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Abstract: Continuum damage mechanics is a framework for describing the variations of
the elastic properties of a material due to microstructural degradations. In this
contribution two issues are reviewed: the first one deals with standard damage models,
damage induced anisotropy and relations with other existing approaches such as
smeared crack models. The second issue is concerned with strain localisation due to
softening, which is inherent to continuum damage modelling of quasi-brittle materials.
Nonlocal approaches to damage are reviewed. We conclude with possible extensions of
these enriched damage models to the case of damage induced anisotropy.
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1 INTRODUCTION

Computational modelling and failure analysis of quasi-brittle materials and structures
require adequate constitutive models coupled to robust computational schemes. Some of
the issues which received most of the attention in this field over the past two decades
are progressive cracking and strain localisation due to the inherent softening of the
material. With respect to the first item, continuous damage models have become among
the most popular ones. Isotropic and anisotropic formulations were proposed. Whether
they derive from smeared crack approaches including the rotating crack models [see e.g.
Feenstra, 1993], microplane models [Bazant and Prat, 1988], or pure phenomenological
constitutive relations [Mazars 1984, Lemaitre 1992], the basic principle remains the
same: the compliance of the material can be seen as an internal variable, in the
thermodynamic sense, which is indexed on the state of microcracking of the material.

The issue of strain localisation due to strain softening is a bit more intricate since it
reflects on the ability of models to capture the inception of failure and its propagation
when solving boundary value problems. It became apparent at the end of the 70’s that
strain softening causes a loss of well posedness of incremental boundary value problems
and, more importantly, that it yields prediction of failure without energy dissipation
[Bazant, 1976, Rice 1976]. The remedy to this physically unrealistic feature was found
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in the early 90’s, surprisingly inspired by earlier theories of materials with
microstructure to situations where the material behaviour is not reversible anymore.
Among such models, called enriched models for failure analysis, are the nonlocal damage
model [Pijaudier-Cabot and Bazant, 1987], gradient plasticity approaches [de Borst and
Muhlhaus, 1992], Cosserat models [de Borst, 1991] and more recently gradient damage
models [Peerlings et al., 1996]. Their common feature is the incorporation in the
constitutive relations of an internal length which controls the failure process and thus
precludes any dissipative process to occur in a region of the solid of zero volume.

It is also interesting to observe that, in fluid mechanics, similar issues were faced
with transonic flow and boundary layer problems [Joseph et al. 1985]. The most
popular techniques for circumventing those problems were the introduction of a
characteristic time in the problem, for instance by considering that the fluid is viscous.
A small amount of viscosity (damping) provides a regularisation of the governing
equations. Similar solutions exist in solid mechanics. Needleman [1988] and Sluys
[1992] demonstrated that material rate dependency is a proper regularisation method,
i.e. that it restores well posedness of the BVP at the inception of softening. Although
the technique is very attractive, meaning that physical motivations for rate dependency
might be easier to provide than for nonlocality of constitutive relations, some
inconsistencies remain because the response of a quasi brittle material is slightly more
complex compared to simple fluids: rate dependency provides for instance an evolution
of the material strength for homogeneously strained specimens at different loading rates.
At the same time, it provides also a width of the fracture process zone and eventually
controls the fracture energy of the material. The fracture energy and the evolution of the
material strength with the loading rate are two characteristics which should be fitted
with a single parameter (the viscosity), which is not always in accordance with
experimental data.

In this chapter, we will concentrate on rate independent modelling of damage and on
two regularisation techniques: the nonlocal and gradient approaches. In the first part, we
will review standard damage models, isotropic and anisotropic. The second part will be
devoted to the integral and gradient enrichments of such models.

2 STANDARD DAMAGE MODELS

Let us consider, for the sake of simplicity, the case of tension dominated mechanical
actions. The development of microcracks results in a progressive degradation of the
material elastic stiffness. In the reversible (elastic) domain, the stress-strain relation
reads:

where is the stress component, is the strain component, and is the
stiffness coefficient of the damaged material. The simplest approach to material damage
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is to assume that the material stiffness (for isotropic materials) remains isotropic. The 
stress strain relations becomes :

where and are the Young’s modulus and Poisson’s ratio of the undamaged
isotropic material, and is the kronecker symbol, d and D are two independent
damage variables which vary between 0 and 1. It should be pointed out that isotropic
damage means indeed two damage state variables. The subsequent assumption d = D
yields the stress-strain relationship used by Mazars (1984):

or

where is the stiffness of the undamaged material. According to this assumption, the
Poisson’s ratio is not affected by damage. The elastic (i.e. free) energy per unit mass of
material is:

This energy is assumed to be the state potential. The damage energy release rate is:

with the rate of dissipated energy:

The second principle of thermodynamics constrains the dissipation rate to be zero
or positive. In this constitutive relation (with a single damage variable), it means that
damage must either increase (irreversible response) or remain constant (reversible
response).

The thermodynamic framework depicted above allows also for the incorporation of
damage induced anisotropy. To this end, the free energy needs to be modified in order to
account for the directionality of damage. Another technique due to Fichant et al. (1997)
consists in an approximation of the effective stress
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where is the initial stiffness of the (undamaged) material. Let us define the relation
between the stress and the effective stress along a finite (or infinite) set of directions
defined by unit vectors

where and are the normal and tangential components of the stress vector
respectively. Here and are scalar valued quantities which define the influence
of damage on the relation between the effective stress and the stress vectors in direction

The overall resolved stress tensor is the solution of the virtual work equation:

find such that

where is a sphere of radius 1. This equation can be recast as follow:

find such that

where EN and ET are initial stiffness moduli which are functions of the Young's
modulus and Poisson’s ratio of the material. Eq. (11) is very similar to the equation
which relates the resolved stress to the microplane stress and strains in the microplane
model [Bazant and Prat 1988]. In fact, and can either be defined for each
angular directions independently, or can be interpolated by angular functions. In the
first form, one recovers a microplane damage model and the most general form of damage
induced anisotropy [Carol et al., 1991]. In the second form, damage induced anisotropy
is fixed by the angular functions defining and It is a restriction of the first
form which can be more efficient in computations as it involves less variables: a finite
number of directions only are needed in order to define the material stiffness. It
should be also noted that the integral form in Eq. (11) can be transformed again in order
to arrive to a format which is very similar to the multiple fixed crack model:

4



where is a weighting factor (see for instance the review in [de Borst, 1999]).
The evolution of and for each direction must be consistent with the

second principle of thermodynamics. For isothermal conditions the rate of energy
dissipation must be positive or zero. Energy dissipation is slightly more complex than
for the scalar damage model (Eq. 7):

The evolution of damage is controlled by the same loading function f:

where is a hardening - softening variable. If the damage angular functions are
interpolated, e.g. with ellipsoidal functions, there are six scalar loading surfaces, one for
each principal direction and for each damage variable. The hardening-softening variables
are also angular functions which must be interpolated (with similar ellipsoidal
functions). In the more general microplane approach, there is one loading function and
one hardening-softening variable per microplane.

The loading function and the rate of the hardening-softening variable must comply
finally with the Kuhn-Tucker conditions:

3 NONLOCAL AND GRADIENT DAMAGE

We will first restrict attention to isotropic damage and consider a material which
contains growing voids with isotropic characteristics; the nonlocal generalisation of the
scalar damage model will be recalled first. Then, we will turn toward the gradient damage
model and the influence of the internal length on the bifurcation condition involved in
strain localisation analyses.

3.1 Nonlocal damage model

Consider for instance the case in which damage is a function of the positive strains
(which means that it is mainly due to micro cracks opening in mode I). The following
scalar called equivalent strain is introduced first (see for instance Mazars, 1984):
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where is the Macauley bracket and are the principal strains. In classical damage
models, the loading function f reads The principle of nonlocal
continuum models with local strains is to replace with its average:

where is the volume of the structure, is the representative volume at point x,
and is the weight function, for instance:

is the internal length of the non local continuum, replaces the equivalent strain (Eq.
16) in the evolution of damage. In particular, the loading function becomes

It should be noticed that this model is easy to implement in the context
of explicit, total strain models. Its implementation to plasticity and to implicit
incremental relations is awkward. The local tangent stiffness operator relating
incremental strains to incremental stresses becomes non symmetric, and more
importantly its bandwidth can be very large due to nonlocal interactions. This is one of
the reasons why gradient damage models have become popular over the past few years.

3.2 Isotropic gradient damage model

A simple method to transform the above nonlocal model to a gradient model is to
expand the effective strain into Taylor series truncated for instance to the second order:

Substitution in Eq. (17) and integration with respect to variable s yields:

c is a parameter which depends on the type of weight function in Eq. (17). Its
dimension is L2 and it can be regarded as the square of an internal length. Substitution of
the new expression of the nonlocal effective strain in the nonlocal damage model
presented above yields a gradient damage model. Computationally, this model is still
delicate to implement because it requires higher continuity in the interpolation of the
displacement field. This difficulty can be solved with a simple trick devised by Peerlings
et al. (1996): let us take the Laplacian of the right and left hand-sides of Eq. (20).
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Because the Taylor expansion in Eq. (19) was truncated to the second order, higher
derivatives can be assumed to be negligible. It follows that

Therefore, Eq. (20) becomes This implicit equation which
defines the nonlocal effective strain as a function of the local effective strain is easy to
discretise in a finite element scheme. The implementation of the gradient damage model
becomes in fact similar to the implementation of a thermomechanical (local) model in
which the nonlocal effective strain replaces the nodal temperatures. This type of model
has provided very good predictions of failure, for instance, of concrete structures
[Peerlings et al., 1998].

Gradient damage models have also been devised differently. Frémond and co-
workers (1993) started from the principle of virtual work adding the power of internal
forces involving higher order terms.

A more recent approach, inspired by the mechanics of porous materials, was
proposed by Pijaudier-Cabot and Burlion [1996]: assume that damage can be
characterised by the variation of volume fraction of material denoted as Failure is
reached when the volume fraction is equal to zero. Starting from a reference
configuration where the material is strain - free and the volume fraction is the
variation of the volume fraction of material is This variation of
volume fraction of material can be due to damage growth or straining. For constant
damage, the porous material is elastic and its behaviour is modelled using the theory of
elastic material with voids [Cowin and Nunziato, 1983]. The governing equations are (in
the absence of body forces):

where hi is the equilibrated stress vector, and g is the equilibrated body force. These
variables are related to the stresses due to centres of dilation made of three couples of
opposite forces without moments acting along three mutually orthogonal directions at
material points. Such forces correspond to the local pressures necessary to augment the
size of an existing void, in a reversible or irreversible manner and they create a local
stress distribution. These forces produce void growth and a variation of the overall
volume fraction of the body. The elastic (free) energy reads:

where are the overall stiffness coefficients of the porous material, and are
material parameters. Compared to the expression in Eq. (5), the free energy has two
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additional terms which correspond to the variation of the volume fraction of voids. The 
thermodynamic forces associated to the variables are defined  as:

where and are the values of the equilibrated body forces and equilibrated stress
vector in the reference state, respectively. Hence equilibrium in the reference (stress-
free) state yields:

As pointed out by Cowin and Nunziato, the stiffness coefficients and the material
parameters should depend on the reference volume fraction. In order to obtain an
extension of this model to the case of a damaged material, let us assume that whenever
damage grows, it modifies the volume fraction of the material in the reference
configuration. The variation of volume fraction is rewritten as:

where is the reversible variation of volume fraction, is the volume fraction of
the damaged material when it is free of loads, is the irreversible variation of volume
fraction due to the growth of damage measured when the material is free of loads and
is the initial volume fraction of the material, when damage is equal to zero. For the sake
of simplicity, we assume that is very small compared to as damage grows. The
free energy of the material is now:

Compared to Eq. (4), represents the variation of reversible energy due to an
irreversible variation of volume fraction. In order to comply with the second principle of
thermodynamics, the Clausius-Duhem inequality should be verified in all instances:
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The irreversible variation of  volume fraction is measured when the body is free of loads.
Therefore, we assume that and are expressed as follow:

The term A is the quantity which controls the irreversible variation of volume fraction
of the material from the initial state when loads are applied. is a model
parameter.

A simple (maybe simplistic) way to relate the variation of volume fraction to the
decrease of stiffness of the material is to assume that The relations which
follow from these assumptions are derived from Eqs. (22,24,25,29):

is defined by a loading function and an evolution equation:

if

where H is a hardening - softening modulus. In Eq. (31), denotes an invariant of the
strain genetically. Note that in Eqs. (30) has the dimension of a length squared. It is
there that an internal length has been introduced in the constitutive relations.

In the absence of body forces, the two governing equations, along with the
boundary conditions, are equivalent to the following conditions: find a displacement
field and a damage field d such that for any kinematically admissible virtual

displacement and damage field d*,

where are external applied forces. For the finite element implementation, the
displacement field components and damage field are discretised with different types of
polynomials, same as in coupled thermomechanical problems. A similar variational
principle can be obtained in an incremental fashion for the purpose of implementing the
model within a Newton - Raphson procedure and of solving this non linear set of two
coupled equations iteratively. It remains, however, that additional boundary conditions
are required for solving Eqs. (32):
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where is now the unit outward normal to the boundary of the solid The
meaning of the third (natural) boundary condition remains a problem to be solved.

This gradient damage model, the one which derives from Eqs. (19-21) and the
integral nonlocal model are very similar. The difference is that in the first one it is the
damage variable itself on which the nonlocal treatment is applied, while in the laters, the
nonlocal treatment is applied to the variable which controls damage. It follows that in
the finite element implementation the damage variable is interpolated in the first model
and that the nonlocal effective strain is interpolated in the second.

3.3 Strain localisation analysis

In order to exhibit the regularisation properties of the gradient damage model, we will
investigate the occurrence of bifurcation in an infinite body from a homogeneous state of
deformation and damage, denoted as Monotonic loading is assumed and body
forces are omitted. Apart from the trivial solution where the strain and damage remain
homogeneous, we look for velocities and a damage rate distribution of the
form:

where and D are unknown constants, is an unknown angular frequency,
is an unknown normal vector, and J is the imaginary constant such that

Substitution of Eqs (30,34) in the governing equations of equilibrium (Eqs. 33) yields
the following homogeneous system of equations:

P is a 4x4 matrix. This system admits non trivial solution if det(P)=0, which is the
bifurcation condition. The bifurcation condition should yield a normal vector for each
value of the angular frequency. One can check easily that if the solution is
independent of the angular frequency which can be fixed arbitrarily. The square root of

is an internal length of the continuum which selects the wave length of the localised
solution and scales the size of the localisation band. It plays exactly the same role as the
internal length in other localisation limiters.
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4 CLOSURE : EXTENSION TO ANISOTROPIC GRADIENT DAMAGE

In the anisotropic damage models devised in the first section of this contribution, the
evolution of damage is directional. For instance one loading function is considered
for each direction in Eq. (14). Combining Eq. (14) and the definition of the nonlocal
strain in Eq. (19-21) can be done: for each direction Eq. (14) can replaced by:

For each direction in which damage growth is defined, a nonlocal variable is introduced.
This extension is straightforward in the context of microplane models where directions

are defined arbitrarily and fixed in the analysis. There are as many nonlocal variables
as directions considered and these variables are interpolated throughout the finite
element mesh, same as for the isotropic gradient damage model. The usual set of
equilibrium equations is complemented with p × m equations where p is the number of
directions and m is the number of damage variable per direction [Kuhl et al., 1998].
For the orthotropic damage model proposed by Fichant et al., three directions are
considered only at each material point. The directional distribution of damage is
reconstructed by interpolation in between those principal directions. Hence, there is the
complexity that the directions change from one finite element to another and might
rotate in the course of loading too. A similar problem is encountered in nonlocal rotating
crack models [de Borst, 1999]. Conceptually, this feature does not change anything in
the discretisation, except that one has to keep track of the orientation of principal
directions of damage. This is in fact the price to pay for the reduction of equations (and
degrees of freedom) to be solved.
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