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1. Introduction 

1.1. Process description – Injection molding 

About 30% of the annual polymer production is transformed by injection molding. It 
is a cyclic process of forming a plastic into a desired shape by forcing the molten 
polymer under pressure into a hollow cavity (Agassant et al, 1991; Osswald, 1998). 
For thermoplastics polymers, the solidification is achieved by cooling. Typical cycle 
times range from 1 to 100 seconds and depend mainly on the cooling time. The 
complexity of molded parts is virtually unlimited, sizes may range from very small 
(<1mm) to very large (>1m), with an excellent control of tolerances. 
 
1.2. The injection molding equipment 

The reciprocating screw injection molding machine is the most common injection 
unit used (figure 1). These machines consist of two basic parts, an injection unit and 
a clamping unit. The injection unit melts the polymer resin and injects the polymer 
melt into the mold. Its screw rotates and axially reciprocates to melt, mix, and pump 
the polymer. A hydraulic system controls the axial reciprocation of the screw, 
allowing it to act like a plunger, moving the melt forward for injection. The clamping 
unit holds the mold together, opens and closes it automatically, and ejects the 
finished part. 



 
 

Figure 1 - Injection molding machine with reciprocating screw (Wesselmann, 1998) 
 

1.3. Description of the injection molding cycle 

The process is started by plasticizing the material. A resin supplied in the form of 
pellets or powder is fed from the hopper into the injection unit which consists of a 
reciprocating screw in a barrel heated by several heating bands. The rotating screw 
transfers the solid material towards the heated zones of the barrel. The granules melt 
under the combined action of the heater bands and the dissipated energy induced by 
shearing of the viscous material when rotating the screw. 
 
The screw stops rotating when the required amount of material has been dosed. In 
the soak time until injection, the polymer melts by heat conduction from the barrel to 
the polymer. Before injection we ideally obtain a completely molten, low viscous 
material with a homogenous temperature distribution. 
 
The injection takes only a small portion of the cycle time. The screw acts like a 
plunger and pushes the melt into the mold. The polymer flows from the nozzle to the 
mold which is coupled to the nozzle by a sprue bushing. The melt flows to a cavity 
by runners and is fed to the cavity through a gate. The gate is simply a restriction in 
the flow path just ahead of the mold cavity and serves to direct the flow of the melt 
into the cavity and to limit back flow.  
 
The cooling of the melt starts when the melt leaves the heated section and gets in 
contact with the cooled mold walls. During filling the hydraulic pressure on the 
screw is adjusted to follow a programmed transitional speed profile which allows 
controlling the flow front speed in the cavity. 
 



 

When the cavity is completely filled the polymer pressure increases instantly. The 
machine must now instantly stop pushing forward the screw to avoid an over packing 
of the cavity. 
The specific volume of thermoplastic polymers reduces when passing from the 
molten to the solid state. More melt must be added to the cavity during solidification 
to compensate for the contraction of the polymer. Therefore, a constant hydraulic 
pressure is applied so that the screw holds the melt under pressure and pushes more 
melt into the mold. Eventually, the plastic in the gate freezes, isolating the mould 
from the injection unit. While the part continues to cool, the melt for the next shot is 
dosed.  At the end of the cooling time the part must be solid enough to retain the 
shape given by the cavity. The clamping unit opens the mould, ejects the part and 
closes and clamps the mould again. The next injection cycle starts. 
 
1.4. Importance of cooling step for manufacturing injected parts 
 
Part cooling during injection molding is the critical step as it is the most time 
consuming. An inefficient mold cooling may have dramatic consequences on cycle 
time and part quality and may require expensive mold rectification. Depending on 
the wall thickness of the molded parts, it usually takes the major portion of the cycle 
time to evacuate the heat. Polymers are bad conductors, as thermal conductivity 
ranges form 0.1 W/mK to 1.8 W/mK (Osswald, 1998). The cooling cycle can 
represent more than 70% of the injection cycle (Opolski et al, 1987; Lu, 1996). The 
cooling rate is an important factor for productivity, and important benefits can be 
achieved by decreasing the cooling time of parts with hot zones badly cooled. A bad 
design of the cooling channels may generate zones with higher temperatures in the 
mold, increasing the cooling time.  
 
In addition, different types of injection defects due to a bad thermal regulation of the 
mold can appear: dimensional defects, structural defects and aspect defects (Yang et 
al, 1996; Moller et al, 1998). 
 
In order to reduce mold and production costs, an automatic optimization of the 
geometry of the cooling device and processing parameters (temperature, flow rate...) 
may be developed. The optimization procedure necessitates to compute numerous 
transient heat balance problems (eventually non linear). For solving the thermal 
problem, we need an efficient meshing technique. The Boundary Element Method 
(BEM) is well adapted for such a problem, because it only requires a surfacing mesh. 
The displacement of the cooling channels after each optimization iteration is then 
facilitated (no remeshing). In addition, reduced modeling is useful in order to reduce 
the CPU time of the direct computations, particularly for 3D computations. Injection 
molding is a cycle process; which imply the computation of numerous cycles. On 
figure 2, an example of temperature history of 40 cycles is plotted versus time. 
Curves (a) and (b) give respectively the maximum of the temperature in the cavity 
before and after optimization. Curve (c) represents the average temperature at the 
cavity surface after optimization. 



 
 

Figure 2 -Temperature history of the first 40 cycles. 
 
2. Mold cooling optimization 
 
2.1. Introduction 
 
Several CAD and simulation tools are available to help designing the cooling system 
of an injection mold. Simulation of heat transfer during injection can be used to 
check a mold design or study the effect of a parameter (geometry, materials...) on the 
cooling performance of the mold. Several numerical methods such as Finite Element 
Method (FEM) (Boillat et al, 2002) or Boundary Element Method (BEM) (Bialecki 
et al, 2002) can be used. Bikas et al (1999) used C-Mold® simulations and design of 
experiments to find expressions of mean temperature and temperature variation as 
functions of geometry parameters of the mold.  
 
Numerical simulation can also be used to perform an automatic optimization of mold 
cooling. Numerical simulation is used to solve the thermal equations and evaluate a 
cost function related to productivity or part quality. An optimization method is used 
to modify the parameters and improve the thermal performance of the mold. Tang et 
al (1998) used 2D transient FEM simulations coupled with Powell’s optimization 
method (Fletcher, 1987) to optimize the cooling channel geometry to get uniform 
temperature in the polymer part. Huang et al (2001) used 2D transient FEM 
simulations to optimize the use of mold materials according to part temperature 
uniformity or cycle time. Park et al (1998) developed 2D and 3D stationary BEM 
simulations in the injection molds coupled with 1D transient analytical computation 
in the polymer part (throughout the thickness). The heat transfer integral equation is 
differentiated to get sensitivities of a cost function to the parameters. The calculated 
sensitivities are then used to optimize the position of linear cooling channels for 
simple shapes (sheet, box). 
 
In the next section, we present the use of the Boundary Element Method (BEM) and 
DRM applied to transient heat transfer of injection moulds. The BEM software, 
(Mathey et al, 2004; Pirc et al, 2009), was combined with an adaptive reduced 



 

modeling (described extensively later). This procedure will be fully described in 
section 3, it allows reducing considerably the computing time during the linear 
system solution in the transient problem. Then, we present a practical methodology 
to optimize both the position and the shape of the cooling channels in injection 
molding processes (section 4). We couple the direct computation with an 
optimization algorithm such as SQP (Sequential Quadratic Programming). 
 
2.2. BEM for transient heat balance equation 
 
Using BEM, only the boundary of the domain has to be meshed and internal points 
are explicitly excluded from the solution procedure. An interesting side effect is the 
considerable reduction in size of the linear system to be solved (Pirc et al, 2009). 
The transient heat conduction in a homogeneous isotropic body  is described by 
the diffusion equation, where  is the material thermal diffusivity, assumed to be 
constant: 
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We define the initial conditions and the boundary conditions (figure 3) as: 
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Where  is the thermal conductivity (the medium is assumed as homogeneous and 
isotropic), p  is the boundary of the cavity surface (plastic part), c  the boundary of 

the cooling channels and M  the mold exterior surface. The temperature of the 
coolant is cT  and the heat transfer coefficient, ch , represents the heat transfer 

coefficient between the mold and the coolant. ah  represents the heat transfer 

coefficient between the mold and the ambient air at a temperature aT . In order to 
avoid multi-domains calculation and save computation time, the plastic part is taken 
into account via a heat flux Pq  imposed on the mold cavity surface. The flux density 

Pq  is calculated from the cycle time and polymer properties (Mathey et al, 2004; 
Pirc et al, 2008 ). 



 
Figure 3 –Boundary conditions applied to the mold 

 
Different strategies are possible to solve such problems using BEM. Pasquetti et al 
(1995) propose to use space and time Green’s function. Another solution should be 
to apply Laplace (Sutradhar et al, 2002) or Fourier (Godinho et al, 2004) transforms 
on time variable before spatial integration. In this section, we will use only space 
Green’s function inspired on the stationary heat transfer problem (i.e. Laplace’s 
equation) 
 
The basic steps are in fact quite similar to those used for the finite element method. 
We firstly must form an integral equation from the previous equation by using a 
weighting integral equation and then use the Green-Gauss theorem: 
 

dTt
T1dTTdqT ***      (3) 

 
where *T  is the weighting function and q  the normal temperature gradient. This is 
the starting point for the finite element method. To derive the starting equation for 
the boundary element method, we use the Green-Gauss theorem again to the second 
left-hand integral. This gives: 
 

dTt
T1dTTdTqdqT ****     (4) 

 
For the boundary element method we choose *T  to be the fundamental solution of 
Laplace’s equation (also called the Green’ function): 
 

* 0xT         (5) 
 
where x  is the Dirac delta distribution at the point x  located inside the domain  
or on its surface . If we use now the integral property of the Delta function, we 
obtain (Brebbia et al, 1992): 
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Thus, we get the integral equation: 
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The fundamental solutions of Laplace’s equation are well-known (Brebbia et al, 
1992). *T and *q  are then defined by equations (9) and (10) depending on the 
dimension of the problem: 
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For 3D problems: 
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where r PM  and d r n r nr n r n  (figure 4): 

 
 



 
Figure 4 –Definition of distances used to compute fundamental solutions 

 
Again, a similar step to FEM consists in meshing. So, the boundary  of the domain 
is divided into eN  elements. 
 
To express now the domain integral in terms of equivalent boundary integrals, we 
introduce the DRM approximation (Brebbia et al., 1999). The DRM consists in 
seeking the solution as a series of particular solutions T  and q  interpolated on N  
points inside and on the boundary of the domain. 
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where the vector α  contains the coefficients k , vector D  the different derivatives 

kT
t

 and matrix F consists of the values of the interpolation function at each point. 

A commonly used interpolation function is the polynomial radial function leading to 
particular solutions (Brebbia et al, 1992). Applying BEM to the modified equation 
(11) leads to the new linear system of equations (12). 
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ij ijc q dH δ  and *

i

ij T dG . A Newmark time scheme is 

applied to the temperature and flux leading to equation (13): 
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where 
1C HT -GQT GQQ , t  is the time step and from the chosen values of 

1,0  the time integrating scheme will result. 
 
2.3. Coupling DRBEM with an optimization method 
 
The heat transfer computation is coupled with an optimization method to 
automatically modify the parameters at each optimization iteration as shown in 
figure 5. Given the initial parameters, the DRBEM simulation is performed and the 
cost function is calculated. The optimization method allows updating parameters 
according to constraints until a minimum of the cost function is found. SQP 
(Sequential Quadratic Programming) (Mathey, 2004) is used for the optimization of 
continuous non linear functions with continuous non linear constraints. 
 

 
 

Figure 5 – Heat transfer simulation / optimization coupling 
 
In order to reduce the computing time during the linear system solution (especially in 
3D), we propose the use of the model reduction within the BEM solver. Before 
presenting the results of optimization, the reduced modeling approach is 
summarized. 
 
3. Reducing modeling 
 
3.1. Introduction 

Most engineering systems can be modeled by a continuous model usually expressed 

by a system of linear or non-linear coupled partial differential equations describing 



the different conservation balances (momentum, energy, mass and chemically 

reacting substances). From a practical point of view, the determination of its exact 

solution, that is, the exact knowledge of the different fields characterizing the 

physical system at any point and time instant (velocity, pressure, temperature, 

chemical concentrations, …), is not possible in real systems due to the complexity of 

models, geometries and/or boundary conditions. For this reason, the solution is 

searched only at some points and at some times, from which it could be interpolated 

to any other point and time. Numerical strategies allowing this kind of representation 

are known as discretization techniques. There exist numerous discretization 

techniques, e.g. finite elements, finite volumes, boundary elements, finite 

differences, meshless techniques, among many others. The optimal technique to be 

applied depends on the model and on the domain geometry. Progresses in numerical 

analysis and in computation performances make currently possible the solution of 

complex systems involving millions of unknowns related to the discrete model.  

However, the complexity of the models is also increasing exponentially, and today 

engineers are not only interested in solving a model, but also in solving these models 

many times (e.g. when they address optimization or inverse identification). For this 

purpose, strategies able to speed-up the numerical solution, preserving the solution 

accuracy, are in focus. 

In the context of control, optimization or inverse analysis, numerous problems must 

be solved, and for this reason the question related to the computation time becomes 

crucial. The question is very simple: is it possible to perform very fast and accurate 

simulations? Different answers have been given to this question depending on the 

scientific community to which this question is addressed. For specialists in 

computational science the answer to this question concerns the improvement of 

computational resources, high performance computing and the use of parallel 

computing platforms. To some specialists in numerical analysis, the challenge is in 

the fast resolution of linear systems via the use of preconditioners or multigrid 

techniques, among many others. To others, the idea is to adapt the cloud of nodes 

(points where the solution is computed) in order to avoid excessive number of 



 

unknowns. Many other answers have been given, however at present all these 

approaches allow to slightly alleviate the computation efforts. However, the fast and 

accurate computation remains a real challenge.     

This section describes a different approach based on model reduction, allowing fast 

and accurate computations. The idea is very simple. Consider a domain where a 

certain model is defined, as well as the associated cloud of nodes able to represent 

by interpolation the solution everywhere. In general, the number of unknowns scales 

with the number of nodes and, for this reason even if the solution is evolving in time 

smoothly all the nodes are used to describe it at each time step. In the reduced 

modeling that we describe later the numerical algorithm is able to extract the optimal 

information describing the evolution of the solution in the whole time interval. Thus, 

the evolution of the solution can be expressed as a linear combination of a reduced 

number of functions (defining the reduced approximation basis), and then the size of 

the resulting linear problems is very small, and consequently the CPU time savings 

can attain several orders magnitude (sometimes, in the order of millions). 

The extraction of this relevant information is a well known topic based on the 

application of the proper orthogonal decomposition, also known as Karhunen-Loève 

decomposition (Karhunen, 1946; Loève, 1963) that is summarized in the next 

section. This kind of approach has been widely used for weather forecast purposes 

(Lorenz, 1956), turbulence (Sirovich, 1987; Holmes et al., 1997), solid mechanics 

(Krysl et al., 2001) but also in the context of chemical engineering for control 

purposes (Park and Cho, 1996).  

Usually reduced modeling performs the simulation of a similar problem or of the 

desired one in a short time interval. From these solutions the Karhunen-Loève 

decomposition applies, allowing the extraction of the most relevant functions 

describing the solution evolution. Now, it is assumed that the solution of a “similar” 

problem can be expressed using this reduced approximation basis, allowing for a 

significant reduction on the discrete problem size and then to significant CPU time 



savings. However, in general, the question related to the accuracy of the computed 

solutions is ignored. An original approach combining the model reduction and the 

control of the solution accuracy was proposed by Ryckelynck (2005), and applied 

later in a large catalogue of applications (Ryckelynck et al., 2006; Ryckelynck et al., 

2005; Ammar et al., 2006, Niromandi et al., 2008; Chinesta et al., 2008; Verdon et 

al., 2009). This model reduction strategy can be coupled with usual finite element or 

boundary element discretizations (Ammar et al., 2009). 

We summarize in this section the main ideas of this reduction strategy for the non 

specialist in numerical analysis, in order to show its potentiality in many domains of 

engineering and, in particular, in the context of optimization.   

3.2. Revisiting the Karhunen-Loève decomposition 

We assume that the evolution of a certain field that depends on the physical space x  
and on time t, ,u tx  is known. In practical applications, this field is expressed in a 
discrete form, that is, it is known at the nodes of a spatial mesh and at some times, 
i.e. , p p

i iu t ux . We can also write, introducing a spatial interpolation: 

,  ;  1, ,pu u t p t p Px x P, . The main idea of the Karhunen-Loève (KL) 

decomposition is how to obtain the most typical or characteristic structure x  

among these ,  pu px . This is equivalent to obtaining functions x  
maximizing  
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which leads to: 
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, which can be rewritten in the form  
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Defining vector φ  such that its i-component is ix , Eq. (16) takes the following 
matrix form 
 

  ;           T Tφ kφ φ φ φ kφ φT Tφ kφ φ φ φ kφ;;T TT  ;                ;        (17) 
 
where the two points correlation matrix is given by 
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which is symmetric and positive definite. If we define the matrix Q  containing the 
discrete field history: 
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it is easy to verify that the matrix k  in  Eq. (18) results in 
 

 Tk Q Q                 (20) 
 

 
3.3. Reduced modeling 

 
If the evolution of a certain field is known  

 
, ,  1, ,  ,  1, ,p p

i iu t u i N p Px 1N p P,  ,  1, , ,  ,  ,   ,       (21) 
 
from some direct simulations, or from experimental measurements, then matrices Q  
and k  can be computed and the eigenvalue problem given by Eq. (17) can be 
solved. The solution of Eq. (17) results in N couples eigenvalue-eigenvector. 
However, in a large number of models involving regular time evolutions of the 
solution, the magnitude of the eigenvalues decreases very fast, evidencing that the 
solution evolution can be represented as a linear combination of a reduced number of 
functions (the eigenvectors related to the highest eigenvalues).  
 



In our numerical applications we consider the eigenvalues ordered as 
1 2 NN . The n eigenvalues belonging to the interval 1 nn , with 

8
1 10n  and 8

1 1 10n  are selected, because their associated eigenvectors 
are expected to be sufficient to represent accurately the entire solution evolution. In 
a large variety of models n NN  and moreover n only depends on the regularity of 
the solution evolution, but neither on the dimension of the physical space (1D, 2D or 
3D) nor on the size of the model (N). 
 
The reduced approximation basis consist of the n eigenvectors 1, , nφ φnφ, , allowing 
to define the basis transformation matrix B : 
 

1 2, , , nB φ φ φnφ,                 (22) 
 
whose size is N n . Thus, the vector containing the field nodal values u  can be 
expressed as: 
 

1
( ) ( )

n

i i
i
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Now, if we consider the linear system of equations resulting from the discretization 
of a partial differential equation (PDE) in the form  
 

1p pAu f          (24) 
 
where 1pf  accounts for the solution at the previous time step, taking into account 
Eq. (23) it reduces to: 
 

1 1 p p p pA u f A B ξ = f               (25) 
 
and multiplying both terms by TB  it results 
 

1T p T pB A B ξ = B f                (26) 
 
which proves that the final system of equations is of low order, i.e. the dimensions of 

 TB A B  are nn , with n NN ,  and the dimensions of both ξ  and 1T pB f  are 
1n . 

 
Remark 1. Equation (26) can be also derived introducing the approximation (23) 
into the Galerkin form of the partial differential equation. 
 
3.4. Reduced basis adaptivity 



 

 
The just described strategy allows for very fast computation of large size models. 
For example one could solve the full model using some standard discretization 
technique (finite differences, finite elements, boundary elements, …) for a small time 
interval and then define matrix Q  and k  allowing compute the reduced 
approximation basis transformation B  that leads to the reduced solution procedure 
illustrated by Eq. (26). Other possibility consists in solving a model in the whole 
time interval and then extracting the most representative functions that could be used 
for solving some “similar” models. We come back to this discussion later. 

  
However, in any case, it is not guaranteed that this reduced basis that was built in the 
first scenario from the solution known within a short time interval, and in the second 
one for a particular model different to the present one, remains accurate for 
describing the solution in the entire simulation interval or for any other “similar” 
model respectively. In the first case it is obvious that during the simulation material 
properties, boundary conditions … could change, compromising the validity of the 
reduced basis. In the second case, the model being different to the one that served to 
extract the reduced basis nothing guarantees the validity of that reduced 
approximation basis. 

  
In this manner, if one would compute reduced model solutions and keep the 
confidence on the related solution, a check of the solution accuracy must be 
performed and an enrichment strategy must be defined in order to adapt the reduced 
approximation basis in order to capture the new events present in the solution 
evolutions which cannot be described accurately from the original reduced 
approximation basis.  

 
For this purpose, Ryckelynck proposed (Ryckelynck, 2005) to start with a low order 
approximation basis, using some simple functions (e.g. the initial condition in 
transient problems) or using the eigenvectors of a “similar” problem previously 
solved or the ones coming from a full simulation in a short time interval. Now, we 
compute S iterations of the evolution problem using the reduced model (26) without 
changing the approximation basis. After these S iterations, the complete discrete 
system (25) is constructed, and the residual R  evaluated: 

 
1 1S S S SR = Au -f = ABξ - f               (27) 

 
If the norm of the residual is small enough, R , with  a threshold value small 
enough, we can continue for other S iterations using the same approximation basis. 
On the contrary, if the residual norm is too large, R , we need to enrich the 
approximation basis and compute again the last S iterations. This enrichment is built 
using some Krylov’s subspaces, in our case the three first subspaces: 

2B B,R,AR,A R .  



 
One could expect the enrichment process increases continuously the size of the 
reduced approximation basis, but in fact, after reaching the convergence, a 
Karhunen-Loève decomposition is performed on the whole past time interval in 
order to extract the significant information as well as to define an orthogonal 
reduced approximation basis. The interested reader can refer to Ryckelynck et al. 
(2006) and the references therein for a more detailed and valuable description of the 
computational algorithm.   
 
 
3.5. Illustrating the applicability of reduced bases 
 
We are considering in this section for the sake of clarity a simple 1D model (the 
extension to multidimensional models is straightforward) related to the heat transfer 
equation (we omit the units, all them being expressed in metric system): 
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with 0.01 , 0,30t  and 0,1x . The initial condition reads ( , 0) 1T x t  

and the boundary conditions are given by 
0,
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x t

T q t
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0
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( 0.01). The boundary source ( )q t  is prescribed to different values during the 
simulations that follow. 
 
Equation (28) is discretized by using the implicit finite element method on a mesh 
that consists of 100 nodes, where a linear approximation is defined in each of the 
resulting 99 elements. The time step was set to 0.1t . The resulting discrete 
system can be written as: 
 

1p p pKT = MT q         (29) 
 
where vector pq  accounts for the boundary heat flux source at each time step p. 
 
Remark 2. We use the FEM because of the one-dimensionality of the model, but 
obviously all the results can be extended to any other discretization technique, and in 
particular to the BEM previously introduced. 
 
 
First, we consider the solution of the thermal model described above and related to 
the following boundary heat source: 
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        (30) 

 
The computed solution is depicted in figure 6, where the temperature profiles at 
times  pt p  1,2, ,30p ,30  are represented. The evolution in the 10 first 
seconds (heating stage) is depicted in red. In the remaining time interval no more 
heating sources exist, hence the heat shifts by a conduction mechanism from hotter 
towards the coldest zones. The profiles within this time interval are represented in 
blue. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6 - Temperature profiles related to the thermal model with the source term 

modeled by Eq. (30). 
 
Now, from these 30 profiles we could define matrices Q  and k , which lead to the  
eigenvalue problem allowing to extract the significant eigenvectors, according to Eq. 
(4). The resulting eigenvalues are: 1 1790 , 2 1.1 , 3 0.1  and 

8
1 10  4 100j j . This result implies that the whole solution evolution 

could be accurately represented as a linear combination of the 3 eigenvectors related 
to the first 3 highest eigenvalues. In order to impose easily the initial condition, it 
may be possible to add the initial condition to these eigenvectors (even if then the 
resulting approximation basis is no more orthogonal). Figure 7 depicts the resulting 
approximation functions, that consist of the 3 eigenfunctions related to the 3 highest 
eigenvalues and the initial condition, all them normalized, and referred as jΦ . These 
functions allow defining matrix B  and then the reduced model derived from Eq. 
(29): 

 
1T p T p pB KBξ = B MBξ q        (31) 

 
that only involves 4 degrees of freedom. Even in the case of non linear models and 
an implicit discretization, only the inversion of a matrix of size 4 is required at each 
time step. 

 



 

If we assume that the initial condition has been placed in the first column of B , then 

the initial condition in the reduced basis writes: 0 1 0 0 0
T

ξ = . Now, from 
this condition, Eq. (31) can be applied to compute the whole time evolution. 
Obviously, the global solution can be obtained from the reduced one according to 
the basis transformation relationship: p pT Bξ . Figure 8 compares a few 
temperature profiles obtained using the global model (Eq. (29)) and that were 
depicted in figure 6, with those obtained using the reduced model (Eq.(31)) An 
excellent accuracy can be noticed. This accuracy is not surprising because, as 
indicated before, the four approximation functions used were the ones related to the 
highest eigenvalues and that, consequently represent the optimal reduced 
approximation basis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 - Functions defining the reduced approximation basis. 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 - Complete (continuous line) versus reduced (stars) model solutions. 
 
In order to conclude about the applicability of this reduced approximation basis to 
simulate problems different from the one that served to compute it, we consider the 
thermal model defined in the same domain, with the same initial condition, but with 
a slightly different boundary heat source term:  
 

0 20
20( )

30 20
5

t t
q t

t t
        (32) 

 
Figure 9 compares the reference solution (continuous line) computed using the 
model represented by Eq. (29) with that obtained using the reduced model (31) –
stars- but where the reduced approximation basis consists of the four functions 
represented in Fig. 7 and that were associated with the thermal model related to the 
boundary condition given by Eq. (30). We can notice the excellent accuracy, 
somewhat unexpected, because the non evident compatibility between the problem 
solutions defined by Eqs. (30) and (32), and then the unexpected ability of the 
approximation functions extracted from the solution of the thermal model defined by 
Eq. (30) to describe the solution of the thermal model related to Eq. (32).  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
Figure 9 - Complete (continuous line) versus reduced (stars) model solutions related 

to the thermal model associated to the thermal source given by Eq. (19). 
 
 
From this result we can start to realize the potentiality of model reduction, but in any 
case two questions remain open: (i) how to quantify the quality of a reduced solution 
without the necessity of computing the global solution?; and (ii) in the case of 
noticing a lack of accuracy, how to enrich the reduced approximation basis in order 
to improve the solution accuracy? 
 
To address these questions, we consider the technique originally proposed by 
Ryckelynck (Ryckelynck, 2005) that consists in computing the solution residual 
defined at a certain time step by 
 

1p p pR KT MT q          (33) 
 
This residual can be used to quantify the accuracy of the reduced solution, and 
allows addressing the first question. Now, concerning the second one, we are 
assuming that the residual resulting from the application of Eq. (20) is greater than a 
threshold value, i.e. R . A natural choice consists in enriching the reduced 
approximation basis by adding this residual (that is orthogonal in a Galerkin sense to 
the approximation functions) and some of the Krylov’s subspaces related to it 
(according to the procedure previously described). 
 



For the thermal model related to the boundary source given by Eq. (32) and the 
reduced approximation basis depicted in Fig. 7, the residual norm at 30t  was 

52.6 10R , justifying the excellent agreement between the global and reduced 
solutions noticed in Fig. 9. 
 
Figure 10 depicts the normalized residual /R R R . Even if the residual is 
very small, it can be noticed that the largest deviations are concentrated around the 
left boundary, where the boundary thermal source applies. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 - Normalized residual at 30t  related to the solution associated with Eq. 

(32) and computed from the reduced approximation basis depicted in Fig. 7. 
 
 
Now, we proceed to enrich the reduced approximation basis by introducing this 
residual (the first Krylov’s subspace) into matrix B  according to:  B B,R . If 
the thermal model related to Eq. (32) is solved again, but using the just updated 
(enriched) reduced approximation basis, then the norm of the residual decreases, 
justifying the introduction of the Krylov’s subspaces related to the residual to 
improve the reduced solution accuracy.  
 
3.6. Discussion 
 
Similar results could be obtained by considering more complex thermal models. We 
have analyzed several different scenarios. One of them consisted of a thermal model 



 

that was solved for a particular evolution of the volumetric source term (the 
boundary conditions were assumed fixed in this case). A first solution allowed us to 
define the reduced approximation basis by solving the eigenvalue problem and 
selecting the eigenvectors related to the highest eigenvalues. Now, different 
evolutions in time and space of the volumetric source term were considered and the 
associated solutions computed by using the same reduced basis. The computed 
solutions were compared with the reference ones obtained by using the complete 
approximation basis. In all the analyzed cases the agreement was very good, always 
improved by adding to the reduced basis the computed residuals associated to the 
reduced basis solutions, as just described. 
 
The previous numerical examples illustrate the model reduction capabilities. The 
main originality lies in the capability of checking for the solution accuracy and the 
eventual possibility to adapt the reduced basis by adding the residual and some 
Krylov’s subspaces generated by it into the reduced approximation basis. These 
appealing capabilities were exploited to solve many models (see the works 
referenced in the introduction to this section). We have also experienced that models 
involving weak fixed discontinuities (thermal models in non-homogeneous media) 
accept reduced approximation basis, from which the evolving solutions can be 
accurately represented. When these discontinuities are evolving within the domain, 
the situation becomes a bit more complicated. If general, strong discontinuities 
moving within the domain don’t accept a reduced description. That is, if we know 
the solution evolution and we apply the Karhunen-Loève decomposition, most of the 
eigenvalues must be retained in the model description. This situation seems quite 
obvious. Other difficulties are found when the models imply moving meshes 
(updated Lagrangian formulations). In that case, a reduced basis can be extracted 
(Ryckelynk et al., 2006), but it cannot be used to solve models in which the 
evolution of the nodal positions differ from the one that served to define the reduced 
basis. The fact that level-set based descriptions of moving interfaces accept reduced 
approximations opens new perspectives within the framework of the partition of 
unity based discretizations.  
 
In what follows we focus on a direct consequence of the examples discussed in the 
previous section, concerning the optimization. As it is well known, in order to 
perform optimization one needs a minimization strategy (first or higher order) and a 
direct solver that is called for each tentative state of the design parameters. Because 
one must solve numerous direct problems, the computing time of such direct solver 
becomes crucial. The simplest alternative lies in solving the complete model for one 
(or some) point within the design space and extract the reduced basis, and then for 
any other point (given by the minimization strategy) computed the solution from that 
reduced approximation basis. In any case, the solution can be improved by enriching 
the reduced bases by applying the strategy described above. In the next sections we 
illustrate the capabilities of such one procedure. 
 
 



4. Application of the DRBEM reduced model to mold cooling 
optimization 
 
4.1. Reduced model coupled with DRBEM 
 
We solve the eigenvalue problem defined in section 3 selecting the eigenfunctions 

n  associated with the eigenvalues N,1nn  belonging to the interval defined 
by the largest eigenvalue, such as n ’s sum is upper or equal to 99.9% of N ’s sum 

(N number of nodes). In practice, n is much lower than N. The B matrix is then 
assembled and used to approximate the temperature. The main steps of the direct 
simulation coupled with the reduced model are summarized on figure 11. 
 

 
 

Figure 11 – Direct DRBEM simulation with reduced model 
 
4.2. Overall optimization methodology 
 
We present in this section how we formulate the problem under a mathematical 
programming form. In the sequel, x will denote the vector of optimization variables 
(position and shape parameters for the cooling channels). Since the output of the 
heat-transfer problem is a function of x, we shall make the dependence explicit of the 
temperature measurements upon the position and shape parameters. Most practical 
optimization problems involve several (often contradictory) objective functions. The 
simplest way to proceed in such a multi-criterion context is to consider as objective 
function a weighted sum of the various criteria. This involves choosing appropriate 
weighting parameter values. An obvious alternative is to use one criterion as 
objective function while requiring, in the constraints, maximal threshold levels for 
the remaining criteria. We choose here the latter approach because we do know a 



 

threshold level value for the maximal temperature variation under which any 
variation is equally acceptable. More precisely, we formulate our problem under the 
form: 
 

0xgandxTftosubjectxTmin
x

    (34) 

 
where f is a real-valued function used to stipulate the uniformity-temperature 
constraint, and g(x) is a general vector-valued non-linear function. The complete 
methodology to couple the thermal solver and the optimization algorithm procedure 
is presented in (Pirc, 2009). 
 
The general constraints 0xg  represent any geometry related or other industrial 
constraints, such as: 
 

 upper/lower-bound constraints on the ix , 
 

 keeping the cooling channels within the mold, 
 

 technically-forbidden zones where we cannot position the cooling channels 
(for instance due to the presence of ejectors),  

 
 constraints stipulating a minimal distance between every pair of cooling 

channels to avoid inter-channels collision. 
 
4.3. Application 
 
In this section, we report numerical simulations on a 3D plastic part whose features 
are displayed on Figure 12 (units in mm). It is a semi-industrial injection mold 
design for the European project: Eurotooling 21. 

 
Figure 12 – Plastic part dimensions 

 
The mold is meshed using 5592 linear triangles and each cooling channel using 340 
quadrangles (figure 13). 
 



 
 

Figure 13 –Upper-part of the mold mesh 
 
The thermo-physical properties of the polymer as well the mold material are 
referenced in table 1. The boundary conditions are the same as defined in section 
2.2. 
 

 
 

Table 1 – Thermo-physical properties 
 
The history matrix, corresponding to the first injection cycle time, is computed using 
transient DRBEM code. The mold temperature, for the next injection cycle time, is 
computed using the reduced model. The optimization objective consists in 
minimizing the maximal temperature while minimizing temperature variations: 
 

Ni
aviiNi

TT subject to      Tmaxminimize     (35) 

 
where N is the number of elements and avT  the average surface temperature. For 
illustration purposes, we consider here 8 cooling channels and the constraints and 
optimization variables are sketched in figure 14. 



 

 
 

Figure 14 –Constraints and optimization variables 
 
The geometrical optimization parameters are the coordinates of the end points, 1P  
and 2P of each cooling channel (figure 14). Since 2P  can be expressed in terms of 
the other coordinates and since the channel length (L) is constant, the optimization 
parameters for locating the i-th cooling channel are completely determined by 

1 1, ,8, ,  i
i i i iP X Y Z , ,8 . For this application, iZ  is fixed and therefore the 

problem reduces to 16 optimization variables. 
 
We use as starting point a heuristic solution provided by an experienced engineer. 
On average, one objective function evaluation requires 14 min of CPU time (one 
direct computation). Since we compute gradients using finite difference 
approximation (associated with SQP method), one optimization iteration involves 4 
hours of CPU time on Macintosh 1.83 GHz Intel Core 2 Duo. 24 optimization 
iterations were necessary in order to achieve convergence for one injection cycle 
(figure 15). 

 
 

Figure 15 –Convergence history 
 



In addition, the surface temperature distribution of the mold is presented in figure 
16, with the temperature profile at the mold surface before and after optimization are 
shown in figure 17. We observe that both temperature variance and temperature 
average decrease significantly. 
 

 
Figure 16 –Surface temperature distribution of the mold 

 

 
Figure 17 –Temperature profile at the surface of mold cavity 

before and after optimization (z=0.02 m) 
 

We need 96 hours to perform a complete optimization without the reduction model. 
If we use now the reduction model and DRBEM, we reduce CPU time to 7h40 (one 
direct computation of 14 minutes and 24 optimization iterations of 18 minutes 
approximately). CPU time is divided approximately by 13. 
 
4.4. Conclusion 
 
We introduced a methodology based on the use of DRBEM to solve the 3D heat 
transfer equation during the cooling step of the injection molding process. The 
preliminary computation tests on a semi-industrial plastic part showed that the 
approach is viable for optimizing the design of cooling channels for injection 
molding. The numerical modeling and optimization methodology can easily take into 
account a large range of industrial constraints. Various optimization criteria can be 
provided by the user (either directly as a cost function or within constraints. 
 



 

Another interesting aspect consists in using this technique in order to compute multi-
cycles injection mold cooling. The reduction model allows to extract from the first 
cycle the relevant eigenfunctions associated with the eigenvalues and consequently 
to calculate very rapidly all the other cycles. 
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