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Bifurcation in Granular Materials:  

A Multiscale Approach 

11.1. Introduction 

The notion of failure can be encountered in many fields, irrespective of the scale 
considered. This notion is essential in materials sciences where failure can be 
investigated on the specimen (the material point) scale. It is also meaningful in civil 
engineering to prevent or to predict the occurrence of failure on a large scale. 

For geomaterials, known as non-associate materials, several failure modes can be 
encountered strictly within the plastic surface. From a mathematical point of view, 
this feature is essentially related to the non-symmetry of the tangent constitutive 
tensor. Whereas the localized mode describes a failure corresponding to a 
discontinuous displacement field, the diffuse mode is associated with a homogenous 
kinematic field with no localization pattern. It has been shown that this failure mode 
can be predicted by the vanishing of the second-order work [NIC 07a and b]. 
Introduced by Hill [HIL 58], this quantity (hereafter denoted by 2W ) is defined from 

the inner product of the incremental first Piola-Kirchoff stress tensor (Π ) with the 
incremental displacement gradient tensor: 
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The interest of this semi-Lagrangian formulation lies in that all variables are 
reported to the fixed initial configuration defined by the volume oV  and the 
coordinates iX . For a material point corresponding to a representative volume 
element (RVE) of a granular material, equation [11.1] simplifies into the following 
expression: 
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The second-order work can also be expressed under an Eulerian formulation, 
introducing the Cauchy stress tensor σ : 
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tensor L . It follows that the second-order work is the combination of three terms: 
:V L tδσ δ  is a material term, :V L tδ σ δ  is related to the change in volume, and 

( ) 2:
t

V L L tσ δ  is associated with the change in the texture [NIC 07a and c]. 
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denotes the strain rate tensor, and δε  is the incremental small strain tensor. From 
the symmetry of this tensor, it follows that: 

( )22
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The different formulations of the second-order work introduce macroscopic 
tensorial variables that represent both the complex force and displacement 
distributions within the granular specimen. The vanishing of the second-order work 
stems therefore from microstructural origins for which the local variables (contact 
forces and relative displacements between adjoining particles) are relevant. As a 
consequence, since the vanishing of the second-order work is a proper criterion for 
detecting the occurrence of a certain failure mode in geomaterials, it makes sense to 
track the microstructural origin of this macroscopic vanishing. This analysis will be 
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first carried out by considering our micro-directional model [NIC 05], which is 
basically a micromechanically based constitutive relation. Then, this approach will 
be extended based on a general micromechanical derivation. 

11.2. Microstructural origin of the vanishing of the second-order work 

11.2.1. The micro-directional model 

The micro-directional model is a multi-scale relation between the Cauchy stress 
tensor dσ  and the strain tensor dε  by taking micro-mechanical characteristics into 
account. In this approach, the granular assembly is described as a distribution of 
contacts within adjoining particles. Each contact is associated with a given direction 
of the physical space, corresponding to the normal direction to the tangent contact 
plane. The texture is therefore described by the distribution of contacts along each 
direction of the physical space. The probability that some contacts exist in a given 
direction is investigated and local variables are averaged in each direction, so that 
directional variables are introduced. Fundamentally, this model is based on a 
homogenization procedure within a representative volume element (RVE) that can 
be resolved in the three following basic stages (for more details, see [NIC 05]). 

The stress average corresponds to the Love formula ([LOV 27]; [WEB 66]; 
[CHR 81]; [MEH 82]): 
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where cl  is the branch vector joining the centers of particles in contact on contact c, 
cF  is the contact force, and the sum is extended to all the cN  contacts occurring in 

the RVE of volume V . The norm of the branch vector cl  is assumed to be a 
constant parameter (equal to the mean diameter of the grains) whose evolution over 
the loading programs is ignored. This ensures that the terms cF  and cl  are 
uncoupled. The discrete summation given in equation [11.5] can be replaced with a 
continuous integration over all the contact directions in the physical space. This 
scheme confers the directional character to the model: 

∫∫ Ω=
D

jigij dnFr ωσ ˆ2 [11.6]
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where ω  is the density of contacts along each space direction n , gr  denotes the 

mean radius of the sphere-shaped grains, F̂  is the average of all contact forces cF

associated with contacts oriented in the direction n , and dΩ  is the elementary solid 
angle. After differentiation it follows that: 
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D

jig

D

jigij dnFrdnFr δωωδδσ ˆ2ˆ2 [11.7]

The kinematic projection relation is given by: 

( ) jijgi nrnu δεδ 2ˆ = [11.8]

where ( )û n  is the directional kinematic variable linked to ( )F̂ n  along the contact
direction n . 

The local behavior is described by introducing a constitutive relationship 
between both average normal force n̂F  and tangential force t̂F  and both average
relative normal displacement ˆ

nu  and tangential displacement ˆ
tu . An elastic-plastic 

model is introduced, and the following local constitutive incremental relations can 
be inferred: 
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where ( ){ }ˆ ˆˆ ˆmin , tant t t g n n nF k u F k uξ δ φ δ= + + , nk  is the normal elastic 

stiffness, tk  is the tangential elastic stiffness, and gϕ  is the local friction angle. 

11.2.2. Microstructural expression of the macroscopic second-order work 

Starting from equation [11.7], and noting that the density of contact ω  along 

each direction is expressed as e

V

ωω = , where eω  is the number of contacts along 
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the considered direction, it follows that the differentiation of the Cauchy stress 
tensor is the sum of three terms: 
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which can also be written as: 
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Now, taking advantage of the kinematical projection relation yields: 
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Equation [11.12] can interestingly be compared to equation [11.4]. The term 

( )
2 2:V L tσ δ , which is shown to be related to the change in texture [NIC 07c], can 

be assimilated to the term ˆ2 g i ij j e

D

r F n d dδε ω Ω∫∫  which also accounts for textural

change. In these conditions, it can be established that the macroscopic second-order 
work can be expressed in a very straightforward manner with respect to microscopic 
variables: 
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D
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2 [11.13] 

Coming back to a discrete formulation, integral ˆ ˆ
i i e

D

F u dδ δ ω Ω∫∫  corresponds

to the summation of scalar product c c

i iF uδ δ  over all the contacts contained within 
the assembly. As demonstrated by Nicot and Darve ([NIC 07a and c]), the term 

c c

i iF uδ δ  can be interpreted as the microscopic second-order work associated with 
the contact “c” between two given adjoining particles. As a consequence, equation 
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[11.13] states that the macroscopic second-order work is equal to the sum of the 
microscopic second-order works associated with all the contacts existing within the 
assembly. 

This basic result was inferred by considering a given constitutive relation, i.e. the 
micro-directional model. The purpose of the next section consists of generalizing 
this result without referring to any constitutive model. 

11.2.3. From micro to macro second-order work 

Let us consider a granular assembly containing N grains “p”, with 1 p N≤ ≤ . 
Each grain “p” is in contact with pn  other adjoining grains “q”, with 1 q N≤ ≤ . 

Boundary particles ( p V∈∂ ) are subjected to an external force ,ext pF  directed by 
the external medium. We introduce the Galilean frame ℜ , together with the local 
frame { }1 2

ˆ , ,n t tℜ  attached to the considered contact whose normal to the tangent 

contact plane is n . δ̂ψ  denotes the differentiation of any variable ψ  with respect 
to this frame. 
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Figure 11.1. Granular assembly: boundary particles and external forces 
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Figure 11.2. Galilean frame and local frame 

The microscopic second-order work attached to the contact “c” between particles 
“p” and “q” is given by the relation ([NIC 07a and c]): 

qp

c

qpqp uFW ,,,
2

ˆˆ δδ ⋅= [11.14]

where ,ˆ p qFδ  denotes the incremental contact force exerted by particle “p” on 
particle “q”, and ,ˆ p q

cuδ  is the incremental relative displacement of particle “p” with
respect to particle “q”. 

On the granular assembly scale, the macroscopic second-order work can be 
related to the second-order time derivative of the kinetic energy as: 
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Taking into account the expression of the kinetic energy, 
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we obtain, after some algebra ([NIC 07a]): 
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This basic relation indicates that the macroscopic second-order work is the sum 
of the microscopic second-order works extended to all the contacts of the whole 

assembly, ( )
1

, ,
2

1 1
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p q p q
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p q

W F uδ δ
−

= =

= ⋅∑∑ , minus a boundary complementary term

( ), 2ext p p

p V

F uδ
∈∂

⋅∑ . This last term seems to be negligible from simulations based on

a discrete element method [SIB 06 and 07]. This relation, that relates the 
macroscopic second-order work to microstructural elements embedded in the term 

2W , provides insight into the microstructural origins of the vanishing of the second-
order work. The next section is concerned with examining this feature. 

11.2.4. Micromechanical analysis of the vanishing of the second-order work 

Let us consider the term ( )
1
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requires that the quantities , ,ˆ p q p q

cF uδ δ⋅  vanish for a certain number of contacts.

However, ,p q

c
uδ  and ,ˆ p qFδ  are related through constitutive equations such as those 

given in [11.9]. Considering any contact “c”, cuδ  splits into a normal component
n

cuδ  and a tangential component t

cuδ . When the contact behaves in the plastic 
regime, the microscopic second-order work 2

cW  is a quadratic form that can be 
positive or negative: 
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where α  is the angle between both vectors 1
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conditions, 0α = , and equation [11.18] yields: 
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The vanishing of 2
cW  requires that both following conditions are fulfilled [NIC 

06]; [NIC 07a]: 0n

c
uδ ≤  (unloading along normal direction) and 

tan

n

t c

c

g

u
u

δδ
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≥ −  (the 

amplitude of the tangential displacement is sufficient for the contact to behave 
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plastically). It is worth noting that the microscopic second-order work is always 
positive when the contact undergoes a normal compression. 

As in the plastic regime, tant n

c n g cF k uδ ϕ δ= , condition 0n

cuδ ≤  also means 

that both components n

cFδ  and t

cFδ  are negative. Locally, on the contact scale, the 
stress state descends the Coulomb line, as seen in Figure 11.3. This result can be 
regarded as the microstructural origin of the fact that the vanishing of the 
macroscopic second-order work is essentially observed within the third quadrant, 
corresponding to 1 0δσ <  and 3 0δσ <  (in the stress incremental space), as seen for 
instance in Figure 11.4 (in some cases, negative values of the second-order work can 
also be observed within the first quadrant [DAR 04]). 

n

cF

t

cF

0<n

c
Fδ

0<t
cFδ

gϕ

Figure 11.3. Evolution of the contact force for the vanishing of the microscopic second-order 

work: the contact force descends the Coulomb line 
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11.3. Some remarks on the basic micro-macro relation for the second-order work 

Let us come back to further discuss relation [11.17]. This relation was 
investigated from discrete element simulations. Considering a cubic granular 
specimen, at rest after an initial axisymmetric drained triaxial loading, a series of 
stress probes was imposed, along all the directions of the incremental stress space, 
and both quantities 2W  (macroscopic second-order work) and 2W  (sum of the 
microscopic second-order works) were compared. 

As seen in Figure 11.5, equation [11.17] is perfectly verified within the elastic 
tensorial zone (the zone gathering loading directions leading to no plastic 
dissipation.), when contacts behave essentially elastically, and in a part of the plastic 
tensorial zone where plastic dissipation is related to sliding of contacts (Figure 11.6). 
As soon as loading directions are characterized by contact opening and/or creation 
(which corresponds to the central part of the plastic tensorial zone), a significant 
shift between 2W  and 2W  exists (Figure 11.6). Should the validity of equation 
[11.17] be queried? It is our conviction that this basic relation is valid, irrespective 
of the tensorial zone considered. Nevertheless, it is worth noting that equation 
[11.17] applies to an equilibrium state; on the contrary, discrete element simulations 
require considering a finite time interval to calculate both quantities 2W  and 2W . For 
loading directions belonging to the central part of the plastic tensorial zone 
(characterized by contact opening and creation), grain rearrangements continuously 
take place, so that the medium is (at least locally) no longer in equilibrium. As a 
consequence, for such loading directions, discrete element simulations do not 
constitute an appropriate way of checking a relation valid at the equilibrium but 
involving (force and displacement) rates. 

Figure 11.5. Microscopic and macroscopic second-order work density along different  

stress loading directions (after [NIC 07c]) 
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Figure 11.6. Grain rearrangement by sliding and opening/creation of contacts along  

different stress loading directions (after [DAR 07]) 

11.4. Conclusion 

This chapter was devoted to the micromechanical investigation of the vanishing 
of the second-order work. As this quantity was shown to play a fundamental role in 
detecting the occurrence of a certain failure mode (diffuse failure mode, related to 
the spontaneous burst of kinetic energy), it is of great interest to understand what the 
microstructural conditions that lead to the vanishing of the second-order work are. 

First, by considering our micro-directional model, it was inferred that the 
macroscopic second-order work of a given granular assembly is equal to the sum of 
the microscopic second-order works extended to all the contacts within the 
assembly. Then, the validity of the relation was extended based on general 
micromechanical arguments. This relation is fundamental since it bridges both 
microscopic and macroscopic worlds. The analysis was pursued by introducing an 
elastoplastic (frictional) model on the contact scale. The conditions for the vanishing 
of the microscopic second-order work (which is quadratic form with respect to the 
relative displacement) were examined, and an interpretation of the fact that the 
“unstable cones” containing the loading directions of the incremental stress space 
corresponding to negative values of 2W  are contained in the third quadrant ( 1 0δσ <  
and 3 0δσ < ) was provided. The microstructural ingredient of the analysis is 
essentially related to the local sliding condition. An important aspect remains to be 
considered in relation with the sudden (and brutal) deletion of contacts on the 
(mesoscopic) force chain scale. This geometrical aspect should be considered in 
addition to the former material aspect (sliding condition) considered in this chapter. 
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