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1 Introduction 

Continuum damage mechanics is often used as a framework for describing 
the variations of the elastic properties of due to micro-structural degrada-
tions. Experimentally, concrete specimens exhibit a network of microsco-
pic cracks that nucleate sub-parallel to the axis of loading. Due to the 
presence of heterogeneities in the material (aggregates surrounded by a 
cement matrix), tensile transverse strains generate a self-equilibrated stress 
field orthogonal to the loading direction, a pure mode I (extension) is thus 
considered to describe the behaviour even in compression. This rupture 
mode must be reproduced numerically. This is the reason why the failure 
criterion of the chosen constitutive law is expressed in terms of the 
principal extensions and that a tension test is modelled at the end of this 
paper. The influence of micro-cracking due to the external loads is 
introduced via damage variables, ranging from 0 for the undamaged 
material to 1 for a completely damaged material. 

This approach, however, is known to be inadequate for studies where 
strain softening appears. Calculations performed with a local classical 
continuum model - which does not incorporate an internal length variable - 
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are unable to objectively model intrinsic failure zones. Spurious mesh 
dependence appears and also cases of failure without any energy 
dissipation. In order to improve computational performance the nonlocal 
damage approach is often used in the literature. A different solution is 
investigated within this work. Local second gradient models are chosen to 
include a meso scale in the continuous. This approach differs from the 
nonlocal one in the sense that it is a local theory with higher order stresses 
depending only on the local kinematic history. 

A brief presentation of a classical damage mechanics constitutive law 
used for the calculations is given at the first part of the paper. The second 
gradient local approach for a 1D medium is then introduced. Finally, 
different numerical computations with 1D specimens in traction are 
presented. Using a random initialization of the iterative solver of the 
equilibrium equation we search the existence of various solutions and we 
show that the second gradient term regularize the problem giving results 
that are mesh insensitive and objective. 

2 Scalar Damage Model 

Introduced in 1958 by Kachanov [1] for creep-related problems, conti-
nuum damage mechanics has been applied in the 1980s for simulating the 
non linear behaviour of concrete [2], [3], [4]. Thermodynamics of 
irreversible processes gave the framework to formulate the adapted consti-
tutive laws [5], [6]. Considering the material as a system described by a set 
of variables and a thermodynamic potential, constitutive laws are systema-
tically derived along with conditions on the evolution of damage. How-
ever, an adequate choice of the potential and of the damage variable (scalar 
or tensor) remains to be made. Several anisotropic damage models have 
already been proposed [7], [8], [9], [10]. Possible applications cover also 
dynamic problems [11], [12], porous materials [13] and chemical damage 
[14]. Recent literature reviews on damage mechanics and concrete can be 
found in [15], [16], [17]. 

The outlines of a local scalar 3D damage mechanics law for concrete are 
presented hereafter [18], [19]. In this model, the material is supposed to 
behave elastically and to remain isotropic. The loading surface takes the 
following form: 

)()( DKDf eq (2.1)

with eq  the equivalent strain defined as: 
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being  the principal strains with (+ for traction) 

000 iii ifandif (2.3)

The choice of the previous definition of the equivalent strain eq is guided 
by the fact that tensile transverse strains are considered to describe the 
behaviour even in compression (see section 1). D is a scalar whose value is 
in the domain [0, 1]. The hardening-softening parameter K (D) takes the 
largest value of the equivalent strain ever reached by the material at the 
considered point. In that way it retains the previous loading history. 
Initially K (0) equals a given threshold 0D . Evolution laws for damage are 
used to describe the response in tension or compression - index j refers 
either to tension (t) or compression (c):

0
0 exp

)1(
1 Deqjj

eq

jD
j BA

A
D (2.4)

jA and jB are material parameters identified independently from com-
pression tests on cylinders and bending tests on beams. The scalar damage 
variable D, that has to be introduced in the constitutive equation, is a 
weighted sum of Dt and Dc.

cctt DDD (2.5)

is a parameter that has been added to the original version of the 
model in order to reproduce more accurately the behaviour of under shear. 
It is usually taken equal to 1.06. We call and )( the 
tensors in which appear only the positive and negative principal stress 
respectively, and t and c the strain tensors defined as: 

:: 11
ct and (2.6)

)(D is a fourth-order symmetric tensor interpreted as the secant 
stiffness matrix and it is a function of damage. The weights t and c are 
defined by the following expressions: 
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01 ticiii ifH , otherwise 0iH . ca and ta are the coeffi-
cients defining the contribution of each type of damage for general 
loading. From (2.7) and (2.8) it can be verified that for uniaxial 
tension 1ta , 0ca , tDD , and vise versa for compression. Responces 
under uniaxial compression and tension of this model are presented in 
figure 2.1. 

Fig. 2.1. Response of the Mazars damage model for concrete in uniaxial tension 
(left) and compression (right), (E being the Young modulus) 

3 Local Second Gradient Model 

It is today well established that strain softening induces bifurcation, strain 
localization, and that the numerical codes often predict failure without any 
energy dissipation [20],[21]. One of the possible remedies is to use 
classical damage mechanics constitutive laws based on the nonlocal 
damage theory (e.g., [22], [23], [24]) or nonlocal second within the flow 
theory of plasticity. The latter involve the second gradient of the plastic 
strain in the consistency condition and/or the flow rule, while the 
kinematic and equilibrium equations remain unchanged (e.g., [25], [26], 
[27]). For these models the constitutive equation in its incremental form is 
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itself a partial differential equation. Peerlings [28], [29] and Fremond [30] 
have also studied second gradient models within the theory of damage 
mechanics. Zervos et al. [31] proposed a mixed type model that can be 
interpreted as a strain-gradient theory with softening law enriched by the 
second gradient on an internal variable.  

A different approach is investigated within this work consisting of using 
second gradient local models to introduce a meso scale in continuous mo-
dels [32], [33], [34]. The word local means that the constitutive equation is 
a relation only between local quantities. Strain gradients are considered as 
additional observable state variables and are conjugate to higher order 
stresses that enter the equilibrium equations. This local model is a direct 
extension of microstructured or micromorphic continua proposed in [35] 
and [36]. Its general formulation follows. 

For a 1D medium the internal virtual power *
inP for the domain ba,

is a linear form in *'u and '*'u , the first and second derivatives with respect 
to the space variable x of the virtual velocity field *u (. is the symbol used 
for the derivatives with respect to the time and ' with respect to the space 
variable x). It takes the following form: 

dxuMuNP
b

a
in

'*'*'* (3.1)

N being the usual normal stress in 1D continuum, M is a double stress. 
In order to calculate the external virtual power *

exP , additional external 
forces μ, associated to the second gradient terms, have to be added to the 
classical external forces , associated to the first gradient terms (no distri-
buted forces are taken into consideration, so the only forces are those 
acting on the two ends a and b). The virtual power of the external forces is 
then:

*'*'*** uuuvuvP bbaabbex (3.2)

The virtual power formulation of the equilibrium equation of the conti-
nuum is for all kinematically admissible field *u :

0**
inex PP (3.3)

Integrating by parts twice shows that equation (3.3) is equivalent to: 

0''' MN (3.4)

and
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The next step is to choose the constitutive laws linked with the first and 
the second gradient part of the model. 

)( 'ufN (3.6)

)( ''ugM (3.7)

For large strain computations, there is a difference between the time de-
rivative of the strains and 'u , the derivative of the velocity with respect to 
the actual space variable. is a Lagrangian measure and 'u , 'u are Eulerian 
ones. When small strains are assumed 'u and both models can be 
written in an integral manner as follows: 

)(fN (3.8)

)( 'gM (3.9)

The balance equation (3.4) can be integrated as: 

1
' NntconstMN (3.10)

Substituting N and M given by equations (3.8) and (3.9) in equation 
(3.10), yields a differential equation which has to be met by the function u
of x. This equation can be solved analytically under certain conditions. 
Assuming that there is no coupling between those f and g, various types of 
constitutive relations can be studied. In the original papers [32], [33], a 
classical elastoplastic bilinear model (or a CLoE family model [37], [38]) 
exhibiting softening has been chosen for f and a linear relation for g. The 
authors have proven analytically that for a given problem the solutions 
have to be built using patches of different fundamental solutions, consisted 
of ‘hard parts’ corresponding to the unloading pieces and ‘soft parts’ for 
the loading pieces of the media. In that way, different solutions are 
possible (an inner hard solution, a hard-soft solution, a soft-hard-soft 
solution... see figure 3.1). In order to built a patch solution, one has to 
equate the values of the displacements u, strains u  and of the two internal 
forces N M  and M at the ends of the different pieces in order to meet the 
virtual power equation, and then to check that lim

' eu in hard pieces and 
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lim
' eu in soft pieces ( lime  being a threshold of the constitutive law, for 

example 0lim De for the Mazars law). 

Fig. 3.1. Patches of different fundamental solutions 

A 2D second gradient element has been developed [39], [40] and imple-
mented in the finite element code LAGAMINE (Université de Liége). The 
formulation of the element and the corresponding constitutive equations 
use a mathematical constraint between the micro kinematics description 
and the usual macro deformation gradient field. They are valid for large 
strains. This constraint is enforced in a weak sense by using Lagrange 
multipliers in order to avoid difficulties with the C1 continuity (second 
involving the first and the second derivatives of the displacement field).  

In the following section, the feasibility of this local approach with 
constitutive laws based on damage mechanics is proven numerically using 
1D simulations. The Mazars damage mechanics law is used for the fun-
ction f and some remarks about the uniqueness of solution, the objectivity 
of the calculations and the influence of a possible coupling between the 
functions f and g are drawn. 

4 1D Numerical Simulations 

A 1D concrete bar submitted to traction is studied hereafter and the length 
of the localization zone is compared with the analytical solutions provided 
in [32], [33]. The bar is modelled using the 2D second gradient element of 
the finite element code LAGAMINE (Université de Liége, [39], [40]) 
under plane deformations. In order to avoid any 2D effects, a zero vertical 
displacement is applied at the upper and lower boundaries along the bar (u2
= 0, figure 4.1). The right end of the bar is fixed (u1 = u2 = 0) and the 
external traction displacement is applied at the left end. The additional 
external forces b, a, μb, μa are assumed to be zero at both ends. The 
section of the bar is 0.1 x 1m2 and its length 1m.
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Fig. 4.1. Boundary conditions for simulating 1D traction in a 2D FE code 

Fig. 4.2. Constitutive models: (a) first gradient part, (b) second gradient part 

For the calculations presented hereafter it is assumed that there is no cou-
pling between the first and the second gradient part of the model (functions 
f and g). The constitutive relations are the Mazars damage law for the first 
gradient part and a linear relation for the second gradient part (Figure 4.2). 
The parameters chosen for the damage law correspond to that of a typical 
specimen ( 042,5.0,04.1,09.30 01 EBAEPaEA ttD ,
Poisson’s ratio 0.2, parameters that provide PaEA 097.162 ).

The second gradient local approach defines implicitly two internal 
lengths, the first (namely 1/ AB ) corresponding to the unloading regime 

of the first gradient part of the model, and the second (namely )/( 2AB )
corresponding to the softening loading regime just after the peak (B being 
the slope of the linear relation of the second gradient part, see figure 4.2). 
A way to define the order of magnitude used for B, is to use the criteria 
proposed in [32], [33] - valid under the small strain assumption and for a 
bilinear plastic law - in order to have possible analytical solutions and to 
avoid snap-back phenomena for the corresponding differential equation. 
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Assuming a two-part solution is possible (built with a patch of a hard part 
and a soft one) and considering B = 0.37E + 09N, one finds analytically 
that under small strains and for a bilinear law with A1 = 30.E + 09Pa and 
A2 = 16.7E + 09Pa the length of the soft part is equal approximately to 
0.37m. For the case of a three-part solution (hard - soft - hard) the length of 
the soft part equals approximately 0.78m.

As soon as the peak is reached the problem exhibits a loss of uniqueness. 
In order to determine numerically bifurcation thresholds, an algorithm of 
random initialization of the iterative solver of the equilibrium equation is 
used just after the peak (at 042.10 ED , [41], [42]). For every step, a 
full Newton-Raphson method under displacement control, involving a 
numerical consistent tangent stiffness operator for the complete model (i.e. 
the second gradient terms as well as the classical ones) is used [39]. The 
results of two meshes with 14 and 50 elements are presented hereafter 
[43]. Figure 4.3 shows the global force displacement curve for both 
meshes. Figure 4.4 presents the distribution of the damage variable D just 
after the peak ( 042.10 ED ), and figure 4.5 at the end of the loading 
( 049.20 ED ).

Fig. 4.3. 1D traction: Force - displacement curves for the two meshes 
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Fig. 4.4. Localization patterns (distribution of damage variable D) just after the 
peak ( 042.10 ED ): (a) 14-element mesh, (b) 50-element mesh 

Both meshes reproduce the homogeneous solution when no random initia-
lization of the iterative solver is used. When random initialization of the 
velocities is used just after the peak, differences in the global curves 
appear. This is due to the different corresponding localization patterns. The 
mesh with 14 elements has converged to a solution with two patches (a 
hard part and a soft one with a length equal approximately to the length 
calculated analytically). The mesh with 50 elements has converged to a 
three-part solution (hard - soft - hard) with the length of the soft part again 
very similar to the analytical value (Figure 4.4). One can also notice that 
the maximum values of the damage variable D are different (0.587 for the 
14 element mesh and 0.347 for the 50 element mesh). Of course, other 
random initialization can converge to different solutions, independently of 
the mesh discretization. 

The 50-element mesh switches after to the two-part solution (Figure 4.5), 
thus the localization pattern and the global curves become identical. This is 
also seen in [44]. The maximum values of the damage variable D for both 
meshes are almost the same (approximately equal to 0.876). 

From the previous results, it is obvious that the use of local second with 
damage mechanics laws provide internal lengths, and consequently 
solutions that do not depend on the spatial discretization. Finite element 
meshes with different number of elements provide the same solutions  
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Fig. 4.5. Localization patterns (distribution of damage variable D) at the end of the 
loading ( 049.20 ED ): (a) 14-element mesh, (b) 50-element mesh 

(Figures 4.3 and 4.5 at the end of the loading). However, this approach 
does not restore the uniqueness properties for the corresponding boundary 
value problem. Different converged solutions can appear (Figures 4.3 and 
4.4 just after the peak). Nevertheless, all these solutions are correct and 
possible to happen, contrary to the parasitic solutions obtained with a 
classical medium [20], [21]. 

5 Expansion of the Plastic Region 

The previous results show that when the magnitude of the softening modu-
lus decreases during the softening process, the plastic region is expanding. 
Some limited expansion of the plastic region is acceptable. However, as 
the softening modulus tends to zero, the size of the plastic region can grow 
without any bounds. This, as mentioned in [45], is a spurious, non physical 
effect which can be accompanied by stress locking, manifested by a non 
vanishing residual resistance of the structure even at very large elonga-
tions. The total work needed to completely break the bar (given by the area 
under the load-displacement diagram) is larger than in the absence of 
localization. In other words, the bar cannot fail by yielding of its limited 
segments, but every section must sooner or later start yielding. This is in 
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contradiction with the observed failure of concrete specimens, typically 
localized in regions having a limited length. 

A way to deal with this problem is to abandon the hypothesis of the non 
coupling between the first and the second gradient part of the model 
(functions f and g). Assuming an anelastic relation also for the function g 
(inducing a decrease of the tangent modulus with the loading), one can 
expect that the structure will not present any residual resistance at very 
large elongations, and that the spurious stress locking will disappear. The 
function g could be such that the internal length corresponding to the 
softening loading regime after the peak stays constant throughout the 
whole loading history or is a function of the damage variable D. In that 
way we could control the evolution of the localization zone, that can now 
increase, stay constant or even decrease depending on the form of the 
chosen function. 

For the following simulation the functions f and g are considered 
coupled. The Mazars damage mechanics law is used for the function f and 
the material parameters are kept the same as before. However, this time the 
second order stress M is calculated as a function of the damage variable D.
Figure 5.1 shows the global force - displacement curves using the second 
gradient model with or without coupling. Figure 5.2 presents the 
distribution of the damage variable D during the whole loading when f and 
g are coupled. 

Fig. 5.1. 1D traction: Force - displacement curves considering or not coupling 
between the first and the second gradient part 
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In figure 5.1, one can observe that although the global curve presents a 
non-zero stress for large elongations, the localization zones in figure 5.2 do 
not expand. At the beginning and for the first displacement increments the 

Fig. 5.2. 1D traction: Evolution of the localization pattern for the whole loading 
history considering coupling between the first and the second gradient part 

damage variable has the same value all along the bar. However, a hard soft 
hard soft solution soon appears and the localization zone does not increase 
although the damage variable D approaches to 1. This behaviour is more 
realistic. The results of this first simulation seem to indicate that the 
coupling of the first and the second gradient part of the model could 
provide a solution in order to correctly predict complete failure. 

6 Conclusions 

The feasibility of using local second gradient models with constitutive 
laws based on damage mechanics is proved throughout this work. 1D 
numerical computations with concrete specimens and the relevant post-
localization studies are presented. Using a random initialization of the 
iterative solver of the equilibrium equations it is shown once again that the 
second gradient term regularizes the problem providing results that are 
mesh insensitive and objective. However, as expected, it does not restore 
uniqueness properties for the corresponding boundary value problem. 
Numerical results considering coupling of the first and the second gradient 
part of the model indicate that the length of the localization zone can stay 
constant, property that could be useful in order to reproduce correctly the 
complete failure of concrete specimens. 
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Work in progress concerns the implementation of advanced following 
path techniques into the finite element code LAGAMINE to reproduce 
correctly snap-back phenomena [46], and various studies on the boundary 
conditions to use within a second gradient medium. Numerical simulations 
of biaxial tests will also be performed and comparisons with experimental 
2D failure schemes of various concrete specimens. 
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