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Abstract. In this paper we introduce a new technique for the real-time
simulation of non-linear tissue behavior based on a model reduction tech-
nique known as Proper Orthogonal (POD) or Karhunen-Loève Decom-
positions. The technique is based upon the construction of a complete
model (using Finite Element modelling or other numerical technique, for
instance, but possibly from experimental data) and the extraction and
storage of the relevant information in order to construct a model with
very few degrees of freedom, but that takes into account the highly non-
linear response of most living tissues. We present its application to the
simulation of palpation a human cornea and study the limitations and
future needs of the proposed technique.

1 Introduction

Real-time surgery simulation [5] has attracted the attention of a wide community
of researchers. The utility of such techniques are obvious, and they include,
for instance, surgery planning, training of surgeons in image-guided surgery or
minimally-invasive surgery, etc.

The state of the art of the technique has evolved very rapidly, see for instance
[8] or [11] for interesting surveys. Starting from spring-mass systems, the nowa-
days real-time surgical simulators are now mostly based on Finite Element (FE)
or Boundary Element (BE) technologies, able to account for a quite realistic
behavior and even large deformations, see, for instance, [2][3][6].

Such simulators should provide a physically more or less accurate response
such that, with the use of haptic devices, a realistic feedback is transmitted to
the surgeon in terms of both visual feedback and force feedback. Following [4],
“... the model may be physically correct if it looks right”.
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For that to be possible, it is commonly accepted that a minimum bandwidth
of 20-60 Hz for visual feedback and 300-1000 Hz for haptic display is necessary,
see [7]. In this paper we focus our attention in the second requirement for the
deformable model. All the simulations performed were designed to run under
that requirements.

Very recently, geometric non-linearities have been taken into account in a work
also based in model reduction, see [2]. But in this case, only linear materials have
been considered (i.e., the so-called Saint Venant-Kirchhoff models, or homoge-
neous isotropic linear elastic materials undergoing large deformations). Most soft
tissues, however, exhibit complex non-linear responses, possibly with anisotropic
characteristics, and are frequently incompressible or quasi-incompressible. Geo-
metric non-linearities (those deriving from large strains) should be also taken
into consideration on top of this complex material behavior. The correct sim-
ulation of these materials requires the employ of Newton-Raphson or similar
techniques in an iterative framework. This makes the existing engineering FE
codes unpractical for real-time simulations.

The technique here presented is based upon existing data on the behavior of
the simulated tissues. These data can be obtained after numerical simulations
made off-line and stored in memory. But they can be also obtained from physical
experiments, for instance. For the work here presented we have chosen the first
option, and FE models of the organs being simulated will be considered as an
“exact” to compare with. From these data we extract the relevant information
about the (non-linear) behavior of the tissues, with the help of Karhunen-Loève
decompositions and employ it to construct a very fast Galerkin method with
very few degrees of freedom. To this end, we employ model reduction techniques
based on proper orthogonal decompositions [9] [10] [12].

In order to show the performance of the method, we have chosen to simulate
the behavior of the human cornea, although the technique is equally applicable
to any other soft tissue. The cornea presents a highly non-linear response, with
anisotropic and heterogeneous behavior due to its internal collagen fiber rein-
forcement. As an accurate enough model we have implemented that employed
in [1]. This model is briefly reviewed in Section 2.

2 A Hyperelastic Mechanical Model for the Human
Cornea

As mentioned before, we have chosen the human cornea as an example of highly
non-linear tissue. This non-linearity comes from a variety of reasons, such as
the internal collagen fiber reinforcement (material non-linearity) and also from
the very large strains it could suffer. The human cornea is composed by a
highly porous material, composed by nearly 80% by water, and thus quasi-
incompressible. Most of the cornea’s thickness (around 90%) constitutes the
stroma, that is composed of 300-500 plies of collagen fibers, distributed in paral-
lel to the surface of the cornea. This microstructure induces in the corneal tissue
a highly non-linear and heterogeneous behavior.
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The model here employed for the simulation of the human cornea [1] considers
the cornea as a hyperelastic material. Reinforcing fibers, that move continuously
together with the cornea, posses a direction m0, with |m0| = 1. The fiber
stretching after the deformation will be given by λm(x, t) = Fm0, where F =
dx/dX represents the deformation gradient. A second family of fibers, n0, is
also considered as reinforcement at each point.

Due to the dependence of strain on the considered direction, the existence
of a strain energy density functional, Ψ , depending on the right Cauchy-Green
tensor, C = F T F , and the initial fiber orientations, m0 and n0, is postulated.
Based on the volumetric incompressibility restrictions, this functional can be
expressed as [1]

Ψ(C) = Ψvol(J) + Ψ̄(C̄, m0 ⊗ m0, n0 ⊗ n0) (1)

where Ψvol(J) describes the volumetric change and Ψ̄(C̄, m0 ⊗ m0, n0 ⊗ n0)
the change in shape. Both are scalar functions of J = detF, C̄ = F̄

T
F̄ , where

F̄ = J−1/3F , m0 and n0.
Once this energy density functional is known, the second Piola-Kirchhoff stress

tensor, S, and the fourth-order tangent constitutive tensor, C, can be determined
by

S = 2
∂Ψ

∂C
C = 2

∂S(C)
∂C

(2)

A detailed derivation of the model can be obtained in [1]. The interested
reader is referred to this paper for reference.

3 Model Reduction Techniques

3.1 Fundamentals: Karhunen-Loève or Proper Orthogonal
Decomposition

In Karhunen-Loève techniques [9] we assume that the evolution of a certain field
T (x, t) is known. In practical applications (assume that we have performed off-
line some numerical simulations, for instance), this field is expressed in a discrete
form which is known at the nodes of a spatial mesh and for some times tm. Thus,
we consider that T (xi, t

m) = T m(xi) ≡ T m
i (tm = m × Δt) are known. We can

also write T m for the vector containing the nodal degrees of freedom at time
tm. The main idea of the Karhunen-Loève (KL) decomposition is to obtain the
most typical or characteristic structure φ(x) among these T m(x), ∀m. This is
equivalent to obtain a function that maximizes α:

α =

∑m=M
m=1

[∑i=N
i=1 φ(xi)T m(xi)

]2

∑i=N
i=1 (φ(xi))2

(3)

where N represents the number of nodes of the complete model and M the num-
ber of computed time steps. The maximization leads to an eigenvalue problem
of the form:

φ̃
T
c φ = αφ̃

T
φ; ∀φ̃ ⇒ c φ = αφ (4)
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where we have defined the vector φ such that its i-th component is φ(xi), and
the two-point correlation matrix, c, is given by

cij =
m=M∑

m=1

T m(xi)T m(xj) ⇔ c =
m=M∑

m=1

T m(T m)T (5)

which is symmetric and positive definite. If we define the matrix Q containing
the discrete field history:

Q =

⎛

⎜
⎜
⎜
⎝

T 1
1 T 2

1 · · · T M
1

T 1
2 T 2

2 · · · T M
2

...
...

. . .
...

T 1
N T 2

N · · · T M
N

⎞

⎟
⎟
⎟
⎠

(6)

then it is easy to verify that the matrix c in Eq. (4) results in c = Q QT .

3.2 A Posteriori Reduced Modelling of Transient Models

If some direct simulations have been carried out, we can determine T m
i , ∀i ∈

[1, · · · , N ] and ∀m ∈ [1, · · · , M ], and from these solutions the n eigenvectors
related to the n-highest eigenvalues that are expected to contain the most im-
portant information about the problem solution. For this purpose we solve the
eigenvalue problem defined by Eq. (4) retaining all the eigenvalues φk belonging
to the interval defined by the highest eigenvalue and that value divided by a
large enough value (108 in our simulations). In practice n is much lower than
N , and this constitutes the main advantage of the technique. Thus, we can try
to use these n eigenfunctions φk for approximating the solution of a problem
slightly different to the one that has served to define T m

i . For this purpose we
need to define the matrix B = [φ1 · · · φn].

If we now consider the linear system of equations coming from the discretiza-
tion of a generic problem, in the form G T m = Hm−1, where the superscript
refers to the time step, then, assuming that the unknown vector contains the
nodal degrees of freedom, it can be expressed as a linear combination of eigen-
modes:

T m =
i=n∑

i=1

ζm
i φi = B ζm (7)

where ζm
i represent the new degrees of freedom of the problem, from which we

obtain
G T m = Hm−1 ⇒ G B ζm = Hm−1 (8)

and by multiplying both terms by BT we obtain BT G B ζm = BT Hm−1,
which proves that the final system of equations is of low order, i.e. the dimension
of BT G B, is n × n, with n � N .

4



4 Numerical Results

In order to test the performance of the proposed technique, we have focused our
attention mainly in two aspects. First, the accuracy of the results. Second, the
compliance with the requirements of haptic feedback, i.e., all results must be
obtained at a frequency between 300 and 1000 Hz.

A set of tests have been accomplished, all based in the model of the human
cornea presented before. Inertia effects are neglected in this problem, due to the
typical slow velocity in the application of the loads in this kind of organs. The
cornea was discretized with trilinear three-dimensional finite elements. The mesh
consisted of 8514 nodes and 7182 elements. A view of the geometry of the model
is shown in Fig. 1.

X

Y

Z Y X

Z

Fig. 1. Geometry of the finite element model for the human cornea

4.1 Palpation of the Cornea

The first test for the proposed technique consists of simulating the palpation
of the cornea with a surgical instrument. In order to validate the results, a
load was applied to the complete FE model in the central region of the model.
The obtained result was compared to the one obtained by employing the model
reduction techniques presented before, for the load applied at the same location.

Once the complete model is solved, the most important eigenmodes are ex-
tracted from the computed displacements field, together with the initial tangent
stiffness matrix. The number of eigenmodes employed in this case was only six,
which is, in our experience, the minimum number of modes that should be em-
ployed in such a simulation. The modes are depicted in Fig. 2. The associated
eigenvalues are, from the biggest to the smallest one, 9.02·104, 690, 27, 2.63, 0.221
and 0.0028. As can be seen, the relative importance of these modes in the over-
all solution, measured by the associated eigenvalue, decreases very rapidly. Note
that the reduced model employed only six degrees of freedom, while the complete
model employed 8514 nodes with three degrees of freedom each, thus making
25542 degrees of freedom. Of course, if more accurate solutions are needed, a
higher number of modes can be employed.
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(d) α = 2.63
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(e) α = 0.221
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(f) α = 0.0028

Fig. 2. Six first eigenmodes of the problem employed as global basis for the reduced
model simulation

The displacement field obtained for the complete model is compared to that
of the reduced model. We chose different positions of the load and compared
the results. For a first location of the load, the obtained vertical displacement is
shown in Fig. 3.
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Solución reducida ⏐ 01 Jun 2006 ⏐ Proper orthogonal decomposition

Fig. 3. Vertical displacement field for a first position of the load. Complete model (left)
vs. reduced model (right).

The L2 error norm ranged from very low values (0.08) in the early steps of the
simulation, to higher values (around 0.34) for the last step. In our experience, this
is a typical upper bound of the obtained error, even if very large deformations
are imposed to the simulated organ, as is the case.
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The simulations ran at 472-483Hz, which is among the limits imposed by
haptic feedback realism, as mentioned before. Of course, the use of more sophis-
ticated, maybe parallelized, codes, could give even faster results.

4.2 Force Prediction

The architecture of a real-time simulator requires, however, the prediction of the
response force to a given displacement imposed to the model by means of the
haptic device. Thus, a vertical displacement was imposed to node 4144, located
more or less in the center of the cornea, with linearly increasing value. While
the complete model took around 3 hours to solve the problem, due to the large
displacement imposed at the last steps of the simulation, the reduced model still
runs at between 400-500 Hz. The results are summarized in Table 1.

Table 1. Error in the predicted force response on the tool. Reduced Order Modelling
(ROM) vs. Finite Element Modelling (FEM)

u FROM (N) FF EM (N) Error(%)
0.1 0.0045 0.0055 18
0.2 0.0091 0.0108 16
0.3 0.0136 0.0158 14
0.45 0.0204 0.0227 10
0.675 0.0307 0.0321 4
0.9 0.041 0.0405 -1

1.125 0.0511 0.0482 -6
1.35 0.0614 0.0555 -10
1.575 0.0716 0.0628 -14
1.8 0.0818 0.0702 -16

2.025 0.092 0.0779 -18
2.135 0.097 0.0818 -19

As can be noticed, the predicted response is very accurate at the middle of the
simulation, and gives some error both at the very beginning of the simulation
and for very large strains.

5 Conclusions

In this paper a novel strategy is presented for real-time interactive simulation
of non-linear anisotropic tissues. The presented technique is based on model re-
duction techniques and, unlike previous works [2], it allows for the consideration
of both geometrical and material non-linearities.

The reduced models are constructed by employing a set of “high quality”
global basis functions (as opposed to general-purpose, locally supported FE
shape functions) in a Galerkin framework. These functions are constructed after
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some direct simulations of the organs performed by standard FE or BE tech-
niques, for instance. These simulations (their tangent stiffness matrices) are made
off-line and stored in memory prior to beginning with the real-time simulation.

Results obtained showed good accordance with complete model results, and
ran at frequencies of around 400-500 Hz, enough for real-time requirements, even
for this very rude code prototypes.

In sum, the technique presented constitutes in our modest opinion an alter-
native to standard FE simulation techniques for real-time applications involving
non-linear and anisotropic materials.
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