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Abstract 

The question of divergence instability and diffuse failure, which is a common failure mode for granular materials like 
soils, is tackled here from an experimental, theoretical and numerical perspective. The necessary condition of 
instability as given by the loss of definite-positiveness of the elasto-plastic matrix (the so-called “ second order work 
criterion”) is considered to analyze some experimental tests leading to diffuse failure, the link between kinetic energy 
and second order work is established, a discrete element method is used to simulate these failure conditions and 
eventually a 3D bifurcation analysis is performed with incrementally piecewise and non-linear elasto-plastic 
relationships. Essentially in relation with the non-associate character of the plastic strains of granular materials, a 
whole bifurcation domain in the stress space emerges from these analyses, leading to novel views of failure for non-
associative materials.   

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [name organizer] 
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1. Introduction

It has been repeatedly observed that geomaterials (soils, rocks, concretes) can collapse under various
failure modes, due to geometric or material instabilities. Material or constitutive instabilities can lead to 
localised (with plastic strain or damage localisation patterning) or diffuse failure (without any such 
pattern). Localisation appears in the form of shear bands ([1]), or less often with compaction/dilation 

Available online at www.sciencedirect.com

© 2012 Published by Elsevier B.V. Selection and/or peer review under responsibility of Dr. Oana Cazacu.
Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


116   Ali Daouadji et al.  /  Procedia IUTAM   3  ( 2012 )  115 – 140 

bands. Diffuse failure modes by divergence instability correspond to the case where the soil collapses in 
situ into a shapeless body with a random displacement field, showing no internally organised strain 
structure ([2]). This kind of failure is observed in nature for example after strong rainfalls or after an 
earthquake in the case of the liquefaction of loose saturated sands. Even though viscosity plays an 
important role in clay collapse (typically by tertiary creep), the purpose of this paper will be restricted to 
the case of rate-independent geomaterials. 

The first section of this paper is devoted to the observation and analysis of such diffuse failure modes 
in lab experiments performed in axisymmetric conditions with a triaxial apparatus on a loose sand. 
Various strain proportional loading paths are considered to investigate the influence of the loading 
direction on the occurrence of failure. 

If flutter instabilities are excluded, the necessary condition for diffuse or localised failure is given by 
the second order work criterion, which corresponds to the loss of definite positiveness of the elasto-plastic 
operator (or equivalently of its symmetric part).  One crucial point here is that geomaterials are strongly 
non-associative materials, characterised by a dilatancy angle different from the friction angle. Thus the 
elasto-plastic operator is non-symmetric and the second order work criterion (related to the singularity of 
the symmetric part of the elasto-plastic matrix) is essentially different from the plastic limit condition 
(singularity of the elasto-plastic matrix itself). Moreover, linear algebra shows that the second condition is 
met after the first one (along a given loading path), giving rise to the existence of a whole bifurcation 
domain in the stress space limited by both the determinants of the elasto-plastic matrix and its symmetric 
part vanishing respectively.  

A question appears now: what is the essential link between second order work criterion and failure? 
This is the object of the second section, where this link is emphasized through a relationship between the 
kinetic energy at and just after failure as a function of the difference between the external second order 
work corresponding to the applied loading at the body boundary and the internal second order work of the 
deformed body. For quasi-static conditions far from failure, this difference is nil, the kinetic energy is thus 
equal to 0 and the medium remains in an equilibrium static case. At failure, because of the vanishing of 
second order work, the kinetic energy can take finite positive values (for proper applied loading 
parameters) giving rise to bursts of kinetic energy leading to failure. The stress-strain state reaches a limit 
state (which can be a mixed one as seen in section 4). On the other hand, effective failure is associated 
with large strains suddenly developing in a dynamic regime. 

Having observed these bursts of kinetic energy at specimen collapse in experiments, and having 
established the link between kinetic energy and failure, it is interesting =to analyse these collapses by 
direct numerical simulations. This is the purpose of Section4, where discrete element simulations of 
axisymmetric triaxial tests are performed. A discrete element model (DEM) is used which is, roughly 
speaking, the application of molecular dynamics to granular materials. DEM is currently used now in 
geomechanics, since its capability to produce very realistic results has been checked in the past in a very 
detailed way ([3], [4] and [5]). The relationship between second order work and kinetic energy is thus 
very carefully examined and discussed. 

Then in the last and fifth section, a 3D bifurcation analysis is performed by considering both an 
incrementally piece-wise linear and an incrementally non-linear rate-independent constitutive relation. 
The boundaries of the bifurcation domain are given in 3D for Hostun sand. As the second order work 
corresponds to the quadratic form associated with the elasto-plastic matrix, this form takes negative values 
inside “the isotropic cone” of this matrix according to linear algebra. Thus, from a mechanical point of 
view, the second order work has negative values inside some “instability cones”, providing the “unstable 
loading directions” which can lead to failure by divergence instability if proper loading parameters are 
considered. These cones are presented for general 3D loading conditions. 
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2. Experimental behavior of loose granular materials under axisymmetric proportional strain tests

 The behaviour of granular materials has been mostly studied in laboratories using compression or 
extension triaxial tests carried out on saturated samples under either fully drained or fully undrained 
conditions. This practice is considered appropriate since drained and undrained behaviour are supposedly 
the bounds of all possible material behaviour under saturated conditions. However, in the case of 
saturated materials, the real in situ conditions are in fact partially drained which means a simultaneous 
change in both pore volume and pore-water pressure. The mechanical behaviour of a given soil depends 
on its current state (related to its deposition and loading history), the external loading and the rate of 
loading (for rate sensitive materials), its permeability and of course on the boundary conditions. Indeed, 
five types of drainage for saturated granular materials can be considered as follows: excessive drainage, 
full drainage, partial drainage, zero drainage and expansive drainage. The full and zero drainage 
conditions are equivalent respectively to classical drained and undrained tests. Partial drainage 
corresponds to a volumetric deformation bounded by the drained and undrained volumetric deformations 
(nil for the latter), that is representative of coarse soils subjected to rapidly changing loads. The last two 
types of drainage conditions can be observed when the pore pressure at the boundary is different from that 
inside the element of interest. If higher surrounding pore pressure exists, then pore-water will flow into 
the soil causing expansive drainage of the considered domain. On the other hand, a lower pore pressure 
applied at boundary will draw water out of the element of soil and lead to a greater volume contraction 
than the contraction observed during full drainage. Indeed, for the latter the pore water pressure remains 
constant and does not decrease. To experimentally obtain these five drainage conditions with the 
conventional triaxial setup, several authors have used the proportional strain path tests by imposing a 
constant strain ratio  = d v/d 1, where  d v=d 1 + 2 d 3 ([6], [7], [8] and [9]). 

In partCUlar, instability was studied under axisymmetric undrained compression tests or constant-q 
tests (See[10], [11] and [12] for more details) and the role of the control parameters on the effective 
collapse was emphasised using the approach proposed by R. Nova ([13]). In this Section, experimental 
results obtained during three undrained triaxial compression tests and four proportional strain tests on 
saturated sand are presented. 

2.1. Tested material and physical model 

 Tests were performed on Hostun S28 sand, which is a sub-angular, medium sand (see Table 1). In 
order to obtain the loosest collapsible samples, the moist tamping method was adopted for the preparation 
of the samples. Dry sand was mixed with approximately 3% of de-aired water and then deposited in a 
mould in five layers. Each layer was compacted using a tamper to reach the same-targeted height after 
compaction. Then, the enlarged platens was coated with a thin layer of lubricant in order to reduce the 
friction with the soil at the top and bottom of the samples. Saturation was achieved by first flushing 
carbon dioxide and then de-aired water under a very low pressure (less than 10 kPa). Finally, the 
saturation process was stopped after the Skempton’s B-parameter was greater than 98%. 

Table 1: Basic properties of Hostun S28 sand ([10]) 

Type Mean Size (mm) Uniformity coefficient Specific gravity Max void ratio Min void ratio Frictional angle (°) 

Quartzic 0.3–0.35 2 2.65 1 0.656 32 
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A triaxial cell was used in combination with an electromechanical compression and traction testing 
machine. The cell pressure was applied through a digital pressure-volume controller (DPVC). A second 
DPVC device was used to apply the backpressure and to measure volume variation at the bottom of the 
specimen (or to measure the backpressure and to apply the volume variation respectively). The load 
applied using the loading frame was measured using a submergible force transducer placed inside the cell 
in contact with the sample. The axial displacements were obtained using a transducer placed inside the 
compression traction-testing machine. All data were recorded on a computer, which was also used to 
impose the desired loading path.  

2.2. Loading program 

2.2.1. Undrained triaxial compression tests 
During an undrained triaxial compression test, the prescribed loading program is given by the 

following conditions: 

d 1 0 or dq 0
d 2 d 3

d v 0

 (1

where q = 1 – 3 

As the sample is saturated, the isochoric condition (no volume variation) is imposed at the boundary 
and the pore water pressure evolves depending on sample density. For loose samples, the pore water 
pressure continuously increases up to a plateau whereas for a denser sample, it increases to a peak and 
then decreases. During the tests, the total (external) radial stress applied is maintained constant. The 
sample can be loaded under a strain-controlled or stress controlled mode (Equation 1).   

2.2.2. Axisymmetric strain proportional tests 
During an imposed axisymmetric strain proportional test, the loading program is described by the 

following conditions: 

d 1 0
d 2 d 3 cst

d v

d 1

 (2

with the common sign convention used in geomechanics, where axial compression and volume outflow 
are considered as positive. Therefore a positive  value corresponds to a volumetric contraction whereas a 
negative  value corresponds to a volumetric expansive deformation. Following the value and the sign of 
the parameter � the test is either: 

 = 0 : undrained test (or zero drainage), 
 > 0 : contractive test (equivalent to partial or excessive drainage following  value), 
 < 0 : expansive (or dilative) test, 



119 Ali Daouadji et al.  /  Procedia IUTAM   3  ( 2012 )  115 – 140 

It should be noticed that  = 1 corresponds to a one-dimensional test. 
Although the in situ conditions are clearly different, a constant strain ratio has been chosen during the 

whole test to study the influence of drainage condition on the instability of loose saturated Hostun sand. 
Similar tests have been performed by Lancelot et al. ([7]) and Sivathayalan and Logeswaran ([8]). Darve 
et al. ([14]) have used an equivalent definition of the proportional strain paths in order to numerically 
investigate such tests. The loading program is written in the following form 

d 1 0
d 2 d 3 cst
d 1 2Rd 3 0

 (3

It can easily be shown that the parameters  and R are related by the following relation: 

1 1
R

 (4

It follows that: 
0<R<1 produces an expansive imposed path, 
R=1 corresponds to an undrained path, 
R>1 produces a contractive path, 
and R>>1 corresponds to a one-dimensional test. 

2.3. Experimental results 

2.3.1. Undrained triaxial compression tests 
Experimental tests on loose saturated samples loaded under strain-controlled mode (CU 1 and CU2) 

and stress-controlled mode (CU3) are performed for two effective mean stresses p’0=100 and 300 kPa 
and results are plotted in Figure 1. Figure 1 shows the influence of the effective mean stress on the 
deviatoric stress. It is shown that a peak stress is reached for loose sands irrespective of the effective 
mean stress. The comparison between CU2 and CU3 shows a very good agreement for the axial strain 
and the deviatoric stress. But while the loading program can be followed to large strain well after the peak 
for the strain-controlled test (CU2), it is not possible to maintain the loading program at this point for the 
stress-controlled test (CU3). A dramatic drop in the deviatoric stress and a sudden increase in the axial 
strain is observed. The failure is effective for the latter but not for the former. 

2.3.2. Axisymmetric strain proportional tests 
Experimental data on loose saturated samples loaded under four proportional strain paths performed 

for one effective mean pressure p’0=100 kPa are plotted in Figure 2. Different values of the parameter R 
corresponding to expansive (R=0.68), undrained (R=1) and contractive (R=1.36 and 2) volumetric strains 
were applied. Figure 2.c presents a linear variation of the volumetric strain plotted against the axial strain, 
which corresponds to the desired linear proportional path (see Eq. 2). Following the desired value of the R 
parameter, the deviatoric stress q could present a peak or not as shown in Figure 2.a. The observed peaks 
are followed by a total loss of strength (vanishing of the deviatoric stress) for values of R lower than or 
equal to 1 or a partial loss of strength for R=1.36. It should be emphasised that for R=2, no peak was 
observed and high strength mobilization can be reached at the end of the test. It is also observed in Figure 
2.a that the peak values of the deviatoric stress q decreases with an increase in the expansive rate i.e. for
decreasing values of R. The minimum q peak value reached during an expansive proportional strain path 
(R=0.68) is smaller than the one reached during conventional undrained test (R=1). 
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Figure 1. Experimental results of undrained triaxial compression tests on loose Hostun sand. The initial effective mean stresses are 
p’0 = 100 and 300 kPa. 

 

Figure 2. Experimental results of axisymmetric proportional strain tests on loose Hostun sand. The initial effective mean stresses p’0 
is100 kPa and four different values of R were imposed (0.68, 1, 1.36 and 2). 
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3. Instability, failure and kinetic energy

Let us come back first to some basic definitions. In the approach presented in this chapter, the
mechanical (stress-strain) state of a given material system, after a given loading history, is unstable if the 
kinetic energy of the system increases due to infinitesimal loading (disturbance). In partCUlar, if the 
system is initially at rest and at equilibrium under external forces, an increase in kinetic energy means that 
there is a transition from a quasistatic regime towards a dynamic regime. This transition is basically a 
bifurcation. 

The dynamic regime may usually lead to the collapse of the system, and corresponds therefore to an 
effective failure, that can be localized (a localization pattern develops) or diffuse (the kinematic field 
remains chaotic, without specific localization). This is what is observed from experimental tests: 
considering an undrained or an expansive strain proportional triaxial test applied to (loose) sand 
specimen, the deviatoric stress is known to reach a maximum and then to decrease. After the peak, if an 
additional deviatoric load is applied (together with the isochoric condition), then the specimen abruptly 
fails with a clear evidence of outbursts in kinetic energy (CU3 test of Section 2).  

In conclusion, instability of a mechanical state may lead to an increase in kinetic energy (which is a 
clear evidence of failure), depending on some imperfections, disturbances, etc. In the following 
paragraph, we investigate the conditions under which the kinetic energy of the system may increase. 

For a material system made up of a volume oV , initially in a configuration oC  of boundary ( o ), in
equilibrium at time t under a prescribed external loading, it was established that the second-order time 
differentiation of the kinetic energy (at time t) written in Lagrangian formulation ([15]; and [16]): 

oo V
o

j

i
ijoijc dV

X
u

dSuftE2 (5)

where  denotes the Piola-Kirchoff stress tensor of the first kind and f  the current forces applied to the
initial (reference) configuration. Equation (5) introduces explicitly the second-order work that expresses 
through a semi-Lagrangian formalism as: 

oV
o

j

i
ij dV

X
u

W2 (6) 

where u  denotes the current incremental displacement of the material points initially located at the

position X .
In addition, the two-order Taylor expansion of kinetic energy reads as: 

3
2

2
totEttEttEttE cccc  ( t ) (7)
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Noting that
oV

ooc dVutE
2

, where o  is the density of the material in the initial 

configuration at point XM , since the system is in an equilibrium state at time t , then 0tEc . 

Furthermore, 
oV

ooc dVuutE , and at time t , 0tEc . Thus, ignoring third-order terms, Eq. 

(7) reads 
 

ttEtE cc 22  (8) 

In combination with Eqs. (5) and (6), it follows that: 
 

2Ec t t f j ui dSo

o

W2  (9) 

As a consequence, the increase of kinetic energy for a material system initially in equilibrium (at rest) 
equals to the difference between a second-order boundary term (that involves the displacements and the 
forces acting on the boundary) and the so-called second-order work (built from the internal stress and 
strain acting in each point of the system). While the boundary term is related to the external loading, the 
second-order work is intimately related to the constitutive behavior of the material ([17]). 

It is worth noting that two situations are of interest, that lead to a subsequent positive value of the 
kinetic energy from an equilibrium state: (1) the loading is controlled such that the boundary integral 

o

oij dSuf  becomes strictly larger that 2W  ; and (2) the boundary integral is kept nil, while the 

loading direction is such that 2W  is strictly negative. It can be shown that both are related to a conflict 
between the internal forces (resulting from the internal stress) applied to the interior of the boundary, and 
the external forces (imposed by the operator or any other external action) applied to the exterior of the 
boundary ([17]). It can be seen in Figure 1 and Figure 2.e that the peak of the deviatoric stress 
corresponds to the vanishing of the second order work during undrained tests and is negative during the 
descending branch. Its value can be positive during the descending branch in the q-p’ or q- 1 planes for 
strain proportional test as the variables are not the proper conjugated control variables as defined in 
Section 5. 

4. Simulation of effective failure with a discrete element model 

This section is devoted to the investigation of the increase in the kinetic energy when effective failure 
is triggered from an equilibrium state. In partCUlar, we will focus on the relationship between the kinetic 
energy and the balance between the second-order work and the second-order boundary term as defined in 
Equation 9. 

 

4.1. Set up of numerical experiments 

We consider a system composed of a granular assembly of purely frictional spheres constituting a 
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representative elementary volume. In order to be able to follow the kinetic energy and the balance 
between internal forces (resulting from internal stresses) and external forces (imposed on the exterior of 
the boundaries of the considered sample), this investigation is performed from direct simulations based on 
the discrete element method ([18]). In such methods, inertial terms are taken into account and the motion 
of each particle within the granular assembly results directly from the explicit time integration of dynamic 
fundamental equations. 

The granular assembly considered here has an initial cubical shape and is surrounded by six 
frictionless walls delimiting the six faces of the sample (Fig. 3). Principal directions of average stress and 
strain coincide with the normal directions to the walls. Hence, stress or strain boundary conditions (in 
terms of principal stress and strain components) can be imposed by controlling the six walls surrounding 
the sample. A boundary strain is prescribed by simply adjusting wall positions. In the case of a stress 
control at the boundary with respect to the direction I, walls are considered as dynamic objects and are 
submitted to an external normal force ext

iF . Walls will then translate (rotation is locked) according to 

Newton's second law, until ext
iF  is balanced by reaction of the granular assembly on walls. 

 
 

 
 

Figure 3 The cubical granular assembly composed of 10,000 spheres and enclosed with six walls 

 
For the sake of simplicity, the analysis of numerical data is carried out in an Eulerian formalism. In 

addition, only average strain state and average stress state of the granular assembly is assessed based on a 
sample homogeneity approximation. In these conditions, the second-order work reads: 

 

iiVW2  (10)

 
where: 

ij

 

is  the average internal Cauchy stress state computed with the Love-Weber formula ([19] 
and [20]): 

 

                                  contacts

c
j

c
iij lr

V
1

 (11)
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with cr the inter-particle contact force and cl  the branch vector joining the center of the two particles 
involved in the contact, 

ij is  the average strain computed from positions of walls. 

The external stress distribution is
 

applied at the boundary of the granular assembly on a wall of 

normal i
 

is simply deduced from the reaction force iF  of the sample on this wall (equal to the sum of the 

sphere-wall contact forces): iii AFs / , where iA  is the current area of the face of normal i  of the 

sample. When the sample is force-controlled in direction i , is  can also be determined as i
ext

ii AFs / , 

where ext
iF  is the external force applied on the wall1.  

By taking into account these variables, Equation 10, stating the increase of kinetic energy for the 
sample initially at rest, writes: 

2)(2 WsVttE iic (12)

where 2W  is computed here as defined in equation 9.

4.2.  Numerical granular assemblies and quasi-static response 

In the following, the development of effective failure in terms of kinetic energy is investigated for two 
different loading conditions and two numerical samples. We consider the case of drained triaxial 
compression on a dense sample and the case of an isochoric triaxial compression on a loose sample. 
Characteristics of numerical samples are given in Table 2. They are composed of 10,000 spherical 
particles (see Figure 3) interacting through a purely frictional contact law, characterized by normal and 
tangential stiffnesses (respectively nk  and tk ) and a friction angle c  in the tangential contact direction. 

Table 2: characteristics of numerical samples under an isotropic confinement pressure of 100 kPa 

.Sample Porosity  n Coordination number  z 
sDnk /  (MPa) 

( sD : sphere diameter) nktk / c  (deg.) 

Dense 0.387 4.53 250 0.5 35

Loose 0.403 3.55 250 0.5 35

1 Determination of the external stress distribution is  from iF  or ext
iF  is equivalent if wall inertia is 

sufficiently small, otherwise a significant delay between changes of iF  and ext
iF  can be observed. 
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Both samples are compressed from an isotropic stress state of 100 kPa. For the dense sample, the 
radial external stresses 2s  and 3s  are kept constant and equal to 100 kPa while a constant axial strain rate 

1  = 0.01s-1 is imposed. Simulated response is displayed in Figure 4 in terms of internal 1  and external 

1s  axial stresses, and porosity versus axial strain. Along this drained triaxial path and for this mode of 
control, effective failure does not occur: at any time, the prescribed forces applied at the boundary are 
balanced by internal stresses developed by the granular assembly itself. 

The loose sample is compressed by imposing 1  = 0.01 s-1 in the axial direction while positions of 
walls in directions '2' and '3' are adjusted at any time to follow the kinematic condition defined by 

2/132 , such that the isochoric condition 0321V  is satisfied, which 
corresponds to R = 1 in Section 2. We define from the average external stresses and the average internal 
stresses respectively, the external deviatoric stress 31 ssqs , and mean pressure 

3/)( 321 sssps ; and the internal deviatoric stress 31q  and mean pressure 

3/)( 321p . Once again, in this case where effective failure (with a deviation of the 
response from a quasi-static one to a dynamic one) is not triggered, average stress states computed at the 
boundary of the sample or from the Love-Weber formula are identical, as displayed in Figure 5 in the 

ss pq  and pq  plane for instance. Figure 5 shows that, after reaching a maximum deviatoric

stress, stresses vanish and the sample liquefies. However local peaks of sq  (or q ) during the 
liquefaction phase suggests that the granular assembly recovers strength temporarily and the sample is at 
the very limit of liquefaction under the isochoric condition. 

4.3.  Investigation of effective failure 

For both dense and loose samples, effective failure can be triggered by changing the mode of control 
of the samples from stress-strain states reached along the drained and undrained compression paths 
respectively ([21]).  
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Figure 4. Drained triaxial compression on the dense sample for a confinement pressure of 100 kPa, internal 1 and external 1s
axial stresses are here equal.  

For the dense sample, the state AM  represented in Figure 4 after the peak of 1s  (or 1 ) and 
characterized by AA MMs 11 = 231.3 kPa is considered. At this state, the control at the boundary of the 
sample is switched to a full stress control by imposing AMss 11 = 231.3 kPa and 2s  = 3s  = 100 kPa, 
until the sample stabilizes under the prescribed external stress state. Then a small stress increase is 
imposed at the boundary of the sample in the axial direction and defined by 1s

 

= 2 kPa (representing 
less than 1 % of  AM

1 ), while the boundary conditions in the radial directions are still unchanged ( 2s  =
3s  = 100 kPa). Change of axial stresses, in terms of external stress increment 1s  and internal stress 

increment 1  with respect to the stress state AM , is displayed in Figure 6.
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Figure 5. Undrained (isochoric) triaxial compression on the loose sample, internal average stress state ( pq ) and average 

stress state computed at the boundary of the sample ( ss pq ) are here identical.  

The increase in the axial stress imposed at the boundary over a short time range is observable during 
the first 0.01 s, it is then kept constant and equal to the prescribed value of 2 kPa. The internal axial stress 

1

 

increases at first (due to low additional strength acquired during the previous stabilization stage), but 
then rapidly decreases diverging from the axial stress prescribed at the boundary of the sample. For the 
loading program considered here, the granular assembly is not able to balance the external forces applied 
at its boundaries, and consequently, kinetic energy2  increases monotonously as shown in Figure 7.  

 

2 The kinetic energy is computed as the sum of the translational and rotational kinetic energy of all the 
particles constituting the granular assembly. 
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In Figure 7 are also presented time series of tW ][ 2 , tiisV ][ , and tii WsV ]2/)[( 2

 computed over a time increment t  ranging from the application time of 1s  to the current time. The 

negative sign of the second-order work 2W  is related to negative values of 1  whereas 1  is 

positive. The boundary term iisV  is positive since 01s . For time increments t < 0.05 s a 

rather good agreement is found between the kinetic energy and tii WsV ]2/)[( 2  as expected 
from Equations 12 and 9. Indeed these relationships (Equations 12 and 9) hold for an infinitesimally small 
time increment t  from an initial equilibrium state, but fail at large time increments for which Equation 8
is no longer valid.  

 
 

Figure 6. Incremental changes of external stress  1s

 

and internal stress 1 , from the equilibrium state AM , during and after 

the application of 1s = 2 kPa. 



129 Ali Daouadji et al.  /  Procedia IUTAM   3  ( 2012 )  115 – 140 

(a)  
 

(b)  
 

Figure 7. a) Time series of kinetic energy and second-order work tW ][ 2 , boundary term tiisV ][  and 

tii WsV ]2/)[( 2  computed over time increments t  running from the time of application of  1s  = 2 kPa from the 

equilibrium state AM ; b) zoom on short time increments. 

 
A process similar to the previous one is followed for the loose sample loaded in an isochoric condition. 

The granular assembly is first stabilized at the state BM  indicated in Figure 5 after the peak of sq  (or 

q ). The sample control is switched from strain control to stress control by prescribing the deviatoric 

stress deviator BM
ss qq = 43 kPa at the sample boundary, while the isochoric condition 

2/132

 

is still imposed ([22]). After this stabilization stage, a small additional deviatoric 
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stress sq = 1.6 kPa (about 3.7 % of BM
sq ) is applied at the boundaries. Increments of external and 

internal deviatoric stresses from the equilibrium state BM  are shown in Figure 8. As observed for 
drained compression, the sample is not able to develop internal stresses to balance the loading applied at 
its boundaries, while the isochoric condition is maintained. As effective failure develops, the boundary 
term tiisV ][ , computed over time increments t , takes positive values while the second-order 

work tW ][ 2  becomes negative, leading to increasing values of kinetic energy (see Figure 9). Finally, 

kinetic energy and tii WsV ]2/)[( 2  are in agreement for time increments smaller than 0.08 s 
(Figure 9, not too far from the threshold found for the dense sample in drained condition). 

 
 

 

Figure 8. Incremental changes of external deviatoric stress sq

 

and internal deviatoric stress q , from the equilibrium state 

BM , during and after the application of sq = 1.6 kPa. 
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(a)  
 

(b)  
 

Figure 9. a) Time series of kinetic energy and second-order work tW ][ 2 , boundary term tiisV ][  and 

tii WsV ]2/)[( 2

 

computed over time increments t  running from the time of application of  sq = 1.6 kPa from the 

equilibrium state BM ; b) zoom on short time increments. 
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5. Material stability criterion or divergence instability criterion for rate independent materials

Basically, failure in elasto-plastic media is defined with a limit stress state. Nevertheless, it is now well
established that localized failure modes such as shear band or diffuse failure modes at collapse without 
localized patterns can arise strictly inside the plasticity limit when considering non-associated materials 
([13], [23] and [24]). As discussed in Section 3, in the case where the boundary integral of �Equation 8 is 
kept nil at the bifurcation point (for example by dead �loads), effective failure accompanied with 
development of kinetic energy �can occur only if the second order work becomes negative. Therefore, in 
�a local form and in an Eulerian formalism with negligible geometrical �effects (as done in Section 4), a 
sufficient condition of stability can �be written is the following way ([25]): 

(13) 

where d  is the Cauchy stress rate tensor, and
d

 the small strain rate tensor. It is worth noting that 
the converse is generally false. Thus this expression gives a sufficient stability condition. 

5.1. Basic analysis of second order work criterion 

In this section only rate independent materials are considered. As a consequence, the constitutive 
relation takes the following form: 

Fh d , d 0 (14) 

Fh  is a non linear function depending on the state and history parameters h. Nevertheless, in classical

elasto-plasticity theory function Fh is piece wise linearized. In most basic theory, an elastoplastic tensor is 
defined for loading and another elastic one for unloading. In the following paragraph we will denote the 
tensorial zone a part of the incremental loading space for which the constitutive relation is linear. A 
tensorial zone is a generalization of the notion of loading domain and unloading domain, which can be 
seen as 2 tensorial zones. With several plastic potentials, 4, 8, …tensorial zones can thus be defined. In 
each zone, the constitutive relation can be written as: 

d N d

using classical change of notations where tensors of second order become vectors of sixth order and 
fourth order tensor become a second order tensor. Matrix N  represents the tangent elasto-plastic tensor

in the proper tensorial zone. Substituting relation (15) in equation (13), potential instabilities arise when: 

d 2W 0 d N d 0 d Ns d 0
(16) 

0:2, ddWddd
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which gives the following equation of the elliptical cone in the 3D space of principal stress rate ([26]): 

 

   (17) 

 
where Ei are the generalized tangent Young’s moduli and i the generalized tangent Poisson’s ratio. 

Hence stability is conditioned by the loading direction or in other terms by the loading path. When 
Equation (17) has no solutions, Ns  is positive definite and no failure is possible. The stress state is said 

to be outside the bifurcation domain (there is not any unstable loading direction). Conversely, failures are 
possible along loading directions inside the cone. The stress state is said to be inside the bifurcation 
domain (there is at least one unstable loading direction or more generally an instability cone). Illustrations 
of the bifurcation domain limit according to the constitutive model of Darve are presented in Figure 10. 
Depending on the positiveness of Ns  eigenvalues, elliptical cone can degenerate into a simple straight 

line or into the intersection of two planes ([27]). Assuming that at the virgin state all eigenvalues are 
strictly positive and then they are evolving continuously with the loading parameter, limit of the 
bifurcation domain is given by the relationship: 

0det sN
  (18)

 

From a technical point of view, when sNdet  vanishes for the first time in a tensorial zone it must 

be verified that the eigenvector associated with a zero eigenvalue belongs to this tensorial zone ([28]). 
As mentioned above, inside the bifurcation domain, instability cones can develop ([26]). Here they are 

obtained using constitutive models provided by Darve ([29]) along a drained triaxial stress path as 
displayed in Figure 11. 

Concerning the piece-wise linear model it can be noticed that elliptical cones have to be cut in their 
proper tensorial zone. As far as the incrementally non linear model is considered, this elliptical structure 
disappears. 

5.2. Generalized failure rule, divergence instability 

In this section, we will show that failure along loading paths whose current direction is inside the 
instability cone can be defined as a limit state similar to those provided by classical elastoplasticity 
theory, but this limit state is now a mixed one and the associated stress state is strictly inside this 
plasticity limit. To do so, we define stress proportional loading paths in the same way as the strain 
proportional tests presented in Section 2, as follows: 

 

   (19) 
 

     denotes the real numbers and        the real numbers but zero. For such loading paths it is possible to 
write the constitutive relation using the following form: 
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Figure 10. Bifurcation domain plotted with the octo and non-linear model of Darve for dense Hostun sand 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. 3D cones for dense Hostun sand, on the left: octo-linear model, on the right: non-linear model 
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d 1
d 3
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R '
R

d 2

d 1 Rd 3

d 2 R ' d 3

S

d 1

d 3

R
R '
R

d 2

d 2

(20) 

R and R’ allows the description of all loading directions. Then, for partCUlar values of R and R’ which 

describe directions included in the instability cone, 2
'3

1 R
R

R
reaches an extreme. Hence, because 

of static constraint (Equation 18), at the 2
'3

1 R
R

R
peak, det S vanishes for non trivial solutions

of Equation (20) and a generalized flow rule (a so-called “failure rule”) can be defined. Furthermore, 
knowing that second order work can be rewritten as in Equation 21: 

(21) 

this quantity vanishes at this peak. That’s why second order work criterion can be seen as a divergence 

instability criterion ([30]). Eventually, it has to be noticed that sNdet  is not positive when 

det S vanishes and the stress state is inside the bifurcation domain. R and R’ defines a loading direction

inside an instability cone, and effective failure takes place only if mixed conjugated variables are 
controlled as presented in Equation (20). 

To illustrate this purpose, a drained triaxial path on a loose Hostun sand, followed by a loading path 
defined with R’=1 and R=0.85 has been simulated experimentally and numerically with incrementally 
non linear Darve’s model ([24]). Response of this path is presented in Figures 10, 11 and 12 ([31]). 
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Figure 11. Response of the loading path given by R=0.85 and R’=1. Before the stress proportional loading path, a drained triaxial 
compression has been applied allowing entry into the bifurcation domain. The experimental response is represented with the 
continuous line, whereas the response given by the incrementally non-linear Darve’s model is displayed with the dashed line [31]. 

Numerically, it is convenient to illustrate the purpose exposed above with the help of the following 
Figures: 

 

 

 

 

 

 

Figure 12. Instability cones along the considered loading path, with in dashed line the bifurcation domain limit and at the green 
point the occurrence of the 

2
'3

1 R
R

R
peak. 

2
'3

1 R
R

R
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It has to be noticed that the 2
'3

1 R
R

R
peak does not coincide with v as it is the case for q constant 

shear tests. The following picture illustrates this fact: 

 

 

 

 

 

 

 

 

 

Figure 13. Generalised strain variations and occurrence of the first unstable direction at the strain peak according to the proportional 
stress path with R’=1 and R=0.85. The volume variation peak is given by the circular point, which does not correspond to the 
generalized strain peak. 

5.3. Withney-Umbrella graph 

In this section we present critical values of the loading parameter for the constraints parameters R and 
R’. These kinds of graphs are derived from the so called Witney-Umbrella equation. In our case the 
canonical shape of this equation takes the following form: 
 

1R
2 R 2 0  (22)

 
which can be seen as a partCUlar case of Equation (17) by substituting static constraints from expression 
(19). For linearized problems, the solution of this equation provides 1 critical as a function of the 
constraint parameters R and R’. However, in our case linearization is not possible, and because of the 
complexity of the constitutive model, no analytical solutions can be derived. 
Hence, to plot this graph, by considering the incrementally non-linear constitutive model of Darve 
calibrated on dense Hostun sand, we have simulated a drained triaxial path. At each increment of d 1 we 
have investigated all loading paths defined by Equation (19) until it reaches or not a critical unstable state 
given by the second order work criterion. When such a critical state has been found, a point has been 
plotted in the 3D graph which gives 1 critical as a function of R and R’. Figure 14 displays these results. 
Even if the surface seems complicated, we retrieve one basic characteristic of classical surfaces found in 
linearized problems, i.e. the vertical axis corresponds to a singular line of the surface. 

2
'3

1 R
R

R
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Figure 14. Critical load 1 as a function of R and R’ parameters. Red points corresponds to critical load when d 1<0 and blue ones 
when d 1>0. 

 

6. Conclusion 

The question of failure, bifurcation and instability has been revisited in this paper in the case of 
granular media. These novel views are essentially due to the non-associate character of plastic strains for 
these materials, and, certainly, the obtained general trends can be generalized, from a qualitative point of 
view, to other non-associate elasto-plastic materials. Experimental results (Section 2), theoretical analysis 
(Section 3), discrete element computations (Section 4) and phenomenological developments (Section 5) 
have shown convergent viewpoints giving rise to a coherent framework to consider failure in 
geomaterials : 

There is a whole stress domain ( and not only a single failure surface) where bifurcations, instabilities, 
losses of uniqueness and failures can appear. The limits of this domain (if we ignore flutter 
instabilities) are given by the vanishing values of the determinants respectively of the elasto-plastic 
matrix and its symmetric part, 
The necessary condition of divergence instability is given by the loss of positive definitiveness of the 
elasto-plastic matrix (the converse of the second order work sufficient condition of stability). Thus, 
inside the bifurcation domain, the matrix exhibits some “isotropic cones” (in the meaning of linear 
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algebra), which defines the “unstable stress directions” (from a mechanical viewpoint). Basically the 
second order work condition has a directional nature. 
Failure is generally associated with a sudden transition from a quasi-static regime to a dynamic one 
through a bifurcation state. This experimental evidence has been explained analytically by the link 
between the value of kinetic energy just after failure and the difference between the external applied 
second order work and the internal constitutive second order work. This relationship has been carefully 
examined and eventually verified by numerical simulations using a discrete element method. 
 
These tools to analyze failure have been implemented in finite element softwares to solve boundary 

value problems such as landslides ([26], [32]). 
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