⎢⎢⎢⎣

ES/l 0 0 −ES/l 0 0
0 12EI/l3 6EI/l2 0 −12EI/l3 6EI/l2

0 6EI/l2 4EI/l 0 −6EI/l2 2EI/l
−ES/l 0 0 ES/l 0 0

0 −12EI/l3 −6EI/l2 0 12EI/l3 −6EI/l2

0 6EI/l2 2EI/l 0 −6EI/l2 4EI/l

⎤
⎥⎥⎥⎥⎥⎥⎦
(32)

2.4.2 A Timoshenko 2 node finite element beam (1st formulation)

For the case of a Timoshenko beam finite element, the choice of the shape func-

tions is crucial because of the possible shear locking numerical problem [HTK77],

[DL87], [ZT05]. If these functions are not appropriately chosen, the finite element

beam presents a spurious stiffness for the case of elongated beams. A simple adequate

set of shape functions is presented hereafter [Peg94], [GPP94]:

N1 = N8 = N15 =
x2 − x

L

N4 = N11 = N18 =
x− x1

L

(33)

⎧⎨
⎩
Ux

Uy

θz

⎫⎬
⎭ =

⎡
⎣N1 0 0 N4 0 0

0 N8 0 0 N11 0
0 0 N15 0 0 N18

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ux1

Uy1

Θz1

Ux2

Uy2

Θz2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(34)

The generalised strains become:

Ds =

⎡
⎣Ba

Bs

Bb

⎤
⎦Φ =

⎡
⎢⎢⎢⎢⎣

− 1
l

0 0 1
l

0 0

0 − 1
l

−x2−x
l

0 1
l

−x−x1

l

0 0 − 1
l

0 0 1
l

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ux1

Uy1

Θz1

Ux2

Uy2

Θz2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(35)
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In order to avoid shear locking problems, [DL87] propose to eliminate the linear term

in Bs or [HTK77] to sub-integrate the Ks using only 1 Gauss integration point. Ac-

cording to the solution proposed by [DL87], [GPP94], βy is now corrected as:

βy = −
1

l
Uy1

−
1

2
Θz1 +

1

l
Uy2

−
1

2
Θz2 = BsΦ (36)

Finally, the element stiffness matrix, for a constant homogeneous section, takes the

following form:

Ke =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ES
L

0 0 −ES
L

0 0

0 kSG
L

kSG
2 0 −kSG

L
kSG
2

0 kSG
2

EI
L

+ kSGL
4 0 −kSG

2 −EI
L

+ kSGL
4

−ES
L

0 0 ES
L

0 0

0 −kSG
L

−kSG
2 0 kSG

L
−kSG

2

0 kSG
2 −EI

L
+ kSGL

4 0 −kSG
2

EI
L

+ kSGL
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

2.4.3 A Timoshenko 2 node finite element beam (2nd formulation)

Another way to avoid shear locking problems is to use higher order functions and

to integrate exactly the stiffness matrix. For a 2 node finite element this leads to

shape functions that depend on the material properties [DVdG89], [FK93], [KM05],

[MKRC06]. For example, according to [FK93] the shape functions become:

N =

⎡
⎣N1 0 0 N4 0 0

0 N8 N9 0 N11 N12

0 N14 N15 0 N17 N18

⎤
⎦ (38)

with:
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N1 =1−
x

L

N4 =
x

L

N8 =
1

1 + φ
[2(

x

L
)3 − 3(

x

L
)2 − φ(

x

L
) + 1 + φ]

N9 =
L

1 + φ
[(
x

L
)3 − (2 +

φ

2
)(
x

L
)2 + (1 +

φ

2
)(
x

L
)]

N11 =
−1

1 + φ
[2(

x

L
)3 − 3(

x

L
)2 − φ(

x

L
)]

N12 =
L

1 + φ
[(
x

L
)3 − (1 −

φ

2
)(
x

L
)2 −

φ

2
(
x

L
)]

N14 =
6

(1 + φ)L
[(
x

L
)2 − (

x

L
)]

N15 =
1

1 + φ
[3(

x

L
)2 − (4 + φ)(

x

L
) + (1 + φ)]

N17 =
−6

(1 + φ)L
[(
x

L
)2 − (

x

L
)]

N18 =
L

1 + φ
[3(

x

L
)2 − (2− φ)(

x

L
)]

(39)

φ is the ratio between bending and shear stiffnesses. For an homogeneous section we

get:

φ =
12

L2

∫
S
Ey2dS∫

S
kGdS

=
12

L2

EI

kGS
(40)

The generalised strains now become:

Ds =

⎡
⎣N

′

1 0 0 N ′

4 0 0
0 N ′

8 −N14 N ′

9 −N15 0 N ′

11 −N17 N ′

12 −N18

0 N ′

14 N ′

15 0 N ′

17 N ′

18

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ux1

Uy1

Θz1

Ux2

Uy2

Θz2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
(41)

Finally, the stiffness matrix of the element takes the following form:
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Ke =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ES
L

0 0 −ES
L

0 0

0 12EI
(1+φ)L3

6EI
(1+φ)L2 0 − 12EI

(1+φ)L3

6EI
(1+φ)L2

0 6EI
(1+φ)L2

(4+φ)EI

(1+φ)L 0 − 6EI
(1+φ)L2

(2−φ)EI

(1+φ)L

−ES
L

0 0 ES
L

0 0

0 − 12EI
(1+φ)L3 − 6EI

(1+φ)L2 0 12EI
(1+φ)L3 − 6EI

(1+φ)L2

0 6EI
(1+φ)L2

(2−φ)EI

(1+φ)L 0 − 6EI
(1+φ)L2

(4+φ)EI

(1+φ)L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(42)

For elongated beams, φ is almost zero and the matrix reduces to the classical Euler

Bernoulli stiffness matrix, see equation (32). The main problem of this finite element

formulation is that it is not appropriate for non linear calculations as the shape func-

tions depend on the material properties that evolve with the loading. Nevertheless,

some good results where obtained by keeping the initial shape functions (calculated at

the first step - elasticity) unchanged, [KM05], [MKRC06].

2.4.4 Timoshenko finite elements with internal degrees of freedom

Another way to avoid shear locking problems is to enrich the displacements field

[IW91] and to add internal nodes in the element [IF93], [CKCed]. In that way higher

order shape functions are obtained that do not depend on the material properties. The

numerical integration is exactly performed and the elements are suitable for non linear

calculations.

The finite element presented in [CKCed] (named “FCQ” Timoshenko beam for “Full

Cubic Quadratic”) has additional internal degrees of freedom, cubic shape functions

for the vertical displacements and quadratic for the rotations. The element is free

of shear locking and one element is able to predict the exact tip displacements for

any complex distributed loadings and any suitable boundary conditions. One element

gives the exact solution for the case of bending of a Timoshenko beam free of dis-

tributed loadings. It is also proven that the element presented in [FK93] is a particular

case of the more general FCQ Timoshenko beam element. For more information the

reader is invited to read the relevant reference.

3 Multifiber beam formulation

The section of the finite element beam (Euler Bernoulli or Timoshenko) is divided in

different “fibers” [OH80]. In each fiber a constitutive law is introduced (e.g. concrete,
12



steel...). Depending on the mesh discretization of the section (e.g. with triangular or

rectangular finite elements) one or more Gauss points are associated in each fiber, see

figure 5.

Figure 5: Multifiber beam modelling [GPP94], [MKRC06]

The different formulations of the finite element beams presented in section 2 (ex-

pressed now in 3D) can be used for the multifiber element. Consider equations (1)

and (3) expressing the kinematic assumptions: the y (and z in 3D) are replaced with

yf (and zf ), the coordinates of the fiber f in the section. The generalised forces take

the following forms (where Ef and Gf the Young’s and the shear moduli of the fiber

respectively):

Fx =

∫
S

EfεxdS =

∫
S

Ef (
dUx

dx
− yf

dΘz

dx
)dS =

∫
S

EfdSU
′

x −

∫
S

EfyfdSΘ
′

z

(43)

and in a similar way:

⎧⎨
⎩

Fx

Fy

Mz

⎫⎬
⎭ =

⎡
⎣

∫
S
EfdS 0 −

∫
S
EfyfdS

0
∫
S
kGfdS 0

−
∫
S
EfyfdS

∫
S
Efy

2
fdS

⎤
⎦
⎧⎨
⎩
U ′

x

βy

Θz

⎫⎬
⎭ (44)

By introducing the previous equation of the virtual work principle we obtain:

∫ L

0

δDs
T
Ks Dsdx− wexter = 0 (45)
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Considering that

Ds =

⎡
⎣Ba

Bs

Bb

⎤
⎦Φ = B Φ (46)

the virtual work principle becomes:

∫ L

0

δΦT
B

T
Ks BΦdx− wexter = 0 (47)

The section stiffness matrix presented hereafter is valid for homogeneous and non

homogeneous sections even if the chosen axes are not the principal ones [GPP94]:

Ke =

∫ L

0

B
T
Ks Bdx (48)

The numerical implementation of a multifiber beam is similar to a classical beam with

the main difference that further loops are needed in the section level (scanning all

the fibers) in order to construct the section stiffness matrix Ks [GPP94], [KM05],

[MKRC06].

In the following chapter, a case study is presented on a reinforced concrete viaduct

considering soil-structure interaction [GBKT11]. For this, a multifiber Timosheko

beam is coupled with macro-elements [GKM09a], [GKM09b], [Gra13]. The reader

can find other applications of the multifiber beam concept in the recent literature:

non linear shear [CP94], non linear torsion [MKRC06], shaking table tests [KRM05],

[INK+08], [GKM09c], retrofitting with fiber reinforced polymers [DMKP13]. . .

4 Case study: A reinforced concrete viaduct

5 Description of the structure

A 1:2.5 scaled viaduct was tested pseudo-dynamically in ELSA laboratory (JRC Ispra)

(figure 6, [PVP+96]). Inertial forces were calculated numerically and imposed to the

model piers through actuators by applying the adequate displacements. Details of the

deck and piers are given (scaled) in figures 7(a) and 7(b). Piers are made of reinforced

concrete and present hollow rectangular section shapes. The characteristics of the

section of the deck are given in Table 1.
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Figure 6: Viaduct: plan view (scale 1:2.5) [PVP+96].

(a) (b)

Figure 7: Viaduct: (a) deck, (b) piers (scale 1:2.5) [PVP+96].

Table 1: Viaduct: characteristics of deck cross section.

A(m2) Ix(m
4) Iy(m

4) J(m4)
1.11 0.13 2.26 2.39

5.1 Finite element mesh

A finite element model using multifiber beams and concentrated masses is chosen to

reproduce the structure (figure 8). The piers are at first considered fixed at the base.

The mass and rotational inertia details are given in Table 2 [GBKT11].

Figure 8: Viaduct: finite element mesh.

15



Table 2: Viaduct: masses and rotational inertia.

Mass M (kg) Rotational inertia Ix (kg.m2) Rotat. inertia Iz (kg.m2)

MA 27.5 285 234

MB 32 287 271

MC 34 288 322

MD 13.75 143 117

Non linear Timoshenko multifiber beam elements are used to reproduce the behaviour

of the piers [KM05], [MKRC06]. Six (6) elements are used for the piers P1 and P3

and nine (9) elements for the pier P2. Forty (40) concrete fibers and eighty (80) steel

fibers are assumed in the sections, (figure 9). The deck is simulated using elastic linear

beam elements. Calculations are made with FEDEASLab, a finite element MATLAB

toolbox [FC04].

Piers P1-P3

Pier P2

0.4m

0.4m

0.4m

0.4m

0.4m

0.8m

0.8m

0.8m

0.8m

0.8m

1.6m

1.6m

1.6m
1.6m

1.6m

Sections P1-P3

Section P2 Concrete fibers

Concrete fibers

Steel fibers

Steel fibers

Figure 9: Viaduct: details of the multifiber beam element mesh (piers P1, P2 et P3).

5.2 Material parameters

A damage model with two scalar variables, one in compression and one in tension

is adopted for concrete [LB91]. The model is able to reproduce the unilateral effect,
16



the permanent strains and the stiffness recovery. A modified version of the classical

Menegotto-Pinto model [MP73] with an isotropic hardening is used for steel. It is

worth noting that as the tests are pseudo-dynamic, the damping coefficient adopted in

the numerical simulations has to be small [GBKT11].

5.3 Loading sequence

The accelerations imposed at the base of the structure derive from a synthetic accelero-

gram consistent with a 5% damping response specturm selected according to Eurocode

8 for a soil of class B. The peak of accelerations is situated at 0.35g (“weak” earth-

quake). A second similar accelerogram (dilated) is also imposed at the base of the

structure. Its peak of acceleration is equal to 0.7g (“strong” earthquake) [GBKT11].

5.4 Experimental versus numerical results: dynamic analysis

Figures 10 and 11 show the comparison between the experimental and the numerical

results of the dynamic analysis considering the piers fixed at the base. The two earth-

quakes (weak and strong) are imposed. The figures show the evolution with time of

the shear forces at the base and the lateral displacements at the top of the piers P1, P2

and P3 [GBKT11].
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Figure 10: Viaduct - fixed base: comparison between experimental and numerical

displacements and shear forces for the weak level earthquake [GBKT11].
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Figure 11: Viaduct - fixed base: comparison between experimental and numerical

displacements and shear forces for the strong earthquake [GBKT11].

One can clearly see that despite the small number of degrees of freedom of the finite

element model the non linear behaviour of the viaduct is reproduced quite satisfac-

torily. Not only the peaks in both directions are well reproduced but the frequency

content of the response is correctly matched.

5.5 Dynamic analysis considering soil-structure interaction

Two modelling strategies are studied hereafter to take into account soil-structure in-

teraction. The first uses the macro-element approach [GKM09a], [GKM09b], [Gra13]

and the second linear elastic springs applied at the base of each pier. The elastic stiff-

ness of the springs is calibrated such as that they accumulate the same energy as the

non-linear macro-element [GBKT11]. The three types of boundary conditions are de-

nominated hereafter as follows: linear springs (EL), macro-element (ME) and fixed

(Fixed).

The results for the weak earthquake are presented in figure 12 for a class C soil. The

predicted numerical behaviour of the viaduct differs depending on the assumed bound-

ary conditions. The displacements are strongly amplified for the case of the structure

resting on the macro-element and on the linear elastic springs. The results are more

pronounced for the internal forces at the base of the piers (moments and shear forces).

Loads on the structure are significantly reduced for the case of the macro-element.
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Results obtained with the elastic linear springs are similar to the ones found for the

fixed piers [GBKT11].

The limits of the classical engineering approach based on elastic linear springs are

thus evident. For the case of the reinforced concrete viaduct internal forces and dis-

placements are higher than the ones obtained using the macro-element, which allows a

more appropriate description of the non linear behaviour of the foundation soil system.

Figure 12: Viaduct - soil-structure interaction: comparison of the displacements, mo-

ments and shear forces for the weak motion and for a class C soil [GBKT11].

6 Conclusions

In this course, the formulation of a multifiber beam element was presented in detail.

Adopting an Euler Bernoulli or a Timoshenko kinematic assumption, the element is

able to reproduce the non linear behaviour of composite structures. A case study on a

reinforced concrete viaduct subjected to earthquake loadings showed the performance

of the approach. Combined with macro-elements [Gra13], it can take into account in

a efficient, fast and robust way soil-structure interaction phenomena.
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