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Abstract 

 

The purpose of this work is to present various application of statistical scale transition models 

to the analysis of polymer-matrix composites submitted to thermo-hygro-mechanical loads. In 

order to achieve such a goal, two approaches, classically used in the field of modelling 

heterogeneous material are studied: Eshelby-Kröner self-consistent model on the one hand 

and Mori-Tanaka approximate, on the second hand. Both models manage to handle the 

question of the homogenization of the microscopic properties of the constituents (matrix and 

reinforcements) in order to express the effective macroscopic coefficients of moisture 

expansion, coefficients of thermal expansion and elastic stiffness of a uni-directionally 

reinforced single ply. Inversion scale transition relations are provided also, in order to identify 

the effective unknown behaviour of a constituent. The proposed method entails to inverse 

scale transition models usually employed in order to predict the homogenised macroscopic 

elastic/hygroscopic/thermal properties of the composite ply from those of the constituents. 

The identification procedure involves the coupling of the inverse scale transition models to 

macroscopic input data obtained through either experiments or in the already published 

literature. Applications of the proposed approach to practical cases are provided: in particular, 

a very satisfactory agreement between the fitted elastic constants and the corresponding 

properties expected in practice for the reinforcing fiber of typical composite plies is achieved. 

Another part of this work is devoted to the extensive analysis of macroscopic mechanical 

states concentration within the constituents of the plies of a composite structure submitted to 

thermo-hygro-elastic loads. Both numerical and a fully explicit version of Eshelby-Kröner 

model are detailed. The two approaches are applied in the viewpoint of predicting the 

mechanical states in both the fiber and the matrix of composites structures submitted to a 

transient hygro-elastic load. For this purpose, rigorous continuum mechanics formalisms are 

used for the determination of the required time and space dependent macroscopic stresses. 

The reliability of the new analytical approach is checked through a comparison between the 

local stress states calculated in both the resin and fiber according to the new closed form 

solutions and the equivalent numerical model: a very good agreement between the two models 

was obtained. 

The purpose of the final part of this work consists in the determination of microscopic (local) 

quadratic failure criterion (in stress space) in the matrix of a composite structure submitted to 

purely mechanical load. The local failure criterion of the pure matrix is deduced from the 

macroscopic strength of the composite ply (available from experiments), using an appropriate 

inverse model involving the explicit scale transition relations previously obtained for the 

macroscopic stress concentration at microscopic level. Convenient analytical forms are 
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provided as often as possible, else procedures required to achieve numerical calculations are 

extensively explained. Applications of this model are achieved for two typical carbon-fiber 

reinforced epoxies: the previously unknown microscopic strength coefficients and ultimate 

strength of the considered epoxies are identified and compared to typical expected values 

published in the literature. 

 

Keywords: scale transition modelling, homogenization, identification, polymer-matrix 

composites. 

 

1- Introduction 

 

Carbon-reinforced epoxy based composites offer design, processing, performance and cost 

advantages compared to metals for manufacturing structural parts. Among the advantages, 

provided by carbon-reinforced epoxies over metals and ceramics, that have been recognised 

for years, improved fracture toughness, impact resistance, strength to weight ratio as well as 

high resistance to corrosion and enhanced fatigue properties have often been put in good use 

for practical applications (Karakuzu et al., 2001). 

Now, the accurate design and sizing of any structure requires the knowledge of the 

mechanical states experienced by the material for the possibly various loads, expected to 

occur during service life. Since high performance composites are being increasingly used in 

aerospace and marine structural applications, where they are exposed to severe environmental 

conditions, these composites experience hygrothermal loads as well as more classical 

mechanical loads. Now, unlike metallic or ceramic materials, composites are susceptible to 

both temperature and moisture when exposed to such working environments. These 

environmental conditions are known to possibly induce sometimes critical stresses 

distributions within the plies of the composite structures or even within their very constituents 

(i.e. the reinforcements on the one hand and the matrix on the second hand). Actually, 

carbon/epoxy composites can absorb significant amount of water and exhibit heterogeneous 

Coefficients of Moisture Expansion (CME) and Coefficients of Thermal Expansion (CTE) 

(i.e. the CME/CTE of the epoxy matrix are strongly different from the CME/CTE of the 

carbon fibers, as shown in: Tsai, 1987; Agbossou and Pastor, 1997; Soden et al., 1998), 

moreover, the diffusion of moisture in such materials is a rather slow process, resulting in the 

occurrence of moisture concentration gradients within their depth, during at least the transient 

stage (Crank, 1975). As a consequence, local stresses take place from hygro-thermal loading 

of composite structures which closely depends on the experienced environmental conditions, 

on the local intrinsic properties of the constituents and on its microstructure (the morphology 

of the constituents, the lay-up configuration, ... fall in this last category of factors). Now, the 

knowledge of internal stresses is necessary to predict a possible damage occurrence in the 

material during its manufacturing process or service life. Thus, the study of the development 

of internal stresses due to thermo-hygro-elastic loads in composites is very important in 

regard to any engineering application. Numerous papers, available in the literature, deal with 

this question, using Finite Element Analysis or Continuum Mechanics-based formalisms. 

These methods allow the calculation of the macroscopic stresses in each ply constituting the 

composite (Jacquemin and Vautrin, 2002). But, they do not provide information on the local 

mechanical states, in the fibers and matrix of a given ply, and, consequently, do not allow to 

explain the phenomenon of matrix cracking and damage development in composite structures, 

which originate at the microscopic level. The present work is precisely focused on the study 

of the internal stresses in the constituents of the ply. In order to reach this goal, scale 

transition models are required.  
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The present work underlines the potential of scale-transition models, as predictive tools, 

complementary to continuum mechanics in order to address: i) the estimation of the effective 

hygro-thermo-elastic properties of a composite ply from those of its constituents (section 2), 

ii) the identification of the hygro-thermo-elastic properties of one constituent of a composite 

ply (section 3), iii) the estimation of the local mechanical states experienced in each 

constituent of a composite structure (section 4), iv) the identification of the local strength of 

the constitutive matrix (section 5). 

Section 6 of this paper is mainly dedicated to conclusions about the above listed sections the 

whereas section 7 is devoted to the introducing some scientifically appealing perspectives of 

research in the field of composites materials which are highly considered for further 

investigation in the forthcoming years. 

 

2- Scale-transition model for predicting the macroscopic thermo-hygro-elastic 

properties of a composite ply 

 

2-1- Introduction 

 

Scale transition models are based on a multi-scale representation of materials. In the case of 

composite materials, for instance, a two-scale model is sufficient:  

- The properties and mechanical states of either the resin or its reinforcements are 

respectively indicated by the superscripts m and r. These constituents define the so-

called “pseudo-macroscopic” scale of the material (Sprauel and Castex, 1991). 

- Homogenisation operations performed over its aforementioned constituents are 

assumed to provide the effective behaviour of the composite ply, which defines the 

macroscopic scale of the model.  It is denoted by the superscript I. This definition 

also enables to consider an uni-directional reinforcement at macroscopic scale, 

which is a satisfactorily realistic statement, compared to the present design of 

composite structures (except for the particular case of woven-composites that will 

be specifically discussed in section 7.1). 

As for the composite structure, it is actually constituted by an assembly of the above 

described composite plies, each of them possibly having the principal axis of their 

reinforcements differently oriented from one to another. This approach enables to treat the 

case of multi-directional laminates, as shown, for example, in (Fréour et al., 2005a). 

 

2.2. The classical practical strategy for the direct application of homogenisation 

procedures 

 

Within scale transition modeling, the local properties of the isuperscripted constituents are 

usually considered to be known (i.e. the pseudo-macroscopic stiffnesses, Li, coefficients of 

thermal expansion Mi and coefficients of moisture expansion i), whereas the corresponding 

effective macroscopic properties of the composite structure (respectively, LI, MI and I) are a 

priori unknown and results from (often numerical) computations. 

Among the numerous, available in the literature scale transition models, able to handle such a 

problem, most involve rough-and-ready theoretical frameworks: Voigt (Voigt, 1928), Reuss, 

(Reuss, 1929), Neerfeld-Hill (Neerfeld, 1942; Hill, 1952), Tsai-Hahn (Tsai and Hahn, 1980) 

and Mori-Tanaka (Mori and Tanaka, 1973; Tanaka and Mori, 1970) approximates fall in this 

category. This is not satisfying, since such a model does not properly depict the real physical 

conditions experienced in practice by the material. In spite of this lack of physical realism, 

some of the aforementioned models do nevertheless provide a numerically satisfying 

estimation of the effective properties of a composite ply, by comparison with the experimental 
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values or others, more rigorous models. Both Tsai-Hahn and Mori-Tanaka models fulfil this 

interesting condition (Jacquemin et al., 2005; Fréour et al., 2006a). Nevertheless, in the field 

of scale transition modelling, the best candidate remains Kröner-Eshelby self-consistent 

model, because only this model takes into account a rigorous treatment of the thermo-hygro-

elastic interactions between the homogeneous macroscopic medium and its heterogeneous 

constituents, as well as this model enables handling the microstructure (i.e. the particular 

morphology of the constituents, especially that of the reinforcements).  

 

2.3 Estimating the effective properties of a composite ply through Eshelby-Kröner self-

consistent model  

 

Self-consistent models based on the mathematical formalism proposed by Kröner (Kröner, 

1958) constitute a reliable method to predict the micromechanical behavior of heterogeneous 

materials. The method was initially introduced to treat the case of polycrystalline materials, 

i.e. duplex steels, aluminium alloys, etc., submitted to purely elastic loads. 

Estimations of homogenized elastic properties and related problems have been given in 

several works (François, 1991; Mabelly, 1996; Kocks et al., 1998). The model was thereafter 

extended to thermoelastic loads and gave satisfactory results on either single-phase (Turner 

and Tome, 1994; Gloaguen et al., 2002) or two-phases (Fréour et al., 2003a and 2003b) 

materials. More recently, this classical model was improved in order to take into account 

stresses and strains due to moisture in carbon fiber-reinforced polymer–matrix composites. 

Therefore, the formalism was extent so that homogenisation relations were established for 

estimating the macroscopic CME from those of the constituents (Jacquemin et al., 2005). 

 

Many previously published documents have been dedicated to the determination of (at least 

some of) the effective thermo-hygro-elastic properties of heterogeneous materials through 

Kröner-Eshelby self-consistent approach (Kocks et al., 1998; Gloaguen et al., 2002; Fréour et 

al., 2003a-b; Jacquemin et al., 2005). The main involved equations are: 
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Where Ci is the moisture content of the studied i element of the composite structure. The 

superscripts r and m are considered as replacement rule for the general superscript i, in the 

cases that the properties of the reinforcements or those of the matrix have to be considered, 

respectively. Actually, the pseudo-macroscopic moisture contents Cr and Cm can be 

expressed as a function of the macroscopic hygroscopic load CI (Loos and Springer, 1981), 

so that the hygro-mechanical states cancels in relation (2) that can finally be rewritten as a 

function of the materials properties only, but at the exclusion of the Ci that are unexpected to 

appear in such an expression (Jacquemin et al., 2005). Relation (2), that is provided in the 
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present work for predicting the macroscopic CME, is given for its enhanced readability, 

compared to the more rigorous state exclusive relation. 

 

In relations (1-3), the brackets < > stand for volume weighted averages (that in fact replace 

volume integrals that would require Finite Elements Methods instead). Empirically, as stated 

by Hill (Hill, 1952), arithmetic or geometric averages suggest themselves as good 

approximations.  On the one hand, the geometric mean of a set of positive data is defined as 

the nth root of the product of all the members of the set, where n is the number of members. 

On the other hand, in mathematics and statistics, the arithmetic mean (or simply the mean) of 

a list of numbers is the sum of all the members of the list divided by the number of items in 

the list. For Young’s modulus, as an example, the Geometric Average YGA of the moduli 

according to the Reuss (YR) and Voigt (YV) models is defined as VR
GA Y YY  , whereas 

the corresponding Arithmetic Average YAA is: 
2

Y  Y
Y VRAA 

 .   

In statistics, given a set of data, X = { x1, x2, ..., xn} and corresponding weights, W = { w1, w2, 

..., wn}, the weighted geometric (respectively, arithmetic) mean 
GA

n1,2,...,i

iX


 (respectively, 

AA

n1,2,...,i

iX


) is calculated as: 
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Both averages have been extensively used in the field of materials science, in order to achieve 

various scale transition modelling over a wide range of materials. The interested reader can 

refer to: (Morawiec, 1989; Matthies and Humbert, 1993; Matthies et al., 1994) that can be 

considered as typical illustrations of works taking advantage of the geometric average for 

estimating the properties and mechanical states of polycrystals (nevertheless, Eshelby-Kröner 

self-consistent model was not involved in any of these articles), whereas the previously cited 

references (Kocks et al., 1998; Gloaguen et al., 2002; Fréour et al., 2003; Jacquemin et al., 

2005) show applications of arithmetic averages for studying of polycrystals or composite 

structures.   

 

According to equations (4) and (5), the explicit writing of a volume weighted average directly 

depend on the averaging method chosen to perform this operation. Since the present work 

aims to express analytical forms involving such volume averages, it is necessary to select one 

average type in order to ensure a better understanding for the reader. Usually, in this field of 

research, the arithmetic and not the geometric volume weighted average is used. Moreover, in 

a recent work, the alternative geometric averages were also used for estimating the effective 

properties of carbon-epoxy composites (Fréour et al., to be published). Nevertheless, the 

obtained results were not found as satisfactory than in the previously studied cases of metallic 
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polycrystals or metal ceramic assemblies. Actually, the very strongly heterogeneous 

properties presented by the constituents of carbon reinforced polymer matrix composites 

yields a strong underestimation of the effective properties of the composite ply predicted 

according to Eshelby-Kröner model involving the geometric average, by comparison to the 

expected (measured) properties. Thus, the geometric average should not be considered as a 

reliable alternate solution to the classical arithmetic average for achieving scale transition 

modelling of composite structures. Consequently, arithmetic averages satisfying to relation 

(4) only will be used in the following of this manuscript.  

 

Now, in the present case, where the macroscopic behaviour is described by two separate 

heterogeneous inclusions only (i.e. one for the matrix and one for the reinforcements), 

convenient simplifications of equation (5) do occur. 

Actually, introducing  vr and vm as the volume fractions of the ply constituents, and taking 

into account the classical relation on the summation over the volume fractions (i.e. vr + vm=1), 

equation (5) applied to the volume average of any tensor A writes: 

 

mrii
AAAA  v v mr

mr,i

AA

mr,i



       (6) 

 

In the following of the present work, the superscript AA denoting the selected volume average 

type will be omitted. 

 

According to equations (1-3), the effective properties expressed within Eshelby-Kröner self-

consistent model involve a still undefined tensor, RI. This term is the so-called “reaction 

tensor” (Kocks et al., 1998). It satisfies: 
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esh
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In the very preceding equation, I stands for the fourth order identity tensor. Hill’s tensor EI, 

also known as Morris tensor (Morris, 1970), expresses the dependence of the reaction tensor 

on the morphology assumed for the matrix and its reinforcements (Hill, 1965). It can be 

expressed as a function of Eshelby’s tensor I
eshS , through 

1
 II

esh
I

L:SE . It has to be 

underlined that both Hill’s and Eshelby’s tensor components are functions of the macroscopic 

stiffness LI (some examples are given in Kocks et al., 1998; Mura, 1982). 

 

In the case, when ellipsoidal-shaped inclusions have to be taken into account, the following 

general form enables the calculation of the components of this tensor (see the works of Asaro 

and Barnett, 1975 or Kocks et al. 1998): 
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In the case of an orthotropic macroscopic symmetry, the components Kjp() were given in 

(Kröner, 1953): 
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with 

 

1 2 3

1 2 3

sinθ cosφ sinθ sinφ cosθ
ξ ,ξ ,ξ

a a a
    (10) 

 

where 2 a1, 2 a2, 2 a3 are the lengths of the principal axes of the ellipsoid (representing the 

considered inclusion) assumed to be respectively parallel to the longitudinal, transverse and 

normal directions of the sample reference frame.  

 

According to equations (2-3, 7), the determination of both the macroscopic coefficients of 

thermal and moisture expansion are somewhat straightforward, while the effective stiffness is 

known, because the involved expressions are explicit. On the contrary, the estimation of the 

macroscopic stiffness of the composite ply through (1) cannot be as easily handled. 

Expression (1) is implicit because it involves LI tensor in both its right and left members. 

Moreover, calculating the right member of equation (1) entails evaluating the reaction tensor 

(7) which also depends on the researched elastic stiffness, at least because of the occurrence 

of Hill’s tensor (or Eshelby’s tensor, if that notation is preferred) in relation (1). As a 

consequence, the effective elastic properties of a composite ply satisfying to Eshelby-Kröner 

self-consistent model constitutive relations are estimated at the end of an iterative numerical 

procedure. This is the main drawback of the self-consistent procedure preventing from 

achieving an analytical determination of the effective macroscopic thermo-hygro-elastic 

properties of a composite ply, in the case where this scale transition model is employed. 

Therefore, managing to express explicit solutions for estimating the macroscopic properties 

(or at least the macroscopic stiffness) requires focusing on a less intricate, less rigorous model 

but still providing realistic numerical values. Mori-Tanaka approach suggest itself as an 

appropriate candidate, for reasons that will be comprehensively explained in the next 

subsection. 

 

2.4 Introducing Mori-Tanaka model as a possible alternate solution to Eshelby-Kröner 

model

 

As Eshelby-Kröner self-consistent approach, Mori Tanaka estimate is a scale transition model 

derived from the pioneering mathematical work of Eshelby (Eshelby, 1957). Mori and Tanaka 

actually investigated the opportunity of extending Eshelby’s single-inclusion model (which is 

sometimes presented as an “infinitely dilute solution model”) to the case where the volume 

fraction of the ellipsoidal heterogeneous inclusion embedded in the matrix is not tending 

towards zero anymore, but admits a finite numerical value (Mori and Tanaka, 1973; Tanaka 

and Mori, 1970). Calculations show that, in many cases, the effective homogenised 

macroscopic properties deduced from Mori-Tanaka approximate are close to their 

counterparts, estimated from the previously described Eshelby-Kröner self-consistent 

procedure (Baptiste, 1996, Fréour et al., 2006a). Exceptions to this statement occur 

nevertheless in the cases where extreme heterogeneities in the constituents properties have to 

be accounted for. For example, handling a significant porosities volume fraction yields Mori-

Tanaka estimations deviating considerably from the self-consistent corresponding 
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calculations, according to (Benveniste, 1987). However, Mori-Tanaka approach is reported to 

remain reliable for treating cases similar to those aimed by the present work.  

 

It has previously been demonstrated that the effective macroscopic homogenised thermo-

hygro-elastic properties exhibited by a composite ply, according to Mori and Tanaka 

approximation satisfy the following relations (Baptiste, 1996; Fréour et al., 2006a): 
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The superscript T appearing in relations (12-13) denotes transposition operation. 

The same remarks as indicated in the preceding subsection holds for the determination of the 

effective macroscopic CME using relation (12). This equation can be rewritten as a function 

of the materials properties only, thus excluding the moisture contents. 

 

In equations (11-13), Ti is the elastic strain localisation tensor, expressed for the i-

superscripted phase that is considered to interact with the embedding phase (denoted by the 

superscript e). Actually, Mori-Tanaka model is based on a two-step scale-transition 

procedure. In this theory, contrary to the case of Eshelby-Kröner self-consistent model, the 

inclusions are not considered to be directly embedded in the effective material having the 

behaviour of the composite structure (and thus interacting with it). In Mori and Tanaka 

approximation, the n constituents of a n-phase composite ply are separated in two subclasses: 

one of them is designed as the embedding constituent, whereas the n-1 others are considered 

as inclusions of the first one. The inclusion particles are embedded in the matrix phase, itself 

being loaded at the infinite by the hygro-mechanical conditions applied on the composite 

structure. In consequence, the inclusion phase does not experience any interaction with the 

macroscopic scale, but with the matrix only. In consequence, Mori and Tanaka model 

corresponds to the direct extension of Eshelby’s single inclusion model (Eshelby, 1957) to the 

case that the volume fraction of inclusions does not remain infinitesimal anymore. Within 

Mori and Tanaka approach, this localisation tensor Ti writes as follows: 

 

   1
 eiii

LL:EIT          (14) 

 

Contrary to the case of Eshelby-Kröner scale-transition model (refer to subsection 2.3. above), 

the localisation involved within Mori-Tanaka approximate does not explicitly involve the 

macroscopic stiffness. Nevertheless, according to the already cited same subsection, the 

reaction tensor involved in Eshelby-Kröner model was also implicitely depending on the 

macroscopic stiffness through the calculation procedure entailed for estimating Hill’s tensor.  
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Within Mori-Tanaka procedure (Benveniste, 1987; Baptiste 1996; Fréour et al., 2006a), Hill’s 

tensor Ei expresses the dependence of the strain localization tensor on the morphology 

assumed for the embedding phase and the particulates it surrounds (Hill, 1965). It can be 

expressed as a function of Eshelby’s tensor i
eshS , through: 

 
1

 ei
esh

i
L:SE           (15) 

 

In practice, the calculation of Hill’s tensor for the embedded inclusions phase only would be 

necessary, since obvious simplifications of (14), leading to IT
e  , occur in the case that the 

embedding constituent localisation tensor is considered. According to relations (14-15), the 

strain localization tensor Ti does not involve the macroscopic stiffness tensor (or any other 

macroscopic property). As a consequence, contrary to Eshelby-Kröner self-consistent 

procedure, Mori-Tanaka approximation provides explicit relations (actually, the 

homogenization equations (11-13)) for estimating the researched macroscopic effective 

properties of a composite ply. 

 

2.5 Example of homogenization : the case of T300-N5208 composites 

 

The present subsection is focused on the application of the theoretical frameworks described 

in the above 2.3 and 2.4 sections to the numerical simulation of the effective properties of a 

typical, high-strength, fiber-reinforced composite made up of T300 carbon fibers and N5208 

epoxy resin. The choice of such a material is justified because of the strong heterogeneities of 

the hygro-thermo-elastic properties of its constituents (actually, the numerical deviation 

occurring among the macroscopic properties of composites determined through various scale 

transition relations rises with this factor, see Jacquemin et al, 2005; Herakovich, 1998). Table 

1 accounts for the pseudo-macroscopic properties reported in the literature for these 

constituents. The comparison between the results obtained through the two, considered in the 

present work alternate scale transition framework of Mori-Tanaka model  are displayed on 

figure 1, for:  

- the longitudinal and transverse Young’s moduli 
I

11Y , 
I
22Y , 

- Coulomb’s moduli 
I
12G , I

23G ,  

- the coefficients of thermal expansion 
I
11M , 

I
22M  

- the coefficients of moisture expansion 
I
11β , 

I
22β . 

The calculations were achieved assuming that the reinforcements exhibit fiber-like 

morphology with an infinite length axis parallel to the longitudinal direction of the ply. For 

the determination of the CME, a perfect adhesion between the carbon fibers and the resin was 

assumed. Moreover, it also was assumed that the fibers do not absorb any moisture. Thus, the 

ratio between the pseudo-macroscopic and the macroscopic moisture contents is deduced 

from the expression given in (Loos and Springer, 1981): 

 

mm

I

I

m

ρ v

ρ

ΔC

ΔC
           (16) 

 

where ρ  stands for the densities. The macroscopic density can be deduced form the classical 

rule of mixture: 
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rrmmI ρ vρ vρ            (17) 

 

The equations required for achieving Mori-Tanaka estimations involve relations (8-17). For 

the purpose of the strain localization, the embedding constituent was considered to be the 

epoxy matrix, whatever the considered volume fraction of reinforcements (thus, the 

transformation rule 
me

LL   was considered to be valid in any case). Figure 1 also reports the 

numerical results obtained through Kröner-Eshelby Self-Consistent model (1-3, 6-10, 16-17), 

in the same conditions (identical inclusion morphology and constituents properties as for 

Mori-Tanaka computations). 

Figure 1 shows the following interesting results: 

- 1) In pure elasticity, both the investigated scale transition methods manage to 

reproduce the expected mechanical behaviour of the composite ply: the material is 

stiffer in the longitudinal direction than in the transverse direction. Moreover, the 

bounds are satisfying: the properties of the single constituents are correctly 

obtained for those of the composite ply in the cases where the epoxy volume 

fraction is either taken equal to vm=0 (transversely isotropic elastic properties of 

T300 fibers) or vm=1 (isotropic elastic properties of N5208 resin).  

- 2) The curves drawn for each checked elastic constant are almost superposed, 

except for Coulomb’s modulus 
I
12G . Thus Mori-Tanaka model constitutes a rather 

reliable alternate homogenization procedure to Eshelby-Kröner rigorous solution 

for estimating the macroscopic elastic properties of typical carbon-epoxies. 

- 3) Kröner-Eshelby self-consistent model and Mori-Tanaka approach both also do 

manage to achieve a realistic prediction of the macroscopic coefficients of thermal 

expansion. Especially, the expected boundary values are attained when the 

conditions vm=1 (isotropic CTE of N5208 resin) or vm=0 (transversely isotropic 

thermal properties of T300 fibers)  are taken into account. 

- 4) Mori-Tanaka approximate correctly reproduces the expected macroscopic 

coefficients of moisture expansion in the longitudinal direction. In the transverse 

direction, however, Mori-Tanaka model properly follows Eshelby Kröner model 

estimates while the epoxy volume fraction is higher than 0.5. In the range 

0.5v0 m  , discrepancies occur between two considered scale transition models. 

In the case that the considered strain localization assumes the epoxy as the 

embedding constituent within Mori-Tanaka approximate, the relative error on 
I
22β  

induced by this localization procedure, compared to Kröner-Eshelby reference 

values remains weaker than 9%, and falls below 6% in the range of epoxy volume 

fraction that is typical for designing composites structures for engineering 

applications 0.7)v(0.3 m  . 

- 5) In the range of the epoxy volume fraction, that is typical for designing 

composites structures for engineering applications  0.7v0.3 i.e. m  , according 

to the above discussed results 3) and 4), Mori-Tanaka model can be employed as 

an alternative to Eshelby-Kröner self-consistent model for estimating the effective 

macroscopic hygro-thermo-mechanical properties of composite plies.  

 

The above listed elements 1) to 5) finally indicate that the effective macroscopic thermo-

hygro-elastic properties of composite plies can be estimated in a reliable fashion using Mori-

Tanaka approximate, assuming the epoxy as the embedding constituent, instead of the more 
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rigorous Kröner-Eshelby model. This statement is true while the epoxy volume fraction 

remains higher than 40%. Beyond this boundary value, some significant relative error (less 

than 10%) may be expected to occur in the estimated transverse CME. 

The results, obtained in the present section, will be used in the following as input parameters 

for estimating the mechanical states experienced at macroscopic but at microscopic scale also 

in composite structures submitted to various loads (the interested reader should refer to 

section 4 for details). 

 

3- Inverse scale transition modelling for the identification of the hygro-thermo-elastic 

properties of one constituent of a composite ply 

 

3.1 Introduction 

 

The precise knowledge of the pseudo-macroscopic properties of each constituent of a 

composite structure is required in order to achieve the prediction of its behavior (and 

especially its mechanical states) through scale transition models. Nevertheless, the pseudo-

macroscopic stiffness, coefficients of thermal expansion and moisture expansion of the matrix 

and its reinforcements are not always fully available in the already published literature. The 

practical determination of the hygro-thermo-mechanical properties of composite materials are 

most of the time achieved on unidirectionnaly reinforced composites and unreinforced 

matrices (Bowles et al., 1981; Dyer et al., 1992; Ferreira et al., 2006a; Ferreira et al., 2006b; 

Herakovich, 1998; Sims et al., 1977). In spite of the existence of several articles dedicated to 

the characterization of the properties of the isolated reinforcements (Tsai and Daniel, 1994; 

DiCarlo, 1986; Tsai and Chiang, 2000), the practical achieving of this task remains difficult to 

handle, and the available published data for typical reinforcing particulates employed in 

composite design are still very limited. As a consequence, the properties of the single 

reinforcements exhibiting extreme morphologies (such as fibers), are not often known from 

direct experiment, but more usually they are deduced from the knowledge of the properties of 

the pure matrices and those of the composite ply (which both are easier to determine), through  

appropriate calculation procedures. The question of determining the properties of some 

constituents of heterogeneous materials has been extensively addressed in the field of 

materials science, especially for studying complex polycrystalline metallic alloys (like 

titanium alloys, cf. Fréour et al., 2002 ; 2005b ; 2006b) or metal matrix composites (typically 

Aluminum-Silicon Carbide composites cf. Fréour et al., 2003a ; 2003b or iron oxides from the 

inner core of the Earth, cf. Matthies et al., 2001, for instance). The required calculation 

methods involved in order to achieve such a goal are either based on Finite Element Analysis 

(Han et al., 1995) or on the inversion of scale transition homogenization procedures similar to 

those already presented in section 2 of the present paper. It was shown in previous works that 

it was actually possible to identify the properties of one constituent of a heterogeneous 

material from available (measured) macroscopic quantities through inverse scale transition 

models. Such identification methods were successfully used in the field of metal-matrix 

composites for the determination of the average elastic (Freour et al., 2002) and thermal 

(Freour et al., 2006b) properties of the -phase of () titanium alloys. The procedure was 

recently extended to the study of the anisotropic elastic properties of the single-crystal of the 

-phase of () titanium alloys on the basis of the interpretation of X-Ray Diffraction strain 

measurements performed on heterogeneous polycrystalline samples in (Freour et al., 2005b). 

The question of determining the temperature dependent coefficients of thermal expansion of 

silicon carbide was handled using a similar approach from measurements performed on 

aluminum – silicon carbide metal matrix composites in (Freour et al., 2003a; Freour et al., 
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2003b).Numerical inversion of both Mori-Tanaka and Eshelby-Kröner self-consistent models 

will be developed and discussed here. 

 

3.2 Estimating constituents properties from Eshelby-Kröner self-consistent or Mori-

Tanaka inverse scale transition models 

 

3.2.1 Application of Eshelby-Kröner self-consistent framework to the identification of 

the pseudo-macroscopic properties of one constituent embedded in a two-constituents 

composite material 

 

The pseudomacroscopic stiffness tensor of the reinforcements can be deduced from the 

inversion of the Eshelby-Kröner main homogenization form over the constituents elastic 

properties (1) as follows : 

 

        ILLEILLELILLELL
IrIImImIrIIr



::::

v

v
::

v

1 1

r

m

r
 (18) 

 

The application of this equation implies that both the macroscopic stiffness and the 

pseudomacroscopic mechanical behaviour of the matrix is perfectly determined. The elastic 

stiffness of the matrix constituting the composite ply will be assumed to be identical to the 

elastic stiffness of the pure single matrix, deduced in practice from measurements performed 

on bulk samples made up of pure matrix. It was demonstrated in (Fréour et al., 2002) that this 

assumption was not leading to significant errors in the case that polycrystalline multi-phase 

samples were considered. The similarities existing between multi-phase polycrystals and 

polymer based composites suggest that this assumption should be suitable in the present 

context, at least when scale factors do not occur. Nevertheless, in the case that significant 

edge effects, due for instance to a reduced thickness of the matrix layer constituting the 

composite ply, might be expected to occur, the identification of the ply embedded matrix 

elastic properties to those of the corresponding bulk material would not systematically be 

appropriate. Consequently, the application of inverse form (18) given above could lead to an 

erroneous estimation of the reinforcements elastic stiffness. Moreover, identification based on 

such inverse homogenization methods are sensitive to both the precise knowledge of the 

constituents volume fractions (i.e. vm and vr) and to the presence of porosities (which lowers 

the effective stiffness LI of the composite ply). 

An expression, analogous to above-relation (18) can be found for the elastic stiffness of the 

matrix, through the following replacement rules over the superscripts/subscripts: 

mr r,m  . Nevertheless, the situation, where the properties of the reinforcements are 

known, when those of the matrix are unknown is highly improbable. 

 

The pseudomacroscopic coefficients of moisture expansion of the matrix can be deduced from 

the inversion of the homogenization form (2) as follows : 

 

  mIImmm
GRLLL :::

ΔC v

1 1

mm



        (19) 

 

where Gm writes : 
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    r1r

mr,i

1I
ΔC:::v:::ΔC

rrIIrIIIIim
LRLLLRLLG 






    (20) 

 

An expression, analogous to above-relation (19) can also be found for the coefficients of 

moisture expansion of a permeable reinforcement type, through the following replacement 

rules over the superscripts/subscripts: mr r,m  . 

In the particular case, where impermeable reinforcements are present in the composite 

structure, the coefficients of moisture expansion of the matrix simplifies as follows (an 

extensive study of this very question was achieved in Jacquemin et al., 2005): 

 

    IIIIiIImmm
LRLLRLLL  ::::::

ΔC v

ΔC

mr,i

11

mm

I




    (21) 

 

The pseudomacroscopic coefficients of thermal expansion of the matrix can be deduced from 

the inversion of the homogenization form (3) as follows: 

 

     



















 rrIIrIIIIiIImmm
MLRLLMLRLLRLLLM :::v::::::

1r

mr,i

11
(2

2) 

 

Form (22) can be easily rewritten for expressing the coefficients of thermal expansion of the 

reinforcements, using the same replacement rules over the superscripts/subscripts: 

mr r,m  , than for the previous cases. 

 

3.2.2 Application of Mori-Tanaka estimates to the identification of the pseudo-

macroscopic properties of one constituent embedded in a two-constituents composite 

material  

 

3.2.2.1 Inverse Mori-Tanaka elastic model 

 

In the present work, it is be considered, that the reinforcements are surrounded by the matrix, 

thus, Tm=I and (11) develops as follows: 

 

    1rmrm v v v v


 rrrmI
T:I:T:LLL       (23) 

 

Thus, from (11) two alternate equations are obtained for identifying the pseudo-macroscopic 

stiffness of the composite ply constituents: 

 

• On the first hand, the elastic properties of the matrix satisfies 

 

  rrIIm
T:LLLL  -

v

v-1

m

m

       (25) 
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Equation (25) is an implicit equation since both its left and right hand sides involve the 

researched stiffness tensor Lm. 

 

• whereas, on the second hand, the elastic stiffness of the reinforcements respects 

 

  1

m

m

 -
v-1

v 
 rmIIr

T:LLLL       (26) 

 

For the same reasons as above (i.e. comments about equation (25)), expression (26) is an 

implicit relation. As a consequence, the need of an inverse modelling for achieving the 

identification of the elastic properties exhibited by any one constituent of a composite ply 

through Mori-Tanaka scale-transition approximate yields the loss of the main advantage of 

this very model over the more rigorous Eshelby-Kröner self-consistent approach: the 

opportunity to express analytical explicit relations instead of having to perform successive 

numerical calculations for solving implicit equations. Moreover, the general remarks about 

the sensitivity of identification methods to certain factors, expressed in subsection 3.2.1 are 

valid in the present context also.  

 

3.2.2.2 Inverse Mori-Tanaka model for identifying coefficients of moisture of thermal 

expansion 

 

Following the same line of reasoning as above, in the purely elastic case, one can inverse 

relation (12) in order to express the coefficients of moisture expansion of a constituent 

embedded in a composite ply according to Mori-Tanaka estimates, or its coefficients of 

thermal expansion, from the homogenization relation (13). In the case of the pure matrix, one 

gets: 

 

















rrrIiimm

MTLMTLLM ::v:::
v

1 r

mr,i

1

m
    (27) 

 

















rrI

mr,i

1

mm
ΔC::vΔC:::

ΔCv

1 rrrIiimm
TLTLL     (28) 

 

This last relation (valid for the general case of a possibly permeable reinforcement type) 

yields to the following simplified form if impermeable reinforcements are considered: 

 

I

mr,i

1

mm
ΔC:::

ΔCv

1 Iiimm
TLL 




       (29) 

 

Due to the localization procedure which does not treat in an equivalent way the embedding 

matrix and the embedded inclusions (reinforcements) in the point of view of Mori-Tanaka 

scale-transition approach, the inverse forms satisfied by the coefficients of thermal expansion 

and coefficients of moisture expansion of the reinforcements are not anymore deduced from 

the above-relations established for the matrix through simple replacement rules. Actually, 

unlike the inverse forms obtained according to Eshelby-Kröner self-consistent model, Mori-

Tanaka model yields non-equivalent inverse forms for the matrix one the one hand and for the 
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reinforcements, on the second hand. The expressions, required for identifying the thermal or 

hygroscopic properties of reinforcements within Mori-Tanaka model are: 

 
















 mmIiirrr
MLMTLLTM :v::::

v

1 m

mr,i

11

r
    (30) 

 
















 mmI

mr,i

11

rr
ΔC:vΔC::::

ΔCv

1 mmIiirrr
LTLLT     (31) 

 

3.3 Examples of properties identification in composite structures using inverse scale 

transition methods 

 

3.3.1 Determination of reinforcing fibers elastic properties 

 

The literature often provides elastic properties of carbon-fiber reinforced epoxies (see for 

instance Sai Ram and Sinha, 1991), that can be used in order to apply inverse scale transition 

model and thus identify the properties of the reinforcing fibers, as an example. Table 2 of the 

present work summarizes the previously published data for an unidirectional composite 

designed for aeronautic applications, containing a volume fraction vr=0.60 of reinforcing 

fibers. In order to achieve the calculations, according to relations (18) or (26) depending on 

whether Eshelby-Kröner model or Mori-Tanaka approximation, input values are required for 

the pseudo-macroscopic properties of the epoxy matrix constituting the composite ply. The 

elastic constants considered for this purpose are listed in Table 3 (from Herakovich, 1998). 

Both the above-cited inverse scale transition methods have been applied. The obtained results 

are provided in Table 4, where they are compared to typical values, reported in the literature, 

for high-strength reinforcing fibers (Herakovich, 1998). It is shown that a very good 

agreement between the two inverse models is obtained. Moreover, the calculated values are 

similar to those expected for typical reinforcements according to the literature. Nevertheless,  

some discrepancies between the identified moduli do exist, especially for 
r
12G  (that 

corresponds to 
r
55L  stiffness component). Actually, the value deduced for this component 

through Mori-Tanaka inverse model deviates from both the expected properties and the 

estimations of Eshelby-Kröner model. This deviation, occurring for this very component, is 

obviously directly related to the discrepancies previously underlined in subsection  2.5 where 

the question of comparing the homogenization relations of the two scale transition methods 

presented in this paper, was investigated. 

  

3.3.2 Determination of AS4/3501-6 matrix Coefficients of Moisture Expansion 

 

Macroscopic values of the Coefficients of Moisture Expansion are sometimes available, 

contrary to the corresponding pure epoxy resin CME. Simulations were performed in the cas e 

of an AS4/3501-6 composite, with a reinforcing fiber volume fraction vr=0.60. The 

calculations were achieved using the elastic properties given in Table 5, and the macroscopic 

coefficients of moisture expansion listed in Table 6. The same table summarizes the results 

obtained with both inverse Eshelby-Kröner self-consistent model (21) and Mori-Tanaka 

estimates (29) assuming a moisture content 125.3
ΔC

ΔC
I

m

  (the ratio between composite and 

resin densities being 1.25 in this material, the moisture content ratio assumed in the present 
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study corresponds to the maximum expected value), in the case that impermeable 

reinforcements are considered. According to Table 6, a very good agreement is obtained 

between the two inverse models. This result is compatible with the homogenisation 

calculation previously achieved in subsection 2.5: for such a volume fraction of 

reinforcements, Eshelby-Kröner and Mori-Tanaka models provide identical macroscopic 

coefficients of moisture expansion from the pseudomacroscopic data. As a consequence, the 

corresponding inverse forms (21) and (29) yields the same estimation for the 

pseudomacroscopic CME of the matrix constituting the composite ply. 

 

4- From the numerical model to analytical solutions for estimating the pseudo-

macroscopic mechanical states 

 

4.1 Introduction 

 

It was extensively discussed in previously published works (the interested reader can, for 

instance refer to Benveniste, 1987 and Fréour et al., 2006a, where the question is addressed), 

that Mori and Tanaka constitutive assumptions were not suitable for a reliable estimation of 

the localization of the macroscopic mechanical states within the constituents of typical 

composites conceived for engineering applications, which often present a significant volume 

fraction of reinforcements. As a consequence, only Eshelby-Kröner approach will be 

considered in the present section. 

 

4.2 Numerical SC model extended to a thermo-hygro-elastic load 

Within Kröner and Eshelby self-consistent framework, the hygrothermal dilatation generated 

by a moisture content increment Ci is treated as a transformation strain exactly like the 

thermal dilatation occurring after a temperature increment Ti (that last case was extensively 

discussed in the literature, see for example Kocks et al., 1998). Thus, the pseudo-macroscopic 

stresses i in the considered constituent (i.e. i=r or i=m) are given by: 

 

 ii
ΔCΔT:

iiiii
ML          (32) 

 

Where, stands for the strain tensor. In general case, the moisture content differs at 

macroscopic scale and pseudo-macroscopic scale, contrary to the temperature. Actually, the 

reinforcements generally do not absorb moisture. In consequence, the mass of water contained 

by the composite is: either found in the matrix, locally trapped in porosities (Mensitieri et al., 

1995) or located where fiber debonding occurs. 

Replacing the superscripts i by I in (32) leads to the stress-strain relation that holds at 

macroscopic scale. 

 

 II
ΔCΔT:

IIIII
ML           (33) 

 

The so-called “scale-transition relation” enabling to determine the local stresses and strains 

from the macroscopic mechanical states was demonstrated in a fundamental work, starting 

from the assumption that the elementary inclusions (here the matrix and the fiber) have 

ellipsoidal shapes (Eshelby, 1957): 

 

 IiIIIi
RL   ::         (34)
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Actually, (34) is not very useful, because both the unknown pseudo-macroscopic stresses and 

strains appear. Nevertheless, combining (32-34) enables to find the following expression for 

the pseudo-macroscopic strain (the demonstration is available in Jacquemin et al., 2005 and 

Fréour et al., 2003b): 

 

       Ii1
ΔC:ΔC:ΔT ::..:::

IIiiIIiiIIIIIIii
LLMLMLRLLRLL  




(35) 

 

In relation (35), the classical replacement rule TiTT was introduced (i.e. the 

temperature field is considered to be uniform within the considered ply). 

Moreover, it was established in (Hill, 1967), that the self-consistent model was compatible 

with the following volume averages on both pseudo-macroscopic stresses and strains: 

 

 
mr,i

mr,i

Ii

Ii












 (36) 

 

For a given applied macroscopic thermo-hygro-elastic load {I, CI, T} one can easily 

determine I through (33), provided that the effective elastic behaviour LI of the ply has been 

calculated using either the homogenization procedure corresponding to Eshelby-Kröner model 

or the corresponding Mori-Tanaka alternate solution (see previous developments provided in 

section 2 above). Then, the pseudo-macroscopic strains are determined through (35). 

 

4.3 Analytical expression for calculating the mechanical states experienced by the 

constituents of fiber-reinforced composites according to Eshelby-Kröner model 

 

The main impediment requiring to be overcome in order to achieve closed-forms from 

relation (35) is the determination of Morris’ tensor EI. Actually, according to the integrals 

appearing in relation (8), this tensor will admit only numerical solutions in most cases.  

 

However, some analytical forms for Morris’ tensor are actually available in the literature; the 

interested reader can for instance refer to (of Mura, 1982; Kocks et al., 1998; or Qiu and 

Weng 1991). Nevertheless, these forms were established considering either spherical, disc-

shaped of fiber-shaped inclusions embedded in an ideally isotropic macroscopic medium, that 

is incompatible with the strong elastic anisotropy exhibited by fiber-reinforced composites at 

macroscopic scale (Tsai and Hahn, 1987). 

In the case of carbon-epoxy composites, a transversely isotropic macroscopic behaviour being 

coherent with fiber shape is actually expected (and predicted by the numerical computations). 

Assuming that the longitudinal (subscripted 1) axis is parallel to fiber axis, one obtains the 

following conditions for the semi-lengths of the microstructure representative ellipsoid: 

a1, a2=a3. Moreover, the macroscopic elastic stiffness should satisfy : 
I
55

I
44

I
23

I
22

I
12

I
11 LLLLLL  . Now, it is obvious, that these additional hypotheses 

lead to drastic simplifications of Morris’ tensor (8), in the case that fiber morphology is 

considered for the reinforcements. The line of reasoning required to achieve the writing of 

analytical expressions for Morris’ tensor is extensively presented in (Welzel et al., 2005; 
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Fréour et al., 2005). Actually, one obtains (in contracted notation i.e, I

ijE  components are 

given here): 
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 (37) 

In fact, the epoxy matrix is usually isotropic, so that three components only have to be 

considered for its elastic constants: 
m
44

m
12

m
11 L and L ,L . One moisture expansion coefficient is 

sufficient to describe the hygroscopic behaviour of the matrix: 
m
11β . 

In the case of the carbon fibers, a transverse isotropy is generally observed. Thus, the 

corresponding elasticity constants depend on the following components: 
r
55

r
44

r
23

r
22

r
12

r
11 L and ,L ,L ,L  ,L ,L . Moreover, since the carbon fiber does not absorb water, 

its CME 
r
22

r
11 β and β  will not be involved in the mechanical states determination. Introducing 

these additional assumptions in (35), and taking into account the form (37) obtained for 

Morris’ tensor, one can deduce the following strain tensors for both the matrix and the fibers: 
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where, in the case of the matrix, 
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The pseudo-macroscopic stress tensors are deduced from the strains using (32). Thus, in the 

matrix, one will have: 
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The local mechanical states in the fiber are provided by Hill’s strains and stresses average 

laws (36): 
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

4.4 Examples of multi-scale stresses estimations in composite structures : T300-N5208 

composite pipe submitted to environmental conditions 

 

4.4.1  Macroscopic analysis 

4.4.1.1 Moisture concentration 

 

Consider an initially dry, thin uni-directionally reinforced composite pipe, whose inner and 

outer radii are a and b respectively, and let the laminate be exposed to an ambient fluid with 

boundary concentration c0. The macroscopic moisture concentration, cI(r,t), is solution of the 

following system with Fick's equation (45), where DI is the transverse diffusion coefficient of 

the composite. Boundary and initial conditions are described in (46):  
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Applying the Laplace transform to the latter system and using the residue theory to express 

the solution in time space (Crank, 1975), we finally obtain the macroscopic moisture 

concentration: 
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where 00 Y  J and  are Bessel’s functions of order zero, u is the determinant of 2*2 matrix 

 a . mA  and mB  are determinants of matrices deduced from   a  by substituting respectively 

column 1 and 2 by the constant vector  g . )( mu   is the derivative of u  with respect to 
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  calculated for m  the mth positive root of u . r  and  are defined by the relations r/br   

and 2I t)/b(D . 

 

Furthermore, the elements of  a  and  g  are: )a(Ja 011  , )a(Ya 012  , )(Ja 021  , 

)(Ya 022  , 0201 cg , cg  . 

 

4.4.1.2 Macroscopic stresses 

 

At the initial time, let us assume that the pipe is stress free. Therefore, the hygro-elastic 

orthotropic behaviour writes as follows in (48-49), where I and LI are respectively the in-

plane tensors of hygroscopic expansion coefficients and moduli. Those tensors are assumed to 

be material constants. 
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with, 
I

I
I c

C


 . cI and I are respectively the macroscopic moisture concentration and the 

mass density of the dry material. 

To solve the hygromechanical problem, it is necessary to express the strains versus the 

displacements along with the compatibility and equilibrium equations. 

 

Introducing a characteristic modulus 0L , we introduce the following dimensionless variables: 
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Displacements with respect to longitudinal and circumferencial directions, respectively 

)r ,x(u I  and )r ,x(v I  are then deduced: 
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It is worth noticing that the displacements )r ,x(u I  and )r ,x(v I  do not depend on the 

moisture concentration field. Finally, to obtain the through-thickness or radial component of 

the displacement Iw , we shall consider in the following the analytical transient concentration 

(47). 
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The radial component of the displacement field Iw  satisfies the following equation:  
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It is shown that the general solution of equation (51) writes as the sum of a solution of the 

homogeneous equation and of a particular solution (Jacquemin et Vautrin, 2002).  
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Finally, the displacement field depends on four constants to be determined : Ri for i=1..4. 

These four constants result from the following conditions : 

• global force balance of the cylinder; 

• nullity of the normal stress on the two lateral surfaces. 

 

4.4.2 Numerical simulations of internal stresses in T300/5208 composite laminated pipes 



4.4.2.1 Introduction



Thin laminated composite pipes, with thickness 4 mm, initially dry then exposed to an 

ambient fluid, made up of T300/5208 carbon-epoxy plies, with a fiber volume fraction vr=0.6, 

were considered for the determination of both macroscopic stresses and moisture content as a 

function of time and space. The closed-form formalism used in order to determine the 

mechanical stresses and strains in each ply of the structure is described in subsection 4.4.1. 

This model ensures the calculation of the macroscopic moisture content, too. 

When the equilibrium state is reached, the maximum moisture content of the neat resin may 

be estimated from the maximum moisture content of the composite. By assuming that the 

fibers do not absorb any moisture, CI
 and Cm are related by expression (16) given by (Loos 

and Springer, 1981). In the case of T300/5208, since the ratio between composite and resin 

densities is 1.33 (due to the constituents properties listed in table 1), the maximum moisture 

content ratio given by (16) is about 3.33. 
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Figure 2 shows the time-dependent concentration profiles, resulting from the application of a 

boundary concentration c0, as a function of the normalized radial distance from the inner 

radius rdim. At the beginning of the diffusion process important concentration gradients occur 

near the external surfaces. The permanent concentration (noticed perm in the caption) holds 

with a constant value because of the symmetrical hygroscopic loading. The macroscopic 

mechanical states were calculated for two types of composites structures: a) a uni-

directionnaly reinforced cylinder, and b) a [55°/-55°]S laminated cylinder.  

Starting with the macroscopic stresses deduced from continuum mechanics, the local stresses 

in both the fiber and matrix were calculated either with the new analytical forms or the fully 

numerical model. The comparison between the two approaches is plotted on figures 3 and 4. 

These figures show the very good agreement between the numerical approach and the 

corresponding closed-forms solutions. The slight differences appearing are due to the small 

deviations on the components of Morris’ tensor calculated using the two approaches. 

Actually, it is not possible to assume the quasi-infinite length of the fiber along the 

longitudinal axis in the case of the numerical approach, because the numerical computation of 

Morris’ tensor is highly time-consuming. Thus, the numerical version of Eshelby-Kröner self-

consistent model constitutes only an approximation of the real microstructure of the 

composite. In consequence, it seems that the new analytical forms, that are able to take into 

account the proper microstructure for the fibers, are not only more convenient, but also more 

reliable than the initially proposed numerical approach. 

 

4.4.2.2  Interpretation of the simulations 

 

The highest level of macroscopic tensile stress is reached for the uni-directional composite, in 

the transverse direction and in the central ply of the structure (figure 3). The transverse 

stresses exceed probably the macroscopic tensile strength in this direction. The choice of a 

[+55°/-55°]S laminated allows to reduce the macroscopic stress in the transverse direction. 

Nevertheless, a high shear stress rises along the time in the fibers of the central ply of such a 

structure (figure 3). 

Moreover, the figure 4 shows that the micro-mechanical model always predict a very high 

compressive stress in the matrix of the inner ply whatever the laminate studied (the 

macroscopic stress is negligible in the radial direction because thin structures are considered). 

These local stresses could help to explain damage occurrence in the surface of composite 

structures in fatigue. 

This work demonstrates the complementarities of continuum mechanics and micro-

mechanical models for the prediction of a possible damage in composite structures submitted 

to hygro-elastic loads. 

In the following section, the analytical expressions presented here for the localization of the 

macroscopic mechanical states within the plies constituents, will be inversed in order to 

achieve the identification of the strength of the constitutive matrix of a composite ply. 

 

5- Identification of the local strength of the constitutive matrix of a composite ply 

 

5.1 Introduction 

 

Damage predictions are important for design and for guiding materials improvement for 

engineering applications. Composite structures encountered in engineering applications are 

designed to endure combined mechanical, thermal and hygroscopic loads during their service 

life. Besides, composite structures usually benefit from improved properties granted by a 
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multidirectional arrangement of their plies. The multiplicity of both possible loads and ply 

arrangements is not compatible with an extensive experimental investigation of composite 

structures damage. As a result, only uniaxial and pure shear test data of unidirectional 

composites are usually available in the literature. By consequence, the estimation of damage 

occurrence in composite structures requires introducing adapted failure criteria extending the 

available data to the combined loads and composite laminates considered for one particular 

application. Many published papers have dealt with this problem: see for instance (Tsai, 1987; 

Cuntze, 2003). Nevertheless, it is established for a long time, that in composite structures the 

damage initiates at microscopic scale, either (and most of time) in the matrix or (sometimes) 

in the fibers. The failure of a ply is thus closely related and explained by the failure of its 

microscopic constituents (Tsai, 1987; Cuntze, 2003; Fleck and Jelf, 1995; Kaddour et al., 

2003; Khashaba, 2004). As a consequence, the reliable prediction of a possible damage 

occurrence of multi-directionnal laminates submitted to complex loading requires the 

knowledge of the microscopic failure criteria of the epoxy matrix and carbon fibers 

constituting the plies. Nevertheless, previous published works have emphasised the following 

remarkable result: the strength of the pure constituents (i.e. pure epoxy resin) strongly 

depends on the size of the sample, and especially on its thickness (Fiedler et al., 2001). 

Besides, the thickness of a ply in thin laminates has the magnitude of 150 microns, that is 

generally strongly weaker than the thickness of the samples tested for the experimental 

determination of the strength of the pure constituents. As a consequence, the experimental 

strengths of pure carbon fibers and epoxy matrices, determined on bulk specimen can hardly 

be directly used to properly estimate microscopic failure criteria in real structures. In 

particular, as shown for instance in (Garett and Bailey, 1977; Christensen and Rinde, 1979), 

the effect of the matrix on transverse failure of composite structures is of interest. The strain 

to failure of the pure matrix in uniaxial tension varied from 1.5 to 70 % whereas transverse 

strains to failure of corresponding fiber reinforced composites were dramatically smaller and 

varied only in the range 0.2 to 0.9%.  

In the present study, an innovative method, dedicated to the determination of the microscopic 

stress/strain failure criteria of the epoxy matrix embedded in a composite structure is 

described. This method is based on the inversion of the analytical expressions presented in 

section 4.3. The present work describes developments relating the macroscopic failure 

envelopes to the microscopic ones. The conditions, indicated in already published literature, 

when the macroscopic failure can exclusively be attributed to matrix failure modes are taken 

into account as fundamental hypotheses of the present approach. The model enables the 

identification of both the strength coefficients and ultimate strength, so that the microscopic 

stress/strain failure envelopes can also be drawn. Applications to the case of two typical 

carbon/epoxy composites (T300/5208 and AS4/3501) are achieved: the failure conditions of 

the N5208 and 3501-6 epoxy resins will be determined and compared. 



5.2 Determination of the local failure criterion of the matrix from the macroscopic 

strength data of the composite ply 

 

5.2.1 Introduction – choice of a failure criterion 

 

In this paper, failure is taken in the general sense previously defined in the literature, 

including fracture, but also yield, etc. Since this works aims applications to multidirectional 

structures submitted to triaxial stresses, general failure criteria are necessary to the description 

of the strength in both stress and strain spaces. Failure criteria serve important functions in the 

design and sizing of composite laminates. They should provide a convenient framework or 

model for mathematical operations. The framework should be the same for different 
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definitions of failures, such as the ultimate strength, endurance limit, or a working stress 

based on design or reliability considerations. However, the criteria are not intended to explain 

the mechanisms of failure, that can occur concurrently or sequentially. The quadratic criterion 

will be used in the present study: it includes interactions among the stress or strain 

components analogous to the Von Mises criterion for isotropic materials, and is compatible 

with the existence of strength having the properties, often met in the case that composite 

structures are considered, to be anisotropic and also possibly different in tension or 

compression. The criterion, expressed in stress space writes as follows : 
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where F stands for the strength parameters respectively expressed in stress space. The 

superscript i represents the scale considered for failure prediction (macroscopic: i or 

pseudomacroscopic: im or ir).



In order to use the failure criteria (52) presented above, it is necessary to identify the quadratic 

(
i
mnopF ) and linear (

i
mnF ) strength parameters involved in the equation.  

In the present work, for helping fixing the ideas, the simplified case of three-dimensional 

stresses and strains (for both macroscopic and microscopic scales), with a single shear 

component, usually met in multi-directional composite laminates submitted to mechanical 

loads (see examples given in Tsai, 1987) will be assumed to hold (i.e. MPa 0σσ
i
23

i
13  , 

0εε
i
23

i
13  , where the subscripts 1, 2 and 3 respectively denotes the directions parallel to 

the fiber axis, the transverse direction and the normal direction, in the orthogonal frame of 

reference of the considered ply). Besides, the strength should be unaffected by the direction or 

sign of the shear stress component 
i
12σ : if shear stress is reversed, the strength should be kept 

constant. However, sign reversal for the longitudinal (
i
11σ ) and transverse (

i
22σ ) stresses 

components from tension to compression is expected to have a significant effect on both the 

macroscopic and microscopic strength of the composite. As a consequence, terms of equation 

(52) containing first-degree shear stress should be null. Finally, taking into account the 

definition chosen for the reference frame, and the properties of (at least) transverse isotropy 

exhibited at any (i.e. macroscopic or microscopic) scale in one ply, the strength parameters 

have to satisfy the following relations: 
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Taking into account the above listed simplifications, equation (52) can be rewritten: 
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





5.2.2 Direct identification of the macroscopic strength parameters 

 

Most of the unknown macroscopic strength parameters in stress space, appearing in equation 

(54) can be identified using information deduced from simple mechanical tests (uniaxial 

tension, compression or longitudinal shear tests Tsai, 1987): 
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Where XI and YI are respectively the longitudinal and transverse tensile stress strength, 
/IX  

and 
/IY  the longitudinal and transverse compressive stress strength, whereas SI is the 

longitudinal shear stress. 

The two unknown remaining terms, I
1122F  and I

2233F  are related to the interaction between two 

orthogonal stress components. The practical determination of these interaction terms requires 

performing biaxial tests, which are not as easy to achieve than uniaxial tests. As a 

consequence, the required data are often not available in the literature. There are, however, 

geometric and physical conditions fixing the mathematical form of the failure criterion (54): 

for instance, the failure envelope has to be closed so that the material cannot present infinite 

strength when submitted to any load. Let us introduce a dimensionless interaction term: 
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F
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For closed envelopes, the condition 1F1
*i

mmnn   has to be satisfied. But a more detailed 

theoretical study (see Liu and Tsai, 1998) reduces the admissible range to the domain [-1,0]. 

The same reference (Liu and Tsai, 1998)  advises the choice of 
2

1
-F

*I
mmnn   for the 

macroscopic interaction term (which corresponds to the generalised Von Mises model), since 

this value is reasonable for a wide range of laminates. Taking into account this additional 

assumption in equation (56), the knowledge of I
1111F  and I

3333
I
2222 FF   ensures the 

determination of the last two missing interaction terms I
1122F  and I

2233F , in stress space. 

 

One similar method could be applied in order to determine the macroscopic strength 

parameters expressed in strain space from the ultimate strains. Nevertheless, this method is 

not useful in practice since uniaxial strains are difficult to apply to a sample. Thus, the 

ultimate strains are generally deduced from the ultimate stresses: to reach this goal, one has to 

introduce the macroscopic properties, i.e. the stiffness tensor LI, in order to relate both failure 
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criteria through Hooke’s law (33) expressed at macroscopic scale assuming a purely elastic 

load. 

 

5.2.3 Identification of the microscopic strength parameter (of the matrix only) using an 

inverse method 

 

From the standpoint of the structural designer, it is desirable to have failure criteria which are 

applicable at the level of the lamina, the laminate, and the structural component. Nevertheless, 

failure at macroscopic scale is often the consequence of an accumulation of micro-level 

failure events (Tsai, 1987; Liu and Tsai, 1998). Laminated materials typically exhibit many 

local failures prior to rupture. Thus, it is important to build up tools enabling to enhance the 

understanding of micro-level failure mechanisms in order to develop higher-strength 

materials. The ultimate goal is to have a failure theory that the designer can use with 

confidence under the most general structural configuration and loading conditions and that the 

developer of materials can use to design and fabricate new products to meet specific needs. In 

order to reach this goal, the estimation of microscopic strength criteria would be of a valuable 

help. 

Since the epoxy resins involved in composite structures generally exhibit an isotropic hygro-

mechanical behaviour, the microscopic strength criterion expressed in terms of stresses (54) 

simplifies as follows: 
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Thus, only four strength parameters have to be determined in order to enable failure 

predictions at microscopic scale: .F ,F ,F ,F m
11

m
1122

m
1212

m
1111  Hypotheses being compatible with the 

experimental observations are necessary to build an inverse model enabling the determination 

of these four parameters from the corresponding, available from practical mechanical tests, 

macroscopic strength stress failure criterion.  

 

The present work is focused on the development of modelling tools for the prediction of a 

possible damage occurrence in fiber-reinforced epoxy laminates submitted to mechanical 

loads. Actually, fibrous composite materials fail in a variety of mechanisms at the fiber/matrix 

microscopic scale. Besides, according to the literature, i) fiber-dominated failures usually 

occur when the plies are loaded in planes perpendicular to the fibers axis (longitudinal tension 

and compression), whereas ii) matrix-dominated failures often occur in the cases that the plies 

are loaded along the transverse and normal directions in tension and compression or when 

shear stresses are applied to the considered ply (Tsai, 1987; Liu and Tsai, 1998). Thus, 

matrix-dominated failure modes often occur in practice. As a consequence, the above listed i) 

and ii) statements will be used in order to identify microscopic strength parameters in stress 

and strain spaces for the matrix.  

According to the developments of section 4, it is possible to derive the pioneering numerical 

self-consistent model of Kröner and Eshelby in order to find the relation between the 

macroscopic mechanical states and the researched corresponding microscopic stresses and 

strains existing in the matrix of a composite material.  

 

In the present work, the strength parameters in either the matrix or the ply will be considered 

to remain independent from the magnitude of the applied mechanical load. Since the damage 
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envelope has been defined as the strain or stress threshold beyond which non-linearity occurs 

in the behaviour of the material at the scale concerned by damage, and in the case that a 

purely mechanical load is taken into account, the material is assumed to behave elastically 

until failure occurs. Now, in these conditions, both stress and strain ultimate strength are 

simultaneously reached, and satisfy either macroscopic elastic Hooke’s law (33) or the 

corresponding microscopic relations that are deduced from (38-42), assuming 

0ΔCΔC
mI
  and K 0ΔTΔT

mI
 . 

 

It will be assumed that macroscopic failure occurring in the transverse and normal directions, 

for a longitudinal stress MPa 0σ I
11  , is governed by local failure of the matrix. Various 

macroscopic stress states, compatible with that last hypothesis, are taken on the macroscopic 

strength envelope (54), expressed in stress space and, finally implemented in the scale 

transition relations (38-42). This leads to the determination of microscopic mechanical 

stresses and strains states in the matrix, that are, according to our hypotheses, responsible for 

macroscopic damage governed by matrix failure. As a consequence, these local mechanical 

states should be compatible with the microscopic failure envelopes of the matrix as written in 

equations (57). 

According to this relation, four, non equivalent, macroscopic stress states suffice to find the 

eight researched coefficients involved in (57): m
11

m
1122

m
1212

m
1111 F ,F ,F ,F . The whole method 

required to perform such estimation is described on table 7. Actually, four macroscopic 

loading states taken on the stress failure envelope (defined on table 7) I
a , I

b , I
c  and I

d  

are required for the determination of the four coefficients of the failure envelopes since 

numerical tests shows that equation (56) rewritten at microscopic scale for the epoxy matrix 

does not provide an additional relation between m
1111F  and m

1122F :  
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1122             (58)  

 

Moreover, according to (38-42) an uniaxial macroscopic tension or compression along the 

transverse (or normal) direction induces local mechanical states in the matrix generally 

exhibiting no zero strain and stress on-diagonal components (see for instance the cases of the 

macroscopic loads I
a  and I

b on Table 7). As a consequence, only the strength coefficient 

m
1212F  can be determined independently from the three others, from the single macroscopic 

load I
d . Concerning the calculation of m

11
m

1122
m

1111 F ,F ,F , one has to solve numerically the 

system (60) (cf. Table 7). 

Finally, the uniaxial microscopic ultimate stresses of the epoxy matrix embedded in the 

composite structure can be deduced from the set of equations (55) expressed at microscopic 

scale (i.e. replacing the subscripts I by the subscript m), provided that the coefficients of the 

local failure envelope are already known: 
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The method, developed in the present paragraph, enables the determination of a) the 

coefficients of the microscopic failure envelope of the epoxy matrix in stress and/or strain 

space from the macroscopic failure envelope of the ply and scale transition relations linking 

macroscopic loads to the corresponding local microscopic mechanical states experienced by 

the matrix, only thereafter, b) the local maximum strength of the matrix embedding the carbon 

fibers which can be evaluated from the classical formalism relating the strength to the 

coefficients of the failure envelope. This inverse method provides an alternative to the 

classical direct approach leading to the determination of the failure envelope from the 

maximum strength measured on pure epoxies, in the cases that the required data is not 

available or when the behaviour of the matrix embedded in the composite structure is 

expected to be significantly different from the behaviour of the pure matrix, as shown for 

example, in references (Garett and Bailey, 1977; Christensen and Rinde, 1979). 

 

5.3 Numerical applications and examples 

 

5.4.1 Identification of the microscopic failure criteria of two typical epoxies from the 

knowledge of the macroscopic failure envelope of AS4/3501-6 and T300/N5208 

composite plies 

 

In the present paper, two types of high strength carbon fiber reinforced epoxies are 

considered: a) AS4/3501-6 and b) T300/N5208 composites having identical fiber volume 

fraction: vf=0.6. These two materials constitute good candidates for the present work, since 

the microscopic strength of their respective matrix is not yet available (at our knowledge) in 

the already published literature, in spite of they are quite often considered for illustrating 

scientific works in this field of research (Tsai, 1987). 

The macroscopic strength of single plies are given in Table 8. The coefficients of the 

corresponding quadratic macroscopic stress failure criteria, deduced from the classical direct 

method, through equation (55) are listed in Table 9. 

In order to achieve the identification of the coefficients of the quadratic microscopic failure 

criteria of the pure epoxies (3501-6 and N5208, respectively), the method previously 

explained in subsection 5.2.3 was applied. The macroscopic stiffnesses considered for the 

simulation are provided in Table 10, whereas the elastic constants of the elastically isotropic 

resins, required for localising the macroscopic stress/strain states at the microscopic scale in 

the matrices, according to equations (38-42), were previously given in tables 1 and 5. In order 

to find the microscopic strength coefficients, four independent macroscopic stress states I
a , 

I
b , I

c , I
d  located on the macroscopic failure envelope according to the conditions 

described on the first raw of Table 7. Table 11 shows the strength coefficients found for the 

quadratic microscopic failure criterion in stress space of both epoxies by solving equations 

(60-61). Besides, the microscopic ultimate uniaxial stresses of the two studied epoxies have 
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been determined by introducing in equation (62) the results of the previous identification of 

the strength coefficients of their respective quadratic failure criterion in stress space (still 

Table 11). The corresponding results have been listed in Table 12. 

Finally, instances of the microscopic failure envelopes have been drawn and superimposed to 

the corresponding macroscopic failure envelopes. Pictures of Figure 5 compare the results 

obtained in stress space for each couple epoxy/composite.  

 

5.4.2 Observations on predicted results and discussion 

 

According to the identification procedure described in subsection 5.2.3, an infinite number of 

macroscopic stress states sets { I
a , I

b , I
c , I

d } can be considered for the determination of 

the researched microscopic failure envelope strength coefficients. Actually, I
c  only may vary 

whereas I
a , I

b  and I
d  are fixed by the macroscopic ultimate stresses IY , 

/IY , IS  of the 

considered composite structure (see the first raw of Table 7). Several tests were performed, 

introducing various numerical stress states (compatible with the constitutive hypotheses of the 

present work) for I
c . The tests showed that the microscopic strength coefficients are, as 

expected, independent from the choice of the initial macroscopic stress state I
c : one set of 

coefficients only is found as the unique solution of system (60). This demonstrates that the 

inverse model presented here is reliable from a numerical point of view. 

The obtained results for the ultimate uniaxial stresses of 3501-6 and N5208 epoxies are close 

together (Table 12), whereas the macroscopic strength present significant discrepancies 

(Table 8). As an example, the relative deviation between the macroscopic longitudinal tensile 

ultimate stress of the two composites reaches around 25% when the relative deviation 

between the longitudinal tensile ultimate stress of the two epoxies is limited to 6%. Moreover, 

the representation of the microscopic failure envelopes are rather similar for the two 

considered resins, (Figure 5), whereas the macroscopic failure envelopes differ from one 

composite to the other (Figure 5, also). This could be interpreted as follows: for the 

considered composites, the observed deviation in the macroscopic failure envelopes comes 

from the choice of the reinforcing fibers and not from the choice of the resin. This is 

remarkable, since the considered epoxies exhibit a very different elastic mechanical behaviour 

(see Tables 1 and 5). 

Moreover, the predicted microscopic ultimate uniaxial stresses are coherent with experimental 

results measured on plain resins. For instance, reference (Fiedler et al., 2001) reports a 

strength value of 117 MPa in compression, and elastic limits reaching respectively 29 MPa in 

tension and 31 MPa in torsion for small specimen of plain unreinforced Bisphenol-A type 

resin (i.e. “small” denotes a significantly reduced sized in normal and transverse directions 

compared to “bulk” specimen). These measured strength are of the same order of magnitude 

than the strength, calculated in the present work, for 3501-6 and N5208 epoxies. At the 

opposite, the strengths determined on bulk specimens of 5208 and 3501-6 plain epoxies are 

approximately two times higher than the values obtained in the present work, for the strength 

of the corresponding epoxies embedded in thin composite plies. This last result is also 

compatible with both the experimental comparison achieved in reference (Fiedler at al., 2001) 

on various sized pure epoxies and the practical comparisons of the failure mechanisms 

exhibited by composites structures and their constitutive epoxy resin (see Garett and Bailey, 

1977; Christensen and Rinde, 1979). The present work allows to represent the scale effects 

observed in practice on the composite constituents strengths, because the composite ply 

strengths involved in the calculations do actually depend on both the constituents properties 

and microstructure.  
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6- Conclusions 

 

The present work dealt with the question of scale transition modelling of polymer matrix 

composites and its application to several fields of investigation. Therefore, Mori-Tanaka and 

Eshelby-Kröner self-consistent models, taking advantage of arithmetic averages, were both 

considered for achieving the determinaiton of the homogenized properties of composite ply as 

a function of the properties of its constituents (on the one hand, the matrix , and on the second 

hand, the reinforcements).  

The theoretical models properly take into account the specific microstructure of such 

materials. Especially the extreme morphology of the reinforcements can be considered, while 

the morphology and orientation of the reinforcing inclusions are kept constant in a single ply. 

As a consequence, the models manage to reproduce realistically the strong macroscopic 

anisotropy observed in practice on uni-directionally fiber-reinforced epoxies. The obtained 

results have shown that the two approaches, presented here, yield close together estimations 

of the macroscopic coefficients of thermal expansion, coefficients of moisture expansion and 

elastic moduli, in the range of the epoxy volume fraction, that is typical for designing 

composites structures for engineering applications  0.7v0.3 i.e. m  . Nevertheless, an 

exception to this statement occurs for Coulomb modulus 
I
12G , that is strongly underestimated 

in the case that the calculations are performed according to Mori-Tanaka approximation, in 

the same range of epoxy volume fractions.  

Moreover, realistic inverse scale transition procedures based on Kröner-Eshelby self-

consistent model and Mori-Tanaka estimates were also provided for achieving the numerical 

determination of the mechanical, hygroscopic or thermal properties of one constituent of an 

uni-directionally reinforced composite ply. Both models were used in order to estimate the 

elastic stiffness of reinforcing fibers embedded in a composite ply, from the knowledge of the 

macroscopic properties and those of the matrix. The obtained numerical results were 

successfully compared with expected practical results. A similar study was achieved in the 

standpoint of estimating the coefficients of moisture expansion of the matrix constituting a 

composite ply. In both cases the proposed theoretical approaches led to similar results, which 

is satisfying. Thus, the two inverse models described in the present work can be equally used 

in order to achieve such an identification. 

Another section of this article was devoted to the analysis of the macroscopic mechanical 

states localization within the constituents of a composite ply. Since it was previously 

demonstrated in the literature, that Mori-Tanaka approximation was not reliable for handling 

such a task, only Eshelby-Kröner model was considered. A numerical model, valid for any 

morphology of the reinforcing inclusions, was provided. Moreover a rigorous fully analytical 

treatment of the classical Kröner and Eshelby Self-Consistent model including morphology 

effects was achieved also. Especially, the determination of Morris’ tensor was performed in a 

satisfactory agreement with the transverse macroscopic elastic anisotropy expected for the 

fiber shape that should be taken into account in order to satisfactory represent the specific 

microstructure of carbon-fiber reinforced composites. The new closed-form solutions 

obtained for the components of Morris’ tensor were introduced in the classical hygro-thermo-

elastic scale transition relation in order to express analytically the internal strains and stresses 

in both the fiber and the resin of a ply submitted to a hygro-thermo-elastic load. The closed-

form solution demonstrated in the present work was compared to the fully numerical self-

consistent model for various geometrical arrangements of the fibers: uni-directional or 

laminated composites. A very good agreement was obtained between the two models for any 

component of the local stress tensors. It was also demonstrated that continuum mechanics and 
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micro-mechanical models give complementary information about the occurrence of a possible 

damage during the loading of the structure. 

In a last part, the present study explained a procedure enabling to achieve the identification of 

one single set of strength parameters defining completely the microscopic failure envelope of 

the matrix entering in the composition of a composite structure, in the cases that a pure 

mechanical load is applied. The identification method was built around an inverse scale 

transition method which requires the knowledge of the macroscopic strengths, and both the 

macroscopic and microscopic elastic stiffnesses. Besides, it was necessary to consider some 

hypotheses in order to proceed to the identification of the coefficients of the microscopic 

quadratic failure criteria. In the present work, it was assumed that the macroscopic failure of a 

uni-directionally reinforced ply is dominated by the local failure of the matrix when the 

external load is applied in planes perpendicular to the fiber axis.  

Numerical applications of the proposed inverse method were made considering the cases of 

two high-strength composites structures: AS4/3501-6 and T300/N5208. The determination of 

the microscopic quadratic failure criterion of the pure epoxies (3501-6 and N5208, 

respectively) was achieved. The obtained results are close together and present a good 

agreement with ultimate strengths measured on reduced sized plain resins (available from 

already published literature). This demonstrates the reliability of the present predictive 

method for estimating the local failure behaviour of epoxies whose experimental failure 

criterion has not yet been determined. 

In further works, the proposed approach will be extended to the more general case of hygro-

thermo-mechanical loads. This will imply to take into account the stress free strains in order 

to keep consistency between the failure envelopes expressed in stress and strain spaces. 

Besides, the rigorous treatment of the hygro-thermo-mechanical load requires to consider the 

dependence on the temperature and moisture content of a) the elastic stiffness, coefficients of 

thermal expansion and coefficients of moisture expansion and b) the ultimate strength (and in 

general, the coefficients of the considered failure criterion), at both macroscopic and 

microscopic scales. Others perspectives of research are proposed in the following section 

below. 

 

7- Perspectives 

 

Scale transition modelling based theoretical analysis of composite structures constitutes an 

overexpanding field of research, due to multiple factors. Among them, the emergence of new 

materials exhibiting a specific, more advanced microstructure, the ambition to account for 

additional, sometimes only recently discovered, physical phenomena and the relentless 

research for building faster, more convenient but still reliable models stand for the three 

essential motivations for achieving further developments in the incoming years. 

 

7.1 Emergence of new materials 

 

The present development stage of Eshelby’s single inclusion theory involved in the 

mechanical modeling of composites is not intended for a rigorous treatment of the 

morphology presented by the reinforcements used for manufacturing woven-composites. As a 

consequence, answering to the question of a theoretical study, through scale transition models, 

of mechanical parts made of such composites will require a specific and still missing solution. 

Since the recent discovery of carbon nanotubes in the 90’s, researchers worldwide have 

engaged in fundamental studies of this novel material (Treacy et al., 1996). The pioneering 

works have underlined the characteristics of carbon nanotubes such as an extraordinarily high 

stiffness (Salvetat et al., 1999) coupled to a high tensile strength (Demczyk et al., 2002)., high 
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aspect ratio and an especially low density. Actually, for instance, the experimental direct 

mechanical measurement of the elastic properties of carbon nanotubes provided Young’s 

moduli in the range of 1 TPa, which considerably exceeds the corresponding modulus of any 

currently available fiber material (Salvetat et al., 1999; Demczyk et al., 2002).  

In consequence, the technological applications of carbon nanotubes as reinforcements for 

elastomers (Frogley et al., 2003) or polymer-based composites (Liu and Wagner, 2005; 

Breton et al., 2004; Xiao et al., 2006) was very recently investigated. Furthermore, multi-

materials made up of polymer matrix, carbon fibers and carbon nanotubes are considered also 

for achieving a new generation of engineering composites.  

 

7.2 Accounting for additional physical factors 

 

The present work is focused on the theoretical prediction of the mechanical behaviour of 

composite structures submitted also to environmental conditions. However, every aspect of 

the consequences of environmental loading on the constituents of composite materials have 

not always been considered in this paper, for the sake of simplicity. Nevertheless, accounting 

for some additional physical factors would improve the realism and the reliability of the 

predictions obtained through the scale-transition models. 

For instance, the moisture diffusion process was assumed, in the present work, to follow the 

linear, classical, established for a long time, Fickian model. Nevertheless, some valuable 

experimental results, already reported in (Gillat and Broutman, 1978), have shown that certain 

anomalies in the moisture sorption process, (i.e. discrepancies from the expected Fickian 

behaviour) could be explained from basic principles of irreversible thermodynamics, by a 

strong coupling between the moisture transport in polymers and the local stress state 

(Weitsman, 1990a, Weitsman, 1990b). 

The present work yields several perspectives of research concerning the application of scale 

transition model to the identification of composite materials properties. Moisture and 

temperature are not the only parameters leading to an evolution of the mechanical properties 

of epoxies. According to the literature, thermo-oxidation is reported to enhance the stiffness 

of the epoxies (Decelle et al., 2003 ; Ho and al., 2006). The inverse methods presented here 

could for instance be directly applied to the estimation of the epoxy stiffening from the 

knowledge of the macroscopic elastic properties evolution as a function of the mass loss 

during the thermo-oxidation process. Furthermore, extensions of the inverse models could be 

achieved in order to account for the variation of the coefficients of thermal and/or moisture 

expansion of the constituents of a composite ply, enabling to identify them and their 

evolutions as a function of the environmental conditions. Finally, a similar approach could be 

developed in order to identify the damage induced evolution of the mechanical behaviour of 

the constituents of  composite plies from the inelastic part of macroscopic stress/strain curves. 

The experimental data required for achieving such analysis is already available in the 

literature (Soden et al., 1998). Nevertheless, local and macroscopic damage have still to be 

implemented in the theoretical laws. The above-listed perspectives of research will be 

successively considered in further works. 

 

7.3 Improving the calculation time while ensuring the most reliable predictions 

 

The present work underlines the sometime existing opportunity to replace purely numerical 

mathematical solutions by analytical forms enabling to significantly reduce both the time 

required for designing the software and the time necessary for achieving one simulation. It 

was demonstrated in this paper that Eshelby-Kröner could be, at least partially, presented as 

an analytical model, while it was used for predicting mechanical states. Nevertheless, the 



 34 

estimation of the macroscopic properties (elastic stiffness, coefficients of thermal expansion 

and coefficients of moisture expansion) through the homogenization relations deduced from 

this very model do still involve an implicit iterative procedure. It was already shown in the 

literature by Welzel and his co-authors, that under specific conditions, it was possible to build 

a model, numerically equivalent to Eshelby-Kröner model, from the combination of two 

(separately less successful) other models (Welzel, 2002 ; Welzel et al. 2003). The concept is 

similar to the idea based on empirical comparisons, historically proposed by Neerfeld 

(Neerfeld, 1942) and Hill (Hill, 1952) to average Reuss and Voigt rough hypotheses in order 

to get a numerically acceptable theoretical solution. In the field of micro-mechanical 

modelling of composite materials, a combination of the two possible localization procedures 

considered for Mori-Tanaka model in the present work would enable to numerically  

reproduce the homogenized properties obtained from Eshelby-Kröner model. Building an 

effective model from the two main ways of writing Mori-Tanaka model would mainly enable 

to obtain closed-form solutions for the elastic stiffness tensor, instead of having to 

numerically solve the iterative procedure involved in Eshelby-Kröner self-consistent model. 

Thus, a coupling of this numerically effective solution for predicting realistic hygrothermo-

mechanical macroscopic properties to the already proposed in this very article analytical 

forms for the local mechanical states would yield to a faster but still extremely reliable 

innovative scale-transition approach for studying composite materials. The analytical forms 

required for achieving the effective Mori-Tanaka model should be derived and published in 

the near future. 
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Figure captions 

 

Figure 1: Macroscopic effective hygro-thermo-mechanical properties of T300/N5208 plies, 

estimated as a function of the epoxy volume fraction, through scale transition homogenization 

procedures. Comparison between Mori-Tanaka approximate and Kröner-Eshelby self-

consistent model. 

 

Figure 2: Time dependent concentration profiles in T300/5208 as a function of the normalised 

radial distance from the inner radius rdim. 

 

Figure 3: Local stresses in T300/5208 composite for the central ply, in the case of a) the uni-

directionaly reinforced composite and b) the [+55°/-55°]S symmetric laminate. CMF stands 

for Continuum Mechanics Formalisms. 

 

Figure 4: Local stresses in T300/5208 composite for the inner ply, in the case of a) the uni-

directionaly reinforced composite and b) the [+55°/-55°]S symmetric laminate. CMF stands 

for Continuum Mechanics Formalisms. 

 

Figure 5: Examples of macroscopic and local (matrix only) stress failure envelopes of  

T300/5208 and AS4/3501-6 plies. 
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Table captions 

 

Table 1: Hygro-thermo-mechanical properties of T300/5208 constituents. 

 

Table 2: Macroscopic elastic moduli (from the literature) and stiffness tensor components 

(calculated) considered for the composite ply at 0ΔCI  % and TI = 300 K, according to (Sai 

Ram and Sinha, 1991). 

 

Table 3: Pseudomacroscopic elastic moduli and stiffness tensor components assumed for the 

epoxy matrix of the composite plies at 0ΔCI  % and TI = 300 K, according to (Herakovich, 

1998). 

 

Table 4: Pseudomacroscopic elastic moduli and stiffness tensor components identified for the 

carbon fiber reinforcing the composite plies at 0ΔCI  % and TI = 300 K, according to either 

Mori-Tanaka estimates, or Eshelby-Kröner self-consistent model. Comparison with the 

corresponding properties exhibited in practice by typical high-strength carbon fibers, 

according to (Herakovich, 1998). 

 

Table 5: Macroscopic and pseudo-macroscopic mechanical elastic properties of AS4/3501-6 

constituents. 

 

Table 6: Macroscopic and pseudomacroscopic (3501-6 matrix only) coefficients of moisture 

expansion of AS4/3501-6 composite. The pseudomacroscopic values results from the two 

inverse scale transition models described in the present work. 

 

Table 7: one possible set of trials enabling the determination of the microscopic strength 

coefficients of the matrix expressed in stress space. 

 

Table 8: macroscopic strength data. 

 

Table 9: quadratic macroscopic stress failure criteria deduced from the strength data. 

Quadratic ijkl subscripted coefficients [MPa-2] and linear ij subscripted coefficients [MPa-1]. 

 

Table 10: macroscopic stiffness components [GPa] of 60% volume uni-directionally fiber 

reinforced plies. Fiber axis is parallel to longitudinal direction. 

 

Table 11: quadratic local stress failure criteria in N5208 and 3501-6 epoxy matrices 

respectively deduced from the macroscopic failure envelopes of T300/5208 and AS4/3501-6 

plies, taking into account the microscopic elastic properties given on tables 1 and 5. Quadratic 

ijkl subscripted coefficients [MPa-2] and linear ij subscripted coefficients [MPa-1]. 

 

Table 12: local (matrix embedded in a composite ply) strength data deduced from the local 

quadratic stress failure criteria of a N5208 and 3501-6 epoxy matrices respectively. 
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Figure 1: Macroscopic effective hygro-thermo-mechanical properties of T300/N5208 plies, 

estimated as a function of the epoxy volume fraction, through scale transition homogenisation 

procedures. Comparison between Mori-Tanaka approximate and Kröner-Eshelby self-

consistent model. 
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Figure 2: Time dependent concentration profiles in T300/5208 as a function of the normalised 

radial distance from the inner radius rdim. 
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Figure 3: Local stresses in T300/5208 composite for the central ply, in the case of a) the uni-

directionaly reinforced composite and b) the [+55°/-55°]S symmetric laminate. CMF stands 

for Continuum Mechanics Formalisms. 
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Figure 4: Local stresses in T300/5208 composite for the inner ply, in the case of a) the uni-

directionaly reinforced composite and b) the [+55°/-55°]S symmetric laminate. CMF stands 

for Continuum Mechanics Formalisms. 
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Figure 5: Examples of macroscopic and local (matrix only) stress failure envelopes of  

T300/5208 and AS4/3501-6 plies. 
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Tables 

 

 

 
 

[g/cm3] 
1Y  

[GPa] 
32 Y ,Y  

[GPa] 
12ν  

13ν  
23G  

[GPa]
12G  

[GPa] 

M11 

[10-6/K] 

M22, 

M33 

[10-6/K] 

2211 β ,β  

33β  

T300 fibers 

(Soden et al., 

1998; Agbossou 

and Pastor, 

1997) 

1200 230 15 0.2 7 15 -1.5 27 0 

N5208 epoxy 

matrix (Tsai, 

1987; Agbossou 

and Pastor, 

1997) 

1867 4.5 4.5 0.4 6.4 6.4 60 60 0.6 

Table 1: Hygro-thermo-mechanical properties of T300/5208 constituents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Elastic I
1Y [GPa] 

I
2Y [GPa] 

I
12ν [1] 

I
12G [GPa] 

I
23G [GPa] 
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moduli 130 9.5 0.3 6.0 3.0 

Stiffness 

tensor 

components 

I
11L [GPa] 

I
22L [GPa] 

I
12L [GPa] 

I
44L [GPa] 

I
55L [GPa] 

134.2 14.8 7.1 6.0 3.0 

Table 2: Macroscopic elastic moduli (from the literature) and stiffness tensor components 

(calculated) considered for the composite ply at 0ΔCI  % and TI = 300 K, according to (Sai 

Ram and Sinha, 1991). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Elastic 

moduli 

m
1Y [GPa] 

m
2Y [GPa] 

m
12ν [1] 

m
12G [GPa] 

m
23G [GPa] 

5.35 5.35 0.350 1.98 1.98 
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Stiffness 

tensor 

components 

m
11L [GPa] 

m
22L [GPa] 

m
12L [GPa] 

m
44L [GPa] 

m
55L [GPa] 

8.62 8.62 4.66 1.98 1.98 

Table 3: Pseudomacroscopic elastic moduli and stiffness tensor components assumed for the 

epoxy matrix of the composite plies at 0ΔCI  % and TI = 300 K, according to (Herakovich, 

1998). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Elastic moduli r
1Y [GPa] 

r
2Y [GPa] 

r
12ν [1] 

r
23G [GPa] r

12G [GPa] 

Mori-Tanaka 

estimate 
213.1 13.7 0.27 4.1 22.7 
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Eshelby-Kröner 

model 
213.2 13.3 0.27 4.0 12.1 

Typical expected 

properties 
232 15 0.279 5.0 15 

Stiffness tensor 

components 
r
11L [GPa] 

r
22L [GPa] 

r
12L [GPa] 

r
44L [GPa] 

r
55L [GPa] 

Mori-Tanaka 

estimate 
219.2 24.9 11.2 4.1 22.7 

Eshelby-Kröner 

model 
219.2 23.9 10.8 4.0 12.1 

Typical expected 

properties 
236.7 20.1 8.4 5.02 15 

Table 4: Pseudomacroscopic elastic moduli and stiffness tensor components identified for the 

carbon fiber reinforcing the composite plies at 0ΔCI  % and TI = 300 K, according to either 

Mori-Tanaka estimates, or Eshelby-Kröner self-consistent model. Comparison with the 

corresponding properties exhibited in practice by typical high-strength carbon fibers, 

according to (Herakovich, 1998). 
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AS4 fibers 

(Soden et al., 1998) 

 

225 15 0.2 0.40 15 

3501-6 epoxy matrix 

(Soden et al., 1998) 

 

4.2 4.2 0.34 0.34 1.567 

AS4/3501-6 

(KESC homogenisation) 
135.2 9.2 0.25 0.36 5.2 

Table 5: Macroscopic and pseudo-macroscopic mechanical elastic properties of AS4/3501-6 

constituents. 
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Moisture expansion coefficient 11β  3322 β ,β  

AS4/3501-6 

(Daniel and Ishai, 1994) 

 

0.01 0.2 

3501-6 epoxy from Eshelby-Kröner self-

consistent inverse model 

 

0.148 0.148 

3501-6 epoxy from Mori-Tanaka inverse model 0.148 0.148 

Table 6: Macroscopic and pseudomacroscopic (3501-6 matrix only) coefficients of moisture 

expansion of AS4/3501-6 composite. The pseudomacroscopic values results from the two 

inverse scale transition models described in the present work. 
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F 2   (61) 

Table 7: one possible set of trials enabling the determination of the microscopic strength coefficients of the matrix expressed in stress space.
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Strengths [MPa] XI XI´ YI, ZI YI´, ZI´ SI 

T300/5208 (Tsai, 1987) 1500 1500 40 246 68 

AS4/3501-6 (Liu and Tsai, 1998) 1950 1480 48 200 79 

Table 8: macroscopic strength data. 
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Strength 

parameters 
I

1111F  

I
2222F , 

I
3333F  

I
1212F  

I
1122F , 

I
1133F  

I
2233F  

I
11F  

I
22F , 

I
33F  

T300/5208 4.44 10-7 1.02 10-4 1.08 10-4 -3.36 10-6 -5.08 10-5 0 0.0209 

AS4/3501-6 3.46 10-7 1.04 10-4 8.01 10-5 -3.00 10-6 -5.02 10-5 -0.0002 0.0158 

Table 9: quadratic macroscopic stress failure criteria deduced from the strength data. 

Quadratic ijkl subscripted coefficients [MPa-2] and linear ij subscripted coefficients [MPa-1]. 
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Stiffness 

components 
I
11L  

I
22L , I

33L  
I
12L , I

13L  
I
23L  

I
44L  

I
55L , I

66L  

T300/5208 142.72 13.92 5.79 7.19 3.34 7.00 

AS4/3501-6 137.27 11.60 4.20 5.22 3.68 6.45 

Table 10: macroscopic stiffness components [GPa] of 60% volume uni-directionally fiber 

reinforced plies. Fiber axis is parallel to longitudinal direction. 
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Strength 

parameters 
m

1111F , 
m
2222F , 

m
3333F  

m
1212F  

m
1122F , m

1133F , 
m
2233F  

m
11F , 

m
22F , m

33F  

N5208 2.18 10-4 7.82 10-4 -8.77 10-5 0.0162 

3501-6 2.15 10-4 5.04 10-4 -8.07 10-5 0.0143 

Table 11: quadratic local stress failure criteria in N5208 and 3501-6 epoxy matrices 

respectively deduced from the macroscopic failure envelopes of T300/5208 and AS4/3501-6 

plies, taking into account the microscopic elastic properties given on tables 1 and 5. Quadratic 

ijkl subscripted coefficients [MPa-2] and linear ij subscripted coefficients [MPa-1]. 
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Strengths [MPa] Xm, Ym, Zm Xm´, Ym´, Zm´ Sm 

N5208 40.1 114.7 25.3 

3501-6 42.6 108.9 30.9 

Table 12: local (matrix embedded in a composite ply) strength data deduced from the local 

quadratic stress failure criteria of a N5208 and 3501-6 epoxy matrices respectively. 

 


