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3D Continuous and Discrete Modeling of 
Bifurcations in Geomaterials 

9.1. Introduction 

Geomaterials are strongly non-associated materials (dilatancy angle is generally 
lower than friction angle by 25° as a very rough estimate, while both angles should 
be close for associated materials). Due to this, the elastoplastic tensor is not 
symmetric and various types of bifurcations can be expected before reaching Mohr-
Coulomb plastic limit condition. In fact, two examples of such bifurcations are well 
recognized. On the one hand, experiments have shown that plastic strain localization 
can appear before the stress peak in drained triaxial compressions [DER 04]. We 

localized one. On the other hand, the deviatoric stress peak of loose sand subjected 
to undrained triaxial compressions (such a peak is inside Mohr-Coulomb’s surface) 
gives rise to a diffuse mode of failure if a small axial force is added [KHO 06]. The 
existence of such bifurcations before the Mohr-Coulomb plastic limit condition is 
established for all non-associated materials after the elastoplastic theory. As non-
associativeness is generally linked to mean pressure dependent plastic behavior, 
such features can be expected for other mean pressure dependent yield conditions 
such as the Drucker-Prager criterion. 

To investigate these bifurcations, various criteria are available, such as vanishing 
of the determinant of the elastoplastic matrix, or of the acoustic matrix, or of the 
symmetric part of the elastoplastic matrix, etc. If we except flutter instabilities, one 
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of these criteria plays a particular role because it constitutes a lower bound for all 
these criteria [BIG 90]. This is the so-called “second-order work criterion”, which is 
equivalent to the vanishing of the determinant of the symmetric part of the 
elastoplastic matrix for incrementally piece-wise linear elastoplastic constitutive 
relations [DAR 04]. 

The second-order work criterion has been extensively studied in axisymmetric 
conditions [DAR 04] and in plane strain conditions [NIC 07b]. The equation of the 
boundary of the bifurcation domain has been established and the directional 
character of this criterion has led to the existence of cones of unstable stress 
directions. 

The first purpose of this chapter is to generalize these results to 3D conditions in 
fixed principal stress-strain axes. By considering an incrementally piece-wise linear 
constitutive relation the analytical equations of the boundary of the bifurcation 
domain and of the instability cones are established explicitly, then plotted in 3D 
principal stress space.  

Even if some partial experimental validations of these results are now available 
[CHU 03], these experiments are delicate to perform essentially because 
bifurcations are very sensitive to any imperfection or perturbation. Thus it is 
interesting to try to simulate these material instabilities using a numerical model of 
granular materials. These models in the line of molecular dynamic methods are now 
available [MAG 98] and it is possible to simulate the behavior of cubical specimens 
of granular materials [SIB 07a]. 

The second part of this chapter is thus devoted to a direct numerical 
investigation of second-order work criterion. First by checking the sign of second-
order work at various stress-strain states and for various stress directions, a 
bifurcation domain and instability cones are exhibited. Then, by considering the 
precise theoretical conditions for an effective failure: 

– a stress-strain state inside the bifurcation domain;

– an incremental stress direction inside the instability cone;

– proper loading parameters allowing the failure to develop;

some failures have been obtained numerically, which are characterized by 
exponentially growing strains, bursts of kinetic energy and diffuse failure modes. 
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9.2. 3D bifurcations exhibited by an incrementally non-linear constitutive 
relation 

This first part is devoted to the study of the second-order work criterion using 
incrementally piecewise constitutive relation in an analytical and numerical 
framework. Numerical results will also be presented with an incrementally non-
linear relation. This criterion [HIL 58] specifies that a mechanical specimen is stable 
if: 

( )εσ dd :∀  linked by their constitutive relation 0:2 >= εσ ddWd  [9.1]

dσ  denotes the Cauchy stress increment tensor, and dε  the small strain 

increment tensor. The converse is false, thus if 02 ≤Wd , the body is in a
potentially unstable state. We will show further that the occurrence of instability 
depends on controlled loading parameters and direction of loading. In a first section, 
a brief reminder of the incrementally non-linear and octo-linear constitutive models 
of Darve will be given [DAR 95]. Then in a second section, the 3D limit of the 
bifurcation domain and 3D “cones” of unstable loading directions will be displayed 
for these two models. We emphasize that all analytical results in this part are valid 
for every incrementally piece-wise linear elastoplastic model. Only numerical 
results displayed in figures are restricted to the last two models. 

9.2.1. Incrementally non-linear and piecewise linear relations 

For simplification purposes, symmetric second-order tensors σd  and εd  will 

henceforth be represented by a column vector of dimension 6 and denoted: 
σd and εd . Concerning these constitutive relations, it is worth noting that they are 

not related to classic concepts of elastoplasticity and therefore assumptions of: 

– strain decomposition into an elastic and a plastic part;

– existence of an elastic limit;

– existence of a flow rule.

To describe the non-linear behavior of geomaterials, an incrementally non-linear 
relation of second-order is used and written in principal axes as follows: 
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Coefficients +
iE and +

ijν  are defined on generalized triaxial loading paths when

0>idσ and respectively −
iE and −

ijν when 0<idσ . For 0=idσ , it can be verified

that the relation is continuous [GUD 79]; see [DAR 95] to find out more about this 
constitutive relation and particularly how the tangent moduli and Poisson’s ratios 
are evolving with the stress-strain history. At one dimension, this relation is 
piecewise linear. By extrapolation F. Darve defined the octo-linear model (eight 
tensorial zones)1 as follows with the previous notations: 
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[9.4]

In this expression, the eight tensorial zones are explicit, and relationship [9.4] is 
identical to the following eight linear relations: 

1 A tensorial zone is a domain of the loading space in which the incremental constitutive 
relation is linear. A classical elastoplastic model has two tensorial zones: one for loading and 
the second for unloading. 
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with 
1...8

Ni i
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⎝ ⎠ =

 the 8 matrices N  where indices (+) are affected to the column 

jdσ  if 0>jdσ , and (−) if { }3;2;10 ∈< jjdσ . In the next sections, relation [9.5]

will be used for analytical calculations. In fact, calculations are assumed to be 
performed in a given tensorial zone. 

9.2.2. 3D analysis of the second-order work with phenomenological constitutive 
models 

As already shown in the past years [DAR 00], the second-order work depends 
essentially on the loading direction. After a given loading path, the material has 
reached some stress-strain states which could be potentially unstable, even inside 
the plastic limit condition. From this strain-stress state situated inside the plastic 
limit condition, some loading directions can lead to the failure and the others not. If 
no loading direction leads to the failure, the mechanical state is considered stable, 
otherwise potentially unstable. In the global 3D loading space, the limit where the 
material is potentially unstable or stable is called the limit of the bifurcation domain. 
[DAR 04] and [KHO 06] have determined this limit of bifurcation and the cones of 
unstable loading directions for axisymmetric and plane strain conditions 
respectively. We intend to make a generalization in 3D conditions here. 

To make the link between the vanishing of the second-order work and the 
existence of a peak in a plane of conjugated loading variables, we choose to define 
strain proportional loading paths as in equation [9.6]. These strain paths allow the 
scanning of all loading directions of the 3D strain space. 
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ℜ denotes the set of all real numbers, while *ℜ  is the set of real numbers 
except the element 0. Figure 9.1 shows the results for these strain paths in invariant 
planes. 
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Figure 9.1. Response for proportional strain loading paths obtained with  
the octo-linear model. R є [0.1; 2] and, R’ є [0; 1] 
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An admissible set of conjugated variables for the second-order work, 
considering loading paths of [9.6], can be the following: 
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[9.8]

Taking into account kinematics conditions from equation [9.6], the second-order 
work will vanish for the class of loading paths defined by: 031 =+ εε Rdd  and

03'2 =− εε dRd  at the peak of 2
'3

1 σ
σ

σ d
R

R

R

d
d −− versus 1εd  in Figure 9.1.

This state also corresponds to the vanishing value of the determinant of S . If we 

locate these peaks in the 3D stress space, it can be shown that they are situated 
strictly inside the plastic limit condition. Thus, we found a class of loading paths 
where instability occurs strictly inside the plasticity criterion, and this instability 
corresponds to the vanishing value of the second-order work. 

If we define the matrix M  so that: 

εσ dMd = [9.9]

it can be verified that: 

( ) 00det =⇔= εε dsMdS [9.10]

with sM the symmetric part of M . In fact, as already written above: 

( ) 00020det =⇔=⇔=⇔= εεεε dsMddMdWdS [9.11]

and: 

0=εε dsMd  [9.12]

constitutes the condition on the direction of strain increments which will lead to the 
failure from a given stress-strain state. [9.12] is a quadric in the 3D incremental 
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strain space with neither constant terms nor first degree terms, so [9.12] is the 
equation of an elliptic cone in the 3D incremental strain space. If we assume that 
eigenvalues of sM  evolve continuously with the loading parameter and are 

positive at the original virgin state, there are 4 cases. First, at the beginning of the 
loading program, all eigenvalues are positive and [9.12] has no solution, except the 
center of the quadric itself, so these states are stable and out of the bifurcation limit. 
Then one of the eigenvalues vanishes and ( ) 0det =sM . Thus, [9.12] admits a

straight line (in the direction of the corresponding eigenvector) as a solution. From 
this strain-stress state, this loading direction is unstable. This state corresponds to 
the limit of the bifurcation domain. Continuing to increase the loading parameter, 
one eigenvalue is negative, and the two others are positive, then ( ) 0det <sM  and

[9.12] admits an elliptical cone in the 3D strain space as solution. All loading 
directions situated inside or on this cone lead to failure. This mechanical state is 
inside the bifurcation domain, but before the plastic limit. Finally, as the ultimate 
mathematical solution, we could obtain two eigenvalues of the opposite sign and the 
third one equal to zero, then ( ) 0det =sM , and [9.12] admits two secant planes as a

solution, but this latest case was never reached numerically by our models. 

Of course dual analysis can be performed in stress space. In the same manner we 
also have: 

0002 =⇔=⇔= σσσσ dsNdddWd N [9.13]

which gives in an extended form: 
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[9.14]

with 1−= MN the matrix of equation [9.5], and sN the symmetric part of N . In

that way we can plot the bifurcation limit and cones of unstable directions in the 3D 
stress space. Figure 9.2 shows the limit of the bifurcation domain for the 
incrementally non-linear and octo-linear relation of Darve for a dense Hostun sand. 
The following observations are derived from Figure 9.2: 
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– the bifurcation domain of the octo-linear model is larger than that of the non-
linear model (the limit is reached before according to the loading parameter); 

– there are some discontinuities with the octo-linear model due to the switching
of tensorial zones; 

– the limits of the bifurcation domain are noticeably conical (which corresponds
to the conical structure of Mohr-Coulomb plastic limit condition), but not rigorously 
conical because the mechanical properties do not vary exactly in proportion with the 
mean stress level in the constitutive models used. 

Figure 9.2. Bifurcation domain plotted with the octo- and non-linear  
model for a dense Hostun sand 
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To plot these bifurcation domains, radial stress paths along a given direction in
the deviatoric stress plane were considered until the condition ( ) 0det =sN  was

verified. Figure 9.3 illustrates such a stress path. 

Figure 9.3. Example of stress path followed to detect the limit of the bifurcation domain 

Then when we write ( ) 0det =sN , we have to consider in fact

( )( ) 0detmin =
isN  with i = {1,…8} for the octo-linear relation, and i = {1,…,∞} 

for the non-linear relation. For the non-linear relation each direction of the 3D 
sphere of the increments of stresses can be considered as a tensorial zone. In this 
case, numerical results are obtained with a precision of 1º on the 3D sphere. 

We will now present and discuss cones of unstable loading directions for stress-
strain states situated beyond the bifurcation limit. To do this, two procedures have 
been implemented. The first is purely numerical, based on Gudehus’s response 
envelope technique [GUD 79], and proposed by [DAR 00]. The principle is as 
follows: a drained triaxial loading path is followed, and at a given deviatoric state, a 
stress increment in a 3D space direction is imposed. If the second-order work is 
negative or zero, the direction is thought to be unstable (numerically, all directions 
can be tested at each step of the triaxial path). Figure 9.4 illustrates this procedure 
and gives results obtained by [DAR 04] for a dense Hostun sand for axisymmetric 
conditions.  
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Figure 9.4. Stress probe test to find unstable cones (left) and results obtained  
in axisymmetric conditions (right) 

The second method is simultaneously analytical and numerical. It consists of 
substituting current numerical values of tangent moduli and Poisson’s ratios into 
equation [9.14]. At a given deviatoric level, there are eight equations. As a result, 
we have to truncate the elliptical equations so that they do not overflow their 
tensorial zone. This method enables us to verify that there is an agreement between 
the numerical and analytical results for the octo-linear model. These results are 
displayed in Figure 9.5. Numerical points are represented in the points cloud and 
analytical cones are represented by the mesh for the octo-linear model. Comparison 
between analytical and numerical results proves to be highly satisfying. Of course, 
for the non-linear model, only the first numerical method can be used because each 
unstable direction is an infinitesimal elliptical cone, so this structure of elliptical 
cone could not be preserved. In Figure 9.5 limits between each tensorial zone of the 
octo-linear model are represented by the three orthogonal planes. Finally, we have 
chosen to show four states distributed in an equidistant way between the bifurcation 
domain (first unstable direction) and the plasticity limit criterion, as Figure 9.6 
illustrates. Considering the same deviatoric level for both models in Figure 9.5 
would not have been proper for the comparison. As we have seen before in Figure 
9.2, bifurcation domains are different for these two models, whereas the constitutive 
constants (calibrated for the same Hostun sand) are exactly the same. 
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0p  is the initial confining pressure, ,1 3= − = qq
p

σ σ η  

Figure 9.5. 3D cones for dense Hostun sand, on the left: octo-linear model,  
on the right: non-linear model 
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Figure 9.6. Mechanical points of comparison for the octo- and non-linear models 

9.3. Discrete modeling of the failure mode related to second-order work 
criterion 

Until now in this chapter, bifurcation analyses have been developed by 
considering a second-order work criterion applied to phenomenological constitutive 
relations. In this section a discrete 3D numerical model of granular materials is used 
to investigate 3 questions: 

– does a granular material exhibit a bifurcation domain according to second-
order work criterion as shown previously? 

– are there some cones of unstable stress directions as also shown previously?

– if the stress state is inside the bifurcation domain, the incremental stress
direction inside the instability cone and if proper control parameters are considered, 
is an effective failure mode reached? 

The utilized discrete element model, called SDEC, has been developed by [MAG 
98] and, as is usual for molecular dynamic methods, each spherical grain interacts
with its neighbors through basic local mechanical relations. The local elastic-plastic 
model is characterized by a normal elastic stiffness coefficient nk , a tangential 

elastic stiffness coefficient tk  and a local friction angle cϕ . In the present case, 

MPa
sd
nk

356= , with sd  the sphere diameter, 42.0=
nk
tk

 and °= 35cϕ . A 

schematic diagram of the grain-to-grain interaction is given in Figure 9.7b. A 
numerical cubical specimen of about 10,000 spheres can thus be built (Figure 9.7a) 
and some loading paths can be numerically applied to the boundary of the cube. 
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(a) (b) 

Figure 9.7. The discrete element model (a), rheological model of  
the inter-granular interaction (b) 

This direct numerical simulation of the behavior of granular materials has 
revealed a remarkable capacity to realistically reproduce their “true” behavior, even 
if the mechanical ingredients are very rough, i.e. a simple elastic-plastic contact law 
at the meso-scale level. As generally for molecular dynamics, the macroscopic 
behavior extreme complexity is due to the very large number of interacting grains. 

Thus the first objective was to investigate the polar variations of the second-
order work with respect to the incremental stress directions. Axisymmetric 
conditions are chosen, isotropic loadings are applied, then for 3 different pressure 
levels ( )kPa300;200;1003 =σ  triaxial compressions are simulated and eventually

at 4 different deviatoric stress levels 
( )

1 3characterized by: 
1 21 33

σ σq
η

p σ σ

⎛ ⎞⎟⎜ ⎟⎜ − ⎟⎜ ⎟⎜ ⎟= =⎜ ⎟⎜ ⎟⎟⎜ + ⎟⎜ ⎟⎜⎝ ⎠

 the 

values of second-order work are calculated in each stress directions from 10° to 10°. 
The results are given in Figure 9.8 in polar diagrams versus the stress directions. 
Indeed normalized values of second-order work are considered in order to have 
values varying between -1 and +1 since it is the cosine of the angle between 
incremental stress and incremental strain: 

εσ

εσ

dd

dd
normWd

⋅
=

:2 [9.15]
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Furthermore, a constant is added in order to see clearly in the figures when the 
values are negative. Thus the dashed circles on Figure 9.8 represent the zero values 
of second-order work, the points outside corresponding to positive values and inside 
to negative values (the principle of these diagrams was first presented in [DAR 00]). 
Figure 9.8 shows clearly that the second-order work can take negative values inside 
a cone of stress directions for high deviatoric stress levels and that this cone is 
oriented (roughly speaking) towards the stress space origin as was exhibited in 
section 9.2. All the results have been synthesized in Figure 9.9. 

(a) σ3=100 kPa (b) σ3=200 kPa 

(c) σ3=300 kPa 

Figure 9.8. Polar diagrams of the normalized second-order work d2Wnorm calculated  
with a loose numerical specimen; dashed circles represent  

vanishing values of the second-order work 

The so-called Rendulic plane for axisymmetric stress states is considered in 
Figure 9.9. All the stress points where the second-order work values have been 
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checked are represented. For some of them, cones of negative values have been 
obtained and these cones are plotted. We see first in this figure that a bifurcation 
domain, which has an approximated conical shape whose apex would be at the plane 
origin, exists. Then secondly some instability cones appear for some stress states 
inside this bifurcation domain. All these cones are oriented towards the stress origin. 
Two specimens of different densities have been considered, a dense one (with a void 
ratio e=0.618) exhibiting a dilatant behavior during a triaxial drained compression, 
and a loose one (e=0.697) mainly contractant. The comparison between Figure 9.9a 
and Figure 9.9b shows the influence of the density on the bifurcation domain and 
the cones of unstable stress directions. The bifurcation domain is reduced for the 
denser specimen whereas it is more extended for the loose specimen. In the same 
way, the cones with the largest opening are obtained with the loosest specimen. 
Thus, the possibilities of bifurcation would seem more important for the loosest 
specimen. In addition, the directions included in the cones of unstable stress 
directions depend on the density. For instance, the direction corresponding to the 
constant stress deviator loading path (dσ1 = dσ3 < 0 such as  dq = 0) is included in 
cones for the loosest specimen (see Figure 9.8a) and not for the densest specimen. A 
qualitative identical influence of the density on the results is found with the Hostun 
sand [DAR 04]. 

           (a) (b) 

Figure 9.9. Synthesis of cones of unstable stress directions in the axisymmetric plane of 
stresses calculated from a dense numerical specimen (a) and a loose one (b); full circles 

represent stress probes for which no vanishing or negative values of d2W were found 
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Until now it has been shown that the same type of bifurcation domain and 
instability cones can be obtained with phenomenological constitutive relations 
(section 9.2) and with direct numerical simulations by a discrete element method 
(this section). Another basic question is linked to the failure itself. If we take into 
account the 3 theoretical conditions for an effective failure: 

– C1: the stress state must be inside the bifurcation domain;

– C2: the present stress direction must be inside the instability cone;

– C3: the loading parameters must be such that the failure is effective.

Is the discrete numerical model able to simulate a “true” failure, true failure 
being characterized by exponentially growing strains and a burst of kinetic energy? 
This question is discussed now. 

Axisymmetric drained q cst loading paths have been studied experimentally and 
some failures have been obtained with loose sands before reaching the Mohr-
Coulomb criterion [CHU 03]. This path is characterized by identical negative 
incremental stresses (q cst implies dσ1 = dσ3 and the axisymmetric condition 
imposes dσ2 = dσ3), thus it is in fact an incrementally isotropic unloading. In fact, 
for a loose sand we have established that this stress direction can be located inside 
the instability cone [DAR 04] and in fact Figure 9.8 shows that in case (a) (the 
initial isotropic pressure is equal to 100 kPa) for high deviatoric stress levels the q 
cst stress direction is inside the cone. Thus, conditions C1 and C2 are satisfied and it 
is interesting to compare the numerical responses of the cubical specimen when 
condition C3 is fulfilled or not. The theoretical analysis of these paths [DAR 04] 
shows that the proper loading or control parameters are q and εv (where εv is the first 
strain invariant or the opposite of the volume variation) for an effective failure. It 
means that, according to the theory, for control parameters defined by dσ1 = dσ2 = 
dσ3 = given negative cst, the path should be stable until the Mohr-Coulomb 
criterion, while for control parameters defined by dq = 0 and dεv = given negative 
cst, the path should be unstable. 

Figure 9.10 shows the comparison between the results obtained with both sets of 
control parameters. Figure 9.10a presents the axial strain variation versus the 
computation time to reach the equilibrium of the sphere assembly. For a complete 
stress controlled path (by dσ1, dσ2, dσ3) the variation of the strain remains negligible 
while for a mixed control (by dq and dεv) the axial strain is growing exponentially 
(the lateral strain is also growing exponentially because of the link between both 
strains due to the imposed value of dεv). Figure 9.10c gives the stress variations (the 
3 principal stresses necessarily have the same variations). For a complete stress 
control, nothing specific appears, while for a mixed control the stresses decrease 
suddenly until 0 showing that the path is no more “controllable” in Nova’s sense 
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[NOV 94]. Finally, Figure 9.10a shows the variation of kinetic energy, calculated by 
adding the kinetic energy of each sphere in the cubical specimen. A burst of kinetic 
energy is clearly visible on Figure 9.10b for the mixed controlled loading path. In 
fact, it has been shown from theoretical considerations based on energy 
conservation that negative values of second-order work are linked to positive values 
of the increment of kinetic energy [NIC 07a]. In conclusion, a true failure mode is 
obtained numerically by a discrete element method in the precise theoretical 
conditions (see C1, C2 and C3) predicted by the theory developed in section 9.2. 

    (a) (b) 

(c) 

Figure 9.10. Comparison of the responses along a q-constant path simulated with a loose 
specimen for a full stress control and a control in dq = 0 and dev < 0 

As previously, condition C3 (i.e. the question of the choice of the loading 
parameters) has been investigated, conditions C1 and C2 being fulfilled. Now we 
consider the case where C1 and C3 are satisfied and condition C2 is investigated. 
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For that we have to choose a stress state inside the bifurcation domain, proper 
control parameters and to consider different loading directions, some of them inside 
the instability cone and others outside. The chosen loading paths are defined in 
axisymmetric conditions (they are in fact particular cases of the 3D paths considered 
in section 9.2) by: 
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Let us note that the paths considered previously correspond to R=1. For different 
values of R, different stress directions can be obtained, they are characterized by 
various stress angles α as defined in Figure 9.8a (the initial isotropic pressure is 
equal to 100 kPa). 

According to Figure 9.8a, the stress directions corresponding to 200° (R=1.94) 
and 240° (R=0.408) are outside the instability cone, 210° (R=1.22) and 230° 
(R=0.593) are more or less close to the limits of the cone, and 220° (R=0.843) and 
215.3° (R=1.00, i.e direction corresponding to the q cst loading path considered 
previously) are inside the cone. The relation between stress angle α and R is given 
by: 

( )
2

cotan α
=R [9.17]

The simulations consist of applying numerically to the same specimen at the 
same stress-strain state inside the bifurcation domain (i.e. the state considered on 
Figure 9.8a with η = 0.46) the 6 incremental loadings oriented towards the 6 stress 
directions defined above. 

The results are given in Figure 9.11. For the stress angles equal to 200° or 240°, 
nothing happens. The kinetic energy of the specimen remains equal to zero, and the 
stresses and the strains do not vary significantly. For this stress-strain state located 
inside the bifurcation domain and thus potentially unstable, an infinitesimal loading 
is applied in a stable direction outside the instability cone. According to the theory 
developed in section 9.2 no failure is expected. 

Let us consider now the stress angles 210° and 230°. A small variation of the 
kinetic energy is visible in both cases in Figure 9.11, but rapidly the kinetic energy 
vanishes again. Some limited variations of lateral strain and lateral stress (and thus 
of the axial strain and stress) are induced. For α = 210° a new stress-strain 
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equilibrium state is reached which differs in a random way to the initial state 
whereas, for α = 230°, the specimen totally collapses suddenly. These stress 
directions are close to the limits of the instability cone and the response to a small 
loading in these directions depends on imperfections, of a numerical nature in these 
calculations or of a mechanical nature in experimental tests. The stress-strain 
response is finite and random. We know that such a bifurcated response is not 
deterministic. 

The last two stress directions of 215.3° and 220° are neatly inside the instability 
cone. In both cases, a large burst of kinetic energy is visible in Figure 9.11, the 
strains are unlimited and the stresses vanish. The specimen has liquefied, if the usual 
definition of liquefaction is accepted, i.e. vanishing of inter-granular stresses as a 
mechanical response of the material to a strain controlled or mixed controlled 
loading path [DAR 96]. A true failure state has been reached, as expected from the 
present theory. 

Figure 9.11. Simulated responses with the loose specimen to the application of the loading 
program ds1 – ds3/R = 0 and de1 + 2R de3 < 0 from the stress state ds3 = 100 kPa  

and eta = 0.46 (different R values are considered) 
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It is interesting to note that this failure mode is a “diffuse” one, and not a 
“localized” one, if we call “diffuse” a failure mode without any kind of strain 
localization by shear band, compaction band or dilation band [DAR 04]. In fact, in 
each of these numerical simulations only chaotic and random displacement fields 
without any localization figure were observed at failure, which is also confirmed by 
the strain localization theory since the localization criterion (vanishing values of the 
determinant of the acoustic tensor) is not satisfied for these stress states. In fact, 
when the determinant of the acoustic tensor is zero, the determinant of the 
symmetric part of the elastoplastic tensor necessarily vanishes, which means that the 
second-order work criterion is satisfied before the localization criterion (but of 
course not necessarily in the same stress directions).  

9.4. Conclusions 

In the first part of this chapter, a 3D analysis of second-order work criterion was 
proposed. 

This criterion which is essentially a material instability criterion (some small 
perturbations of the loading or of the mechanical state induce large responses) is 
associated with bifurcation points (the mechanical state is changing suddenly with a 
burst of kinetic energy). The general equation of the boundary of the bifurcation 
domain has been given for elastoplastic incrementally piecewise linear constitutive 
relations. The corresponding surface in the 3D principal stress space is 
approximately a cone whose apex is at the space origin for a non-cohesive material 
[PRU 08]. The approximately conical structure of the Mohr-Coulomb plastic 
criterion is thus preserved for the bifurcation limit surface. If we except flutter 
instabilities, all possible failure modes are inside this bifurcation domain. 

Due to the directional structure of second-order work criterion, there are 
unstable stress directions and the existence of some instability cones has been 
analytically proved and numerically verified. It appears that there is one cone (at the 
maximum) in a given elastoplastic tensorial zone. The 3D equations of the 
instability cones have been established. In a given tensorial zone, these cones have 
been shown to be elliptical, which implies that in a general manner the unstable 
stress directions form sets of elliptical cones [PRU 08]. 

In classical plastic theory, two relations have to be fulfilled: the plastic limit 
criterion and the flow rule. In the same way, it has been shown here that in addition 
to the bifurcation criterion a failure rule has to be satisfied. This failure rule is 
clearly distinguishable from a flow rule, because it is a mixed incremental stress-
strain relation. It shows that, even if the solution is no longer unique as along a flow 
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rule, the infinite number of solutions has to satisfy some common conditions given 
by this failure rule. 

In a second part, these analyses have been performed with a discrete element 
method on numerical cubical specimens [SIB 07a]. The same main features have 
been obtained: existences of a bifurcation domain whose limit is approximately a 
straight line passing through the stress plane origin for axisymmetric conditions, and 
of instability cones directed towards the origin. Then the 3 theoretical conditions to 
obtain an effective failure have been examined: 

– C1: the stress state must be inside the bifurcation domain;

– C2: the stress direction must be inside the instability cone;

– C3: the loading variables must correspond to the bifurcation criterion.

Knowing that C1 is obvious, the numerical simulations have shown that, if C2 or 
C3 are not satisfied, no failure appears, while if C2 and C3 are both fulfilled a true 
failure mode suddenly develops. This failure is characterized by exponentially 
growing strains, by vanishing stresses and by bursts of kinetic energy [SIB 07b]. No 
localization figure is observed, which is a good indicator of a diffuse failure mode. 
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