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Low Coherence Interferometry

4.1. Introduction

Optical wave frequencies are very high, the eye and other detectors respond to
light intensity only, in other words to the time average of the electric field amplitude
squared. For this reason, we almost totally miss the sinusoidal wave character of light
in our daily life. In order to get full access to the phase of a lightwave experimentally,
it is necessary to use interferometric techniques. Two centuries after Young and
Fresnel’s experiments, interferometry remains a very active domain of research: more
precisely, the definition of new measurement systems. The reason for this vivid
activity is the fact that the phase of a light wave is a real goldmine of information
about the media through which this wave has been propagating since it is proportional
firstly to the propagation distance inside the media, and secondly to their refractive
index. Therefore, any change in the propagation distance of a wavelength fraction
can be detected in the phase, and we can for this reason proceed to very precise
measurements of small displacements. As far as the refractive index is concerned
and bound to the structure of a material, any external strain (heat, pressure, electric
field, etc.) modifying this structure also modifies the refractive index, and therefore
the phase. If we then have a relevant theory connecting the phase with the constraint
and successful inverse methods, it is possible to find the constraint applied by the
phase measurement. Finally, the studied system is generally weakly perturbed by the
measurement due to the nature of the interaction between light and matter.

Xavier CHAPELEAU, Dominique LEDUC, Cyril LUPI, 
Virginie GAILLARD and Christian BOISROBERT.
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For all these reasons, interferometric methods cover a large number of domains as
diverse as biology, hydrodynamics, astronomy or still mechanics. It is advisable at this
level to distinguish two types of interferometric devices: free space interferometers
and fiber optics interferometers.

Even if the interference mechanisms are indeed the same in both types of devices,
they each possess specificities, and thus deserve separate descriptions and very
different application domains. There is plenty of literature on interferometry in
free space (see, for example, Robinson et al., 1993 and the references included in
the recent special edition of Optics and Lasers in Engineering, Patil et al., 2007).
That is why we shall restrict our paper to the case of fiber optics devices and more
particularly to low coherence light interferometry and the optical frequency domain
reflectometry, which are the methods used most frequently.

Initially, only the interferogram envelope was recorded. Fiber optics interferometry
was limited, therefore, to a high resolution version of the temporal reflectometry,
essentially leading to the localization of defects in a component with a precision of the
order of ten microns. The first phase measurement was achieved in 1989 (Francois et
al., 1989), by means of a Mac-Zehnder apparatus opening the way for determination
of the birefringence and chromatic dispersion of components. This approach was
then adapted to devices in reflection (Dyer et al., 1999). Today, the techniques of
reflectometry/interferometry are usually employed to provide spectral as well as local
characterizations of fibered components.

4.2. Phase measurement

In the last ten years, two methods of phase measurement appeared in fiber optics.
The first is represented by the acronym LCI, for “low coherence interferometry”;
the second by OFDR, for “optical frequency domain reflectometry”. These two
methods lead to results of a different nature, but have certain characteristics in
common. In particular, in the different variants of one or the other method found in
the literature, we find an optical system derived from the Michelson interferometer
(or Mach-Zehnder) similar to the system in Figure 4.1.

The light wave transmitted by the source is divided into two waves through a
−3 dB coupler, and is respectively steered towards the arm containing the component
under test (the test arm) and the arm containing a reflection standard (the reference
arm). The waves reflected by the test and reference arms are then recombined by the
coupler and interfere on the detector. The detector is controlled by a sample-and-hold
acquisition circuit, often triggered by a fringe counter interferometer ensuring a
regular sampling of the data. The light intensity detected by this system is given by:

I =
∣∣rr E(t)

∣∣2 +
∣∣rt E(t − τ)

∣∣2 + 2�{
rrrt E(t)E(t − τ)

}
[4.1]
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Figure 4.1. Phase measurement system

where E(t) is the electric field of the incidental wave, τ is the delay between the
reflected waves and rr and rt is the reflection coefficients, in amplitude, of the
reference arm and the test arm respectively. The first two terms of this relation are
of no interest because they refer to intensities from which any notion of phase has
disappeared. On the other hand, the last term being directly proportional to the
reflection coefficient provides information on the amplitude and the phase of this
coefficient. The objective of the data analysis is then to invert relation [4.1] and
extract these two parameters.

4.2.1. Low coherence interferometry

The light sources used in LCI optical systems are low coherence sources
(superluminescent diodes or amplified spontaneous emission sources), whose
spectral width is typically around thirty nanometers. Given the weak coherence of
the source, the interferences occur within a small distance, of the order of about
twenty micrometers, around the position of equal optical path in the test arm and the
reference arm. It implies that to probe a component’s entire length, it is necessary to
change the optical road in the reference arm.

It is possible to build a device with only fibers: for example, by rolling the fiber of
the reference arm around a piezoelectric bar in order to stretch it, applying a voltage
across the bar, but it remains delicate, notably because the chromatic dispersion of
the fiber causes a different optical path variation for the various wavelengths. So the

3



reference arm is generally in free space. The variation of the optical path is then made
by means of a mobile mirror moving along an axis. However, for certain applications
in ophthalmology requiring very fast acquisitions, a delay line with the delay based
on a rotating prism has been designed to reach a speed of 176 m/s (Delachenal et al.,
1997; Szydlo et al., 1998; Delachenal et al., 1999).

The data analysis requires a stable and regular sampling of interferograms. Most
of the time analysis is undertaken by means of an auxiliary interferometer using a
laser stabilized in frequency and serving as a fringe counter. It is then possible to track
down the exact movement of the mobile mirror, and to regularly sample the signal of
the fiber interferometer. However, as the interfringe depends on the refractive index
of ambient air, it is necessary to determine this last refractive index exactly. This can
be done measuring the temperature, the pressure and the humidity ratio and the Eldén
relations (Elden, 1966).

The electric fields Et and Er, of the waves reflected from the test and reference
arms respectively, are given by:

Er,t(t) =
1
2

∫ +∞

−∞
rr,t(σ)ρ(σ)ei2πσ[ct−Lr,t(σ)] dσ [4.2]

where σ is the wave number, Lr,t(σ) the optical paths of the reference and test
arms and ρ(σ) the amplitude spectral density of the electric field. All the functions
depending on the wave number have been analytically expanded in the negative
frequencies so that f(−σ) = f∗(σ). Since the detector acts as an integrator over a
long time, compared to the coherence time of the light source, the intensity is the
average time of the total instantaneous intensity:

I =
〈∣∣Er(A, t) + Et(A, t)

∣∣2〉
t
= lim

T→∞
T−1

∫ +∞

−∞

∣∣Er(A, t) + Et(A, t)
∣∣2dt.

The variable part of the intensity is then given by:

I(x) = F−1
[
rt(σ)eiφ(σ)S(σ)

]
[4.3]

where x stands for the reference mirror displacement and F for the Fourier transform.
S(σ) = rr(σ)|ρ(σ)|2 is the radiant power spectral density of the source filtered by the
system, and φ(σ) corresponds to the phase shift bound to the optical path difference
between the two arms. This relation is the basis of the measurement analysis. It shows
that the terms rt(σ) and φ(σ) can be determined from the Fourier transform of the
interferogram.

The term φ(σ) contains the entire phase accumulated by the wave during its return
in the reflectometer and the sample under test. To determine the phase shift due only
to the sample, it is necessary to undertake an initial measurement without the sample,
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which gives the phase shift caused by the interferometer. We then connect the sample
and proceed to a second measurement. The phase shift φe(σ) = 2π ne(σ) �e σ created
by the sample can be obtained simply by subtraction.

The group delay, which corresponds to the time it takes for the wave packet to
propagate through the sample, is defined by τg = (�e/2πc) d k/dσ, where k is
the module of the wave vector: k = 2π ne(σ)σ. The group delay is thus directly
connected with the first derivative of the phase, to which constant and generally
indefinite terms are added. In practice, only variations of the group delay are
important. Adding constant terms to the group delay consists of adding a given
propagation length in vacuum, which does not cause dispersion. This is the reason
why only the relative group delay will be considered in the following. Relative group
delay is simply given by:

τg =
1

4πc

dφe

dσ
[4.4]

The dispersion being defined as Dσ = −(σ2/�e) d τg/dσ, it can also be derived
from the interferogram phase measurement:

Dσ = − σ2

4π �e c

d2 φe

dσ2
[4.5]

4.2.2. Optical frequency domain reflectometry (OFDR)

The light source used in OFDR is a tunable laser whose optical frequency is a
linear function of time. As the light at a given moment is very coherent it does not
impose limitations concerning the path difference, so the reflector of the reference
arm is fixed. Some systems (Choma et al., 2005) do not need a second arm in the
interferometer as a reference reflector is inserted into the test arm, which maximizes
the path common to both interfering waves, and thus, reduces the phase noise. The
intensity which is recorded can be written as follows (Yun et al., 2003):

I(t) = Ir + It

∫
r2(z)dz + 2

√
IrIt

∫
r(z)Γ(z) cos

[
2πσ(t)z + φ(z)

]
dz [4.6]

where z is the coordinate along the longitudinal axis of the sample under test,
and σ(t) is the instantaneous wave number. Γ(z) is the coherence function of the
laser instantaneous output signal. Γ(z) ideally = 1, but in practice its amplitude
decreases with z, which limits the depth of measurement. Finally, r(z) and φ(z) are
the amplitude and the phase of the sample local reflection coefficient, respectively.

Since the wave number varies linearly with time: σ(t) = σ0 + αt, we have a
situation similar to LCI, where the intensity is expressed as the Fourier of the complex
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reflection coefficient of the component under test. We can thus use comparable
methods to determine the reflection coefficient and derive the group delay and the
chromatic dispersion of the sample.

The OFDR methods were initially considered as intermediate methods between
the LCI and time of flight techniques. Today, with the improvement of laser sources
concerning their line widths and the linearity of frequency variation, the OFDR system
resolution is comparable to the LCI resolution. OFDR systems then tend to supplant
LCI systems because they present some advantages, like a greater ease of operation
(no need for mechanical displacement elements) and a higher sensitivity (Leitgeb et
al., 2003).

4.3. Metrology considerations

4.3.1. Wavelength

As was previously shown, phase measurement by interferometry allows analysis in
the Fourier space and thus for studies in spectroscopy. The precision of the wavelength
measurement is then a determining parameter. In this section we shall present the
results of two studies on this subject.

The first study was initiated by the National Institute of Standards and
Technologies (“NIST Telecom Round Robin”). Ten laboratories from different
countries around the world were involved (Rose et al., 2000) The purpose of this
action was to compare the fiber Bragg gratings characterization methods. The
participants used essentially common optical spectrum analyzers to measure the
reflection spectrum of two standard gratings and a “phase shift” device (Costa et
al., 1982; Genty et al., 2002) to measure their group delay. This technique consists
of modulating the incident light wave and measuring the phase shift of the wave
which propagated through the sample under test. These gratings have also been
characterized by LCI at NIST and later in our laboratory.

The central wavelengths and the −3 dB bandwidths of the two gratings have been
tested, and the results obtained from the participants in the NIST Telecom Round
Robin and those obtained in our laboratory (noted LCI in the table) are recorded
in Table 4.1. We observe an excellent agreement between the LCI measurements
and those obtained by classical methods. The wavelength difference does not exceed
10 pm.

The second study was carried out on a mux/demux commercially available
from NetTest using a diffraction grating in a free space configuration. The tested
multiplexer makes a multiplexing of one channel input towards 16 channels output.
This component is athermalized and calibrated according to the ITU standards.
It can therefore be used as standard. According to the manufacturer, the channel
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ITU Grating Chirped Grating

λLCI (nm) 1, 552.51 ± 0.01 1, 551.56 ± 0.01

λRound Robin (nm) 1, 552.521 ± 0.008 1, 551.57 ± 0.06

ΔνLCI (GHz) 52.85 ± 0.01 2, 017 ± 11

ΔνRound Robin (GHz) 51 ± 3 2, 018 ± 7

Table 4.1. Center wavelength and bandwidth of reference fiber Bragg gratings

spacing is 100 GHz and the −1 dB bandwidth of each channel is at least 28 GHz. The
measurement of the multiplexer response is made channel per channel. The tested
channel is connected to the test arm of the reflectometer. The light coming from the
reflectometer is coupled into the multiplexer where it is reflected by the grating and
coupled in the input channel which terminates in a mirror. The light wave which is
reflected on the mirror propagates back toward the reflectometer along the same
forward propagation path. In this configuration, the intensity which is recorded is
proportional to the square of the tested channel transmission factor.
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Figure 4.2. Transmission of the first height channels of a multiplexer/demultiplexer

In Figure 4.2 we show the normalized transmission factor of the first eight
channels. The different channels transmissions are all Gaussian shaped with −1 dB
width close to 29 GHz, or 230 pm. The peaks are regularly 100 GHz apart. These
results are in perfect agreement with the manufacturer’s data. The measurements
of the different channels’ central wavelengths is made by NetTest using a highly

7



stable tunable source. In Table 4.2, we registered the differences between the central
wavelengths measured by LCI and those given by the manufacturer. They are
lower than 13 pm, we will use this value as the estimation of the exactness of the
measurements.

Channel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Δλ (pm) 2 8 12 8 6 4 5 6 0 0 2 5 1 13 3 2

Table 4.2. Differences between the central wavelengths of the channels

4.3.2. Relative group delay

The two standard gratings of the Round Robin may also be used as references
in the group delay measurements. The curves corresponding to 10 successive LCI
measurements of the relative group delay for the ITU grating and the chirped grating
are represented in Figures 4.3a and 4.3b. The ITU grating relative group delay is
asymmetrical and nearly flat around the Bragg wavelength. It increases on the edges,
its variations of the order of 60 ps in the −20 dB bandpass. The relative group delay
of the chirped grating oscillates, the amplitude and the frequency vary with the
wavelength. Its peak-to-peak variation in the −20 dB bandpass is 120 ps.
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Figure 4.3. Relative group delay of the reference fiber Bragg
gratings inside the −20 dB bandwidth

The group delays of the ITU and the chirped gratings measured using LCI are in
perfect agreement with the results obtained by the “phase shift” in their shape as well
as in the amplitude of their variations. So far, the slope of the straight line Δ around
which the chirped grating group delay oscillates is 6.84 ± 0.01 ps/nm with the LCI to
be compared to 6.81± 0.04 ps/nm with the “phase shift”. The residual group delay of
a chirped grating is the difference between the group delay measurement result and Δ.
The residual group delay of the grating we are considering varies from 8 ps to −4 ps
in the wavelength interval [1, 544 nm; 1, 560 nm] and its values obtained by the two
methods decrease from about 4 ps down to 0 ps in this wavelength interval.
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Figure 4.4. Group delay measurement accuracy for ITU grating and chirped grating

In order to estimate the repeatability of the group delay measurement, the
difference between the average and each measurement result for all wavelengths
has been calculated for a series of 10 successive measurements. We presented the
distributions of the differences obtained for the ITU and the chirped gratings in
Figures 4.4a and 4.4b. It can be seen that these distributions follow a normal law and
the accuracy of the measurements is better than 0.5 ps, which is very small compared
to the group delay variations in this wavelength interval.

4.3.3. Chromatic dispersion

The chromatic dispersion curves obtained for three optical fibers around 1.3μm
and 1.5μm are represented in Figure 4.5. Two fibers are G652 and G655 standard
fibers. The other fiber is a dispersion compensating fiber manufactured by Sumitomo.
These three samples are approximately 50 cm long.

From our results on chromatic dispersion, the G652 fiber corresponds to the
ITU standard. As a matter of fact, its dispersion is less than 3.5 ps/nm/km for
|λ − 1.31| < 0.025μm and less than 19 ps/nm/km at 1.55μm. This 50 cm long G652
fiber sample is part of a 6 km fiber whose dispersion had been measured by the
Bureau National de Métrologie using time domain reflectometry. The value obtained
using the time domain technique is 17.3 ps/nm/km at 1.55μm and we obtained
17.0 ps/nm/km using the LCI at the same wavelength. The G655 fiber dispersion
is increasing slightly in the two wavelength intervals under consideration. It is of
the order of −16 ps/nm/km around 1.3μm and 4 ps/nm/km around 1.55μm. The
SUMITOMO fiber is designed for dispersion compensation in a 1.55μm network:
short lengths of this particular fiber may be inserted and used to compensate the other
fibers’ dispersion. Thus its dispersion is negative, decreasing and very high, close to
−130 ps/nm/km.
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Figure 4.5. Chromatic dispersion of the three optical
fibers at 1.3μm and 1.55μm wavelengths

The measurement repeatability has been confirmed by proceeding to a large
number of measurements (a hundred) on the same sample. Several short length
samples of the three fibers mentioned above have been tested this way. The
distributions of the differences to the chromatic dispersion average value are plotted
in Figure 4.6 for the G652 and Sumitomo fibers at 1.5μm. These curves show
that the repeatability of the dispersion measurements using LCI is of the order
of ±0.2 ps/nm/km. We obtained similar results on the other fibers and at other
wavelengths.
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Figure 4.6. Chromatic dispersion: distribution of the difference with average
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4.4. Applications

4.4.1. Characterization of photonic crystal fibers

Photonic crystal fibers (PCFs) have very specific properties which are impossible
to obtain with conventional fibers. The first samples were created in the 1990s and
since then they have raised increasing interest. The internal total reflection PCFs are
single mode broadband waveguides. With these fibers, it is possible to adjust the
chromatic dispersion as well as the effective area of the guided modes and therefore
the non-linear effects.

Figure 4.7. Section of a PCF: hexagonal pattern of holes with
diameter d = 1.12μm and pitch Λ = 1.42μm

Most of these fibers have a slight anisotropy which can confer a noticeable
birefringence to them. This birefringence may also, similar to other characteristics,
be derived from phase measurement. In fact, when a fiber has two polarization
eigen axis with different refractive indices, the light wave components polarized
along these directions propagate with different velocities. The interferograms
corresponding to these two polarizations are then distanced by d = 2Δn �ech,
where Δn is the birefringence and �ech is the length of the sample. The detected
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intensity can be written: I(x) = I0(x) + I0(x − 2Δn�ech), which leads to: I(σ) =
I0(σ)[1 + cos(4πΔn�echσ)]. Beats raise inside the spectrum whose period Δσ
depends on the length and the birefringence of the sample. We may determine the
group birefringence from the beat period measurement (Folkenberg et al., 2004;
Ritari et al., 2004) as given by:

Δn =
1

2 �ech Δσ
[4.7]

Due to this birefringence, we have to insert a polarizer in front of the detector
and proceed to a preliminary measurement to identify the eigen axis of the fiber. In
practice, the directions of the fiber neutral lines are given by the two positions of the
polarizer which reduce the beats in the reflection coefficient modulus to zero. These
positions will later be noted 0° and 90°. The chromatic dispersion along the fiber’s
eigen axis is measured inserting the polarizer into position 0° and 90°. In order to
measure the birefringence, the polarizer position is 45° since the beat visibility is then
at its maximum.

In Figures 4.8(a and b) we showed the interferograms obtained on a PERFOS PCF
whose structure is a hexagonal arrangement of holes, for specified polarizer angles of
0° and 45°. A SEM picture of a cross section of the fiber is shown in Figure 4.7. The
interferograms corresponding to the two eigen states of polarization can be seen when
the polarizer is oriented at 45° and only one of them remains when the polarizer is 0°
oriented. This corresponds to the presence of beats in the modulus of the reflection
coefficient for the 45° orientation (Figure 4.8d). The beat period measurement for this
fiber leads to a relatively high birefringence of (1.45± 0.02)× 10−3 at 1, 550 nm. By
way of comparison, the birefringence of a PANDA polarization maintaining fiber is
4.2 × 10−4, the group birefringence of a PCF with 1.89μm diameter holes 2.13μm
apart is 8.1 × 10−4 (Palavicini et al., 2005).

The sources of uncertainty are the error in the fiber length measurement and the
error in the beat period measurement. This latter is the predominant error in our case.
As a matter of fact, the error on the 30 cm sample length is of the order of 1 mm which
causes 10−6 uncertainty on the birefringence. The error on the wavelength is a tenth
of 10−12 m (Leduc et al., 2003) which corresponds to a 4 × 10−6 μm−1 error on the
wave number σ. Considering that we count about fifty periods in our measurement
procedure, this approximately causes a 10−5 uncertainty on the birefringence.

The measurement resolution is limited by the light source spectral width. To be
able to measure the birefringence, we must observe at least two oscillations in the
spectrum. The beat period must then be equal to at least 20 nm. The longest sample
length we can analyze is typically of the order of 1 meter and the lowest birefringence
we can measure is 6 × 10−5 with this device.
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(a) Interferogram, 0◦ (b) Interferogram, 45◦

(c) Reflection coefficient, 0◦ (d) Reflection coefficient, 45◦

Figure 4.8. Influence of the polarizer

The chromatic dispersion of the fiber is −17.5 ps/nm/km and −15.8 ps/nm/km
respectively for 0° and 90° and its dispersion slope is low and negative: −0.046 ±
0.003 ps/nm2/km along one polarization direction and −0.042 ± 0.002 ps/nm2/km
along the other direction.

4.4.2. Amplifying fiber characterization

During his work on Erbium doped amplifying fibers, Desurvire (Desurvire, 1994)
took an interest in the case of a fiber “pumped” by 980 nm or 1, 480 nm wavelength
light waves. He predicts the variations in a propagation medium dispersion of the
order of ±30 ps/nm/km for an Er3+ ion concentration of 1019 ions/cm3. These indices
and dispersion variations had been observed experimentally on Lithium Niobate
waveguides (Takada et al., 1992) and optical fibers (Thirstrup et al., 1996; Lupi et
al., 2001). The behavior of Erbium doped fibers is very different from passive fibers
behavior, due to the strong interaction between the light wave and the ions, which
requires a precise model. We will follow the method proposed by Desurvire to study
the interaction between light and Erbium doped fibers.

In the wavelength spectral band of the fiber (1, 530 nm – 1, 560 nm), the
interaction between the light wave and the Erbium ion takes place at energy levels
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4I13/2 and 4I15/2. These two levels respectively contain g1 and g2 sub-levels,
whose degeneracy is raised by the ligand field induced by the vitreous matrix.
The sub-levels energies are Ej , j ∈ [1, g1] and Ek, k ∈ [1, g2] eigenvalues of the
internal Hamiltonian H0 (in the following, the indices j refer to the first level and
the indices k to the second level). The interaction between the light wave and the
ions is described by the Hamiltonian Hint = −μ E, where μ is the electric dipole
momentum operator and E the incident wave electric field. Two sub-levels can be
coupled together in this interaction. However, due to the thermal agitation there
is a constant redistribution of the populations of the sub-levels inside the same
level. For this reason, the distribution of sub-level populations follows Boltzmann’s
law, the probability bn for the energy level En to be occupied being given by
bn = exp[(En − E1)/kT ]/

∑g
i=1 exp[(Ei − E1)/kT ].

The system evolution is entirely inside the density operator ρ evolution. The
variations of the dielectric susceptibility χ induced by the interaction can then
be bound to the elements of the density matrix via the macroscopic polarization:
P = ρ〈μ〉 = χ ε0 E. Thus in steady state χ ∝ ∑

jk μkjρjk. The problem is summed
up by the calculation of the coherence ρjk steady state values between the levels, and
of the total populations of the first and second levels ρ̄1 and ρ̄2. This calculation is
based on the density operator evolution equation: ∂ρ/∂t = [H, ρ] + (∂ρ/∂t)relax,
where H = H0 + Hint and where a relaxation term has been added to take into
account the spontaneous emission and non-radiative transitions.

In steady state conditions, the dielectric susceptibility variations are the result of
the superposition of the contributions caused by the different possible transitions from
an energy level Ek to a level Ej . Each transition is associated with a Lorentzian line
Lkj(ω) whose width is Δωkj , whose pulsation is ωkj and oscillator strength is fkj ,
so that the total response is equal to:

χ =
iq2

ε0m
N

∑
jk

fkj

Δωkj ωkj

(
b2kρ̄22 − b1j ρ̄11

)[
1 + 2i

ωjk − ω

Δωjk

]
Lkj(ω) [4.8]

N is the Erbium ion concentration, q and m are respectively the charge and
mass of the electron. Since the interaction takes place on the total length L of
the fiber, the refractive index variations related to this interaction are given by:
δn(ω) = η(2n0L)−1 ∫ L

0
χ′(ω, z)dz, where η is the overlapping factor of the

guided wave, n0 the host matrix refractive index and χ′ the real part of the
susceptibility. The dispersion induced by the ions-light interaction is finally given by
Dλ = −(λ/c) (∂2δn)/(∂λ2), and according to [4.8]:

Dλ =
∑
jk

Kkj

[
1 + 16

ωX

Δωkj

(
3
4
− X2 − Δωkj

ω
X3

)]
L 3

kj(ω) [4.9]

where Kkj = ηω2q2

πmn0ε0c2 N
fkj(bkρ̄2−bj ρ̄1)

ωkjΔ2ωkj
and X = (ωjk−ω)2

Δ2ωkj
.

14



Wavelength (nm)

C
hr

om
at

ic
 d

is
pe

rs
io

n 
(p

s/
nm

/k
m

)

Theory
Measurement

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

 1,530  1,535  1,540  1,545 1,550 1,555
−55

Figure 4.9. Chromatic dispersion of a 50 cm long sample of Erbium doped fiber

Therefore in order to analyze the dispersion of an amplifying fiber, it is necessary
to adjust the energy levels as well as the transitions widths and their oscillator
strength. It is moreover necessary to eliminate the classic fiber dispersion bound to
its geometry and to the variations of the matrix refractive index with the wavelength.
This can be done by adjusting the phase of the reflection coefficient of the fiber using a
polynomial giving the classic dispersion, which we delete from the phase we measure
to retain the dispersion bound to the resonating interactions. An example of chromatic
dispersion of an amplifying fiber is given in Figure 4.9 (dashed line curve). The plain
line curve represents the adjustment following relation [4.9]. This adjustment required
8 energy levels whose values expressed in cm−1 are: {0; 65; 125; 192; 258; 6545;
6620; 6685; 6745}. The Erbium ion concentration given by the adjustment is of the
order of 1 × 1019 ions.cm−3, or 200 ppm, which is in perfect agreement with the
manufacturer’s data.

The LCI can be used to study the homogenity of a fiber. In Figure 4.10, for
example, we show the chromatic dispersion curves of several 50 cm samples, cut
and removed every 5 m along the same amplifying fiber. Almost all of the samples
present the same dispersion and can be adjusted using the same procedure described
above, except two of them (plain and dashed line curves). The dashed line curve is
actually only different from the others by a proportionality factor of 1.8. Therefore the
corresponding sample presents the same energy levels as the others but the Erbium
ion concentration is nearly twice as high. On the other hand, in order to adjust the
plain line curve, it has been necessary to proceed with levels of different energy:
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Figure 4.10. Chromatic dispersion of several samples removed from the same amplifying fiber

{0; 65; 110; 174; 265; 6532; 6590; 6648; 6740} (cm−1). This lets us suppose that the
Erbium ion environment was locally different, causing a slightly different Stark effect
degeneracy increase of the energy levels.

4.4.3. Local characterization of fiber Bragg gratings

4.4.3.1. The fiber Bragg gratings

We obtain a fiber Bragg grating shining a UV laser on a fiber that has been
firstly exposed to high pressure hydrogen to increase its photosensitivity (Hill et al.,
1978). Interference fringes are produced and coupled into the fiber core to inscribe
a longitudinal modulation of the refractive index matched with the light intensity
modulation:

n(z) = neff + Δndc(z) + Δnac(z) cos
[

2π

Λ0
z +

2π

Λ2
0

∫ z

0

(
Λ(z′) − Λ0

)
dz′

]
[4.10]

where neff is the effective index of the propagating mode, Δnac the index modulation
amplitude, Δndc the effective index average and Λ(z) the modulation pitch. One
consequence is that the Bragg gratings reflect part of the incident light intensity
spectrally centered on the Bragg wavelength. This latter depends on the index of the
propagating mode and λ the pitch of the refractive index modulation inscribed along
the fiber core:

λB = 2neffΛ [4.11]
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Thanks to the great flexibility of photo-inscription techniques we can produce
gratings with very different reflectivity leading to a large variety of applications for this
component (Hill et al., 1997). For example, it is possible to inscribe gratings whose
reflection spectrum is very narrow, typically hundreds of picometers. We obtain an
optical multiplexer assembling in series several gratings of this kind (Jackson et al.,
1993). An entirely fibered laser cavity can be achieved connecting such gratings to
both ends of an amplifying fiber (Guy et al., 1995). It is also possible to inscribe
gratings whose modulation pitch varies longitudinally. These gratings are said to be
“chirped”. Schematically, the Bragg wavelength changes with the position along such
a grating, therefore the different spectral components of the incident light reflect at
different points of the grating. This property can be used to compensate the chromatic
dispersion (Eggleton et al., 2000) or compress the light pulses (Broderick et al.,
1997). The Bragg gratings are increasingly used as sensors (Ferdinand, 1992) because
any external strain (temperature, pressure, etc.) causes a shift of the reflected light
spectrum. We can determine the strain intensity from the measurement of this shift.
Spectrally sharp gratings are sensors with very high sensitivities.

As this has been shown previously, we may use LCI to characterize the spectral
properties of Bragg gratings. Nevertheless, this characterization is not always
sufficient. The spectrum indeed gives global information on the grating, averaged
over its entire length (typically some millimeters). However, we sometimes wish
to have more localized information which is, as for instance in the detection of a
defect in the photo-inscription or in the measurement of non-uniform constraints.
The solution to this problem has been provided by the works devoted to the
design of Bragg gratings, editing of many algorithms for index longitudinal profile
reconstruction whose starting point is the impulse response or the complex reflection
coefficient of the grating. As this last quantity was naturally obtained by LCI, it was
logical to attempt to associate them both and proceed to the experimental synthesis
of real gratings. This approach turned out to be fruitful and stands among the most
important applications of the phase measurement in fibered optics.

Local characterization of a Bragg grating amounts to determining its average
effective index Δndc(z), its modulation amplitude Δnac(z) and the variation of its
modulation pitch Λ(z) − Λ0. The reconstruction algorithms which have been set up
to carry out this task are generally based on the coupled modes theory (Kashyap,
1999; Sipe et al., 1994). The fiber is supposed to be “single mode” and lossless,
therefore allowing the propagation of both forward and backward waves uf and ub.
The action of the grating on these waves is given by:(

i∂z Ω(z)
Ω∗(z) −i∂z

)(
uf(z)
ub(z)

)
= −k

(
uf(z)
ub(z)

)
[4.12]

where Ω(z) is the coupling coefficient of the grating:

Ω(z) =
K

2
Δnac(z) eiΨ(z) [4.13]
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with

Ψ(z) = − 2ηπ

neffΛ0

∫ z

0

Δndc(z′) dz′ − 2π

Λ2
0

∫ z

0

(
Λ(z′) − Λ0

)
dz′ [4.14]

where η is the mode confinement factor. In practice, Ω(z) is the coupling coefficient
which is calculated using the reconstruction algorithms. We can easily deduct the
modulation amplitude from this calculation as it is proportional to the modulus of
the coupling coefficient. It is more difficult to determine the grating average effective
index and the pitch variations. These two parameters intervene in the argument of
the grating coupling coefficient Ψ(z), as they both modify the optical path seen by
the wave. This implies that it is necessary to have a priori information to be able to
differentiate them. If the grating is uniform, the average effective index only intervenes
so that:

Δndc(z) = −neff Λ0

2π η

dΨ(z)
dz

[4.15]

If the grating is chirped linearly (Λ(z) = Λ0 + αz) with a constant average effective
index, then:

Ψ(z) = −2π η Δndc

neff Λ0
z − π

Λ2
0

α z2 [4.16]

It is necessary to determine in a first step the chirp of the grating using a parabolic
adjustment of the phase of the coupling coefficient, to be able to calculate the average
effective index in a second step.

Among the numerous algorithms which have been set up to reconstruct the index
profile of Bragg gratings, two are now necessary. The most frequently used algorithm
is “layer peeling” (Robinson, 1975; Feced et al., 1999; Poladian, 2000; Skaar et al.,
2001), which is fast and efficient. The second reconstruction algorithm occasionally
used (method noted “GLM”) is based on an integral formulation of the coupling
equations and on an iterative resolution of these equations (Song et al., 1985; Peral et
al., 1996; Keren et al., 2003).

4.4.3.2. Accuracy of the index profile reconstruction

Combining the reflectometry measurements and the algorithms described above,
it was possible to reconstruct the index profile of several real gratings of very
different natures. We then proceeded to synthesize uniform gratings (Chapeleau et
al., 2003) and chirped gratings (Leduc et al., 2007) and less classical gratings as well
like staircase steps gratings (Chapeleau et al., 2006), crenel gratings (Giaccari et al.,
2003) or gratings with phase step (Poladian et al., 2003; Chapeleau et al., 2004).

This measurement technique benefits from LCI sensitivity. It is then possible
to characterize gratings with very low amplitude modulation. This is represented
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Figure 4.11. Staircase step grating

in Figure 4.11, where we show the reconstructed profile of a grating made up of 7
staircase step gratings, each step receives half the energy of the previous step during
the photo-inscription.

All the steps are present in the reconstructed profile, even the last step whose
amplitude is 2 × 10−5. In terms of reflectivity, the lowest limit in the reconstruction
is about 1%. The highest limit is approximately 95%. This value may somehow be
passed over after proceeding to several measurements. It has that way been shown
that it was possible to reach 99% reflectivity by either measuring the complex
reflection coefficients of the grating for both forward and backward propagating
light waves and combining the reconstructed profiles (Rosenthal et al., 2003), or
simultaneously measuring the complex reflection coefficient of a grating and its
transmission coefficient to correct the spectrum (Rosenthal et al., 2005). The validity
of the modulation amplitude measurements using this method has been proved
comparing the profiles obtained by the transverse diffraction technique (Krug et al.,
1995). The agreement between the two methods is always very good, within the
limits in reflectivity given above. The repeatability of the measurements is shown in
Figure 4.12.

These results have been obtained measuring several gratings several dozen of
times. The repeatability has been estimated by calculating the max difference between
the successive profiles along the whole grating: emax(z)=maxi,j [Δni

ac(z)−Δnj
ac(z)]

from which we derived a global estimation: emax = maxz[emax(z)] as illustrated
by Figure 4.12a. The repeatability depends weakly on the reflectivity, it is around
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Figure 4.12. Repeatability of the synthesis of amplitude modulation

3% in the case of highly reflecting gratings (Rmax > 50%) and around 4% in the
case of weakly reflecting gratings (see Figure 4.12b). It is difficult to estimate the
propagation of noise in the inverse methods, nevertheless we may give a limit lower
than the precision of the measurement. The major source of uncertainty indeed lies in
the relative uncertainty of the values of Rmax and η, which is of the order of several
%. We find a repeatability of the same order of magnitude.
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Figure 4.13. Phase of a chirped grating measured by par LCI and GLM

In Figure 4.13, we present the phase of a chirped grating photo-inscribed through
a phase mask with a 0.05 nm/cm linear pitch. We then expect that the grating is also
chirped linearly with a slope of 0.025 nm/cm. In accordance with the equation [4.16]
prediction, the phase of this grating is parabolic. The adjustment leads to a chirp
of 0.030 ± 0.002 nm/cm. Other measurements have been done on 3 gratings
photo-inscribed through another phase mask linearly chirped with a 3 nm/cm slope.
In this case, we obtain the following values for the chirp: 1.428 ± 0.002 nm/cm,
1.427 ± 0.003 nm/cm and 1.428 ± 0.002 nm/cm, which are indeed all equal but
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slightly different from the expected value (1.5 nm/cm). At present, it is not possible
to conclude whether this difference is a measurement error or an inscription defect.
A misalignment or an inscription beam non-uniformity may indeed lead to the
inscription of a chirp slightly different from the theoretical chirp. This study shows
that when we combine reflectometry and a reconstruction algorithm we may get to
the chirp of a Bragg grating, with at worst an error of several percent, which is not
possible using classic methods.

When the chirp of a grating has been determined, we can calculate its average
effective index using equation [4.16]. The relative reproducibility is once again several
percent. The accuracy is more difficult to establish since there is no direct method of
reference to measure the average effective index or theoretical values. However, the
validity of the measurements can be checked indirectly. The values of the modulation
amplitude, chirp and average effective index determined for a real grating may be
used to simulate a theoretical grating using relation [4.10]. The reflection coefficient,
in amplitude of this grating, can then be calculated using the transfer matrix method
(Skaar, 2000) and compared to the reflection coefficient, which has been measured
directly. In following this procedure, we obtain for all cases an excellent agreement
between the two coefficients, as is illustrated in Figure 4.14. This proves the accuracy
of the average effective index measurements.

measured
calculated

 0.1

 0.2

 0.3

R
ef

le
ct

io
n 

co
ef

fi
ci

en
t

Wavelength (nm)
 1,548  1,550  1,552

 100

 50

 0

−50

−100
 1,548  1,550  1,552

calculated

measured

Wavelength (nm)

R
el

at
iv

e 
gr

ou
p 

de
la

y 
(p

s)

Figure 4.14. Comparison of the reflection coefficients calculated from the reconstructed
profile with those directly measured. The group delay curves have been translated to

obtain a better readability

4.4.4. Strain and temperature sensors

4.4.4.1. Background

Since the 1990s, many research activities (Kersey, 1996; Kersey et al., 1997;
Rao, 1997) have been oriented to the set up and the development of new optical
sensor systems, in particular those based on Bragg gratings. These components are
excellent transducers: they are very sensitive to temperature variations, pressure and
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strain. Moreover, their small sizes confer on them low intrusion capability inside
materials and remote and distributed measurements along one fiber. They can also
be used under severe environmental conditions owing to their lack of sensitivity
to electromagnetic perturbations and their high resistance to ionizing radiation,
corrosion and fatigue. Thanks to these many advantages, sensor systems based
on Bragg gratings can be found today in many applications (Rao, 1999): such as
measurements, detection, surveillance in civil engineering, aeronautics, ship building,
oil industry, etc.

A Bragg grating reflects a very thin spectral band, centered on the Bragg
wavelength λB given by [4.11]. The parameters neff and Λ depend linearly on the
temperature and the strain applied along the grating. In order to measure a uniform
variation of the temperature ΔT and the longitudinal strain ε using a Bragg grating,
the method consists of determining the Bragg wavelength shift:

ΔλB(ΔT, ε)
λB

= KΔT ΔT + Kεε [4.17]

KΔT and Kε are constants which depend on the thermal expansion coefficient, the
thermo-optic coefficient, the Pockels opto-elastic constants and the Poisson coefficient
of the optical fiber. Although all these coefficients are well known, they can slightly
vary from one fiber to another because their natures and their fabrication processes are
different. It is therefore recommended to calibrate the sensors based on Bragg gratings
to precisely determine the KΔT and Kε coefficients. Moreover, relation [4.17] points
out that the temperature and strain variations cannot be differentiated from each other
without assumptions. In practice, ΔT is indeed obtained, ensuring that ε is null and
ε is obtained, ensuring that ΔT is null. Furthermore, utilization of sensors based on
Bragg gratings relies on the availability and utilization of a measurement apparatus
capable of finely analyzing an optical spectrum. It is indeed necessary to measure a
shift of the Bragg wavelength of around one picometer, to obtain a resolution of 0.1 °C
in temperature or 1με in strain. Different techniques (Kersey et al., 1992; Zhao et al.,
2004) have been set up to reach such a high spectral resolution. Even so, this kind of
apparatus may only be used if the change in temperature or in longitudinal strain is
uniform along the Bragg grating, otherwise the spectral band reflected by the grating
broadens, gets distorted and it is then impossible to process the spectrum.

4.4.4.2. Measurement methodology

Measurement of a temperature field or longitudinal strain relies on the
reconstruction of the argument Ψ(z) of the coupling coefficient of the Bragg grating,
as described previously.

We firstly consider that the Bragg grating is initially submitted to a temperature and
a longitudinal strain probably non-uniform along the grating. An initial measurement
leads to Ψ0(z), the phase of the grating in this initial state. Let us then assume that the
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temperature and the strain vary, and let us note ΔT(z) and ε(z) as the shifts from the
initial state. A new measurement of the phase Ψ(z) then corresponds to this second
state and Ψ(z) is linked to Ψ0(z), ΔT(z) and ε(z) by:

Ψ(z) − Ψ0(z) =
∫ z

0

(
KΨ

ε ε(z′) + KΨ
ΔT ΔT(z′)

)
dz′ [4.18]

As for the technique based on the measurement of the spectral shift, the temperature
and longitudinal strain variations must be measured separately ensuring that ΔT(z) or
ε(z) do not change between the initial and final states during the measurements of the
phase of the Bragg grating. Moreover, calibration of the coefficients KΨ

ΔT and KΨ
ε is

also necessary.

4.4.4.3. Longitudinal strain measurement

In order to test the method of measurement of non-uniform longitudinal strain,
we fabricated a block of resin (200/32/8 mm) with a fiber Bragg grating inside, and
submitted this block to a traction bench at a fixed temperature. The Bragg grating has
been oriented along the length of the block of resin and positioned at its center. The
grating is uniform, 11 mm long and photo-inscribed using the technique of the phase
mask in a Ge-doped SMF28 fiber. The resin used is Axson Epolam 2020 which has
been cured at ambient temperature.
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Figure 4.15. Traction load apparatus

After releasing the resin block from the mould the Bragg grating has been
calibrated to determine its characteristic coefficient KΨ

ε . During the calibration
operation, the Bragg grating has been submitted to uniform strains applied by the
measuring apparatus sketched in Figure 4.15. Different traction loads (measured
using a load cell) can be applied with a thumbscrew. An extensometer placed at the
top of the resin block made it possible to calibrate the Bragg grating sensor and a
KΨ

ε -value of 1.1 × 102 με.mm/rad was obtained.

Once the calibration was over, we drilled two holes through the resin block,
symmetrical on the two sides of the grating. The presence of these two holes causes
a strain which is not uniform along the length of the block when the longitudinal
tensile is applied.
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Figure 4.16. Magnitude of the reflection coefficient and phase of the Bragg
grating vs different traction loads

Figure 4.16a represents the magnitude of the reflection coefficient of the Bragg
grating in the resin block described above, corresponding to different tensile forces.
The higher the force, the more the spectrum envelope changes and shifts towards
longer wavelengths. The spectrum change is a characteristic of a non-uniform strain
along the Bragg grating.
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Figure 4.17. Non uniform strains measured and derived from the grating
phase (plain line) and simulated by finite elements (dotted line)

From the grating phase obtained under different tensile forces (see Figure 4.16b),
the non-uniform longitudinal strains of the resin block are determined using
relation [4.18]. These strains are represented in Figure 4.17 and it is shown that there
is a good agreement between those obtained experimentally and the others obtained
by finite element simulation1.

1 http://www-cast3m.cea.fr.
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4.4.4.4. Temperature gradient measurement

The experimental system represented in Figure 4.18 has been set up to specifically
create a temperature gradient along a Bragg grating introduced into a 80 mm diameter
and 20 mm high PMMA block and positioned at its center. The Bragg grating we
used is a 10 mm long grating with a 1.5 nm/cm chirp (variation of the period along
the grating). The temperature gradient is created using an electric heater warm plate
and a water cooled cold plate. Under stationary conditions, the temperature gradient
obtained using this arrangement is quasi-uniform along the Bragg grating.

Fiber Bragg 

Electrical resistor

Fluid flow
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Figure 4.18. Apparatus for temperature gradient measurement

Prior to taking a temperature gradient measurement, it is necessary to calibrate the
grating and determine its characteristic coefficient KΨ

ΔT. For this reason, the PMMA
block containing the Bragg grating has been maintained at different temperatures and
a value of KΨ

ΔT = 11.8 °C.mm/rad has been obtained using a thermocouple.

In Figure 4.19a, we present the Bragg grating spectra obtained with and without
the temperature gradient dotted and plain lines, respectively. Due to the changes
of the chirp and the refractive index along the grating caused by the temperature
gradient, the spectrum has slightly shrunk by about 160 pm and shifted toward the
long wavelengths. These spectral changes depend upon the relative grating chirp and
temperature gradient directions. In other words, when the grating is oriented in the
other direction, the spectrum broadens.

In Figure 4.19b, we present the measurements of the phase of the Bragg grating
with and without the temperature gradient dotted and plain lines, respectively.
From these measurements, the temperature gradient has been determined using
relation [4.18] and it is shown in Figure 4.20 to be linear with a slope of 2 °C/mm.
Since the PMMA block height is 20 mm and the length of the grating we used is only
10 mm, one part only of the temperature gradient can be measured and the results
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Figure 4.19. Reflection coefficient magnitude and phase of the Bragg grating
without (plain line) and with (dotted line) temperature gradient

compared to those obtained using thermocouples regularly located over the whole
height and inside the PMMA block. In Figure 4.20, each point corresponds to the
thermocouple measurement and a very good agreement may be observed between the
two results.
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Figure 4.20. Temperature gradients obtained from grating phase
measurements (plain line) and from thermocouples (dotted line)

4.5. Conclusion

The reflection coefficient in amplitude of a component can be measured using
low coherence fiber optics interferometry which then gives access to the phase shift
it causes. As far as the telecommunications are concerned, the advantage of such a
measurement lies in the fact that chromatic dispersion can be derived from the phase
shift that has been measured. Now this phenomenon is one of the major limiting
factors for the bit rate increase. It is necessary to be able to measure it finely during
the design and set up of components and transmission links. In addition, very short
length samples may be characterized using interferometry. For example, one dozen
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centimeters is sufficient to measure the dispersion of classic fibers, with a relative
precision of the order of several 10−3.

The reflection coefficient in amplitude is of prime and particular importance in the
case of fibered Bragg gratings since from this spectral characterization, it is possible
to realize a local characterization using an inverse method. As far as the manufacturer
is concerned, this gives him the opportunity to control the inscription of the grating
in real time (Espejo et al., 2004). In the field of sensors this leads us towards the
measurement of profile of strains or temperature truly inside materials.

The main stake today in the field of fiber optics interferometry is the control of
polarization. Some results related to this subject are to be published (Levy et al.,
2006; Waagaard, 2006; Coric et al., 2006; Espejo et al., 2007). The set of feasible
characterizations needs to be broadened and their precision needs to be improved.
As far as the field of sensors is concerned, these measurements seemed to be highly
promising. As a matter of fact, the birefringence of a fiber being bound to the shape
of its cross-section, any non-isotropic crushing of the fiber induces a change in its
birefringence. The local characterizations of fiber Bragg gratings, including the effects
on the wave polarization, should then allow us to measure the grating deformation
also in its transverse plane. We can then dispose of a three axis sensor giving access
to totally new information on the constraint fields deep inside materials.
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