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Abstract. In recent years new and advanced numerical strategies have
opened new possibilities in the simulation of forming processes. Multi-
scale descriptions, meshless methods and enhanced finite element ap-
proaches are some techniques that have contributed to the enhancement
of forming process simulations. These approaches will be revisited in this
chapter.

1 Microscopic approaches

1.1 Solid mechanics framework

Materials can be described at different scales. The finest level of description con-
sists of the atomic level and the coarsest one concerns the scale at which the con-
formed part is defined. Molecular dynamics simulation works at the atomic level
and allows to account for complex physics in a simple and natural way. Thus,
knowing at a certain time the position of the atoms, the resultant force applying
at each atom can be easily computed from a semi-empirical atomic potential,
and from it the atoms acceleration computed and the velocities and atomic po-
sitions updated. The main drawback of this approach lies in the extremely large
computing time required to perform realistic simulations even when small do-
mains and time periods are considered,as well as the semi-empirical interatomic
potentials usually considered in such approaches.

The establishment of more accurate atomic potentials require the solution
of the Schrodinger equation in the quantum mechanics framework, whose main
difficulty lies in the curse of dimensionality that we consider later, and that
constitutes today a real challenge. In recent years molecular dynamics approaches
were considered in the framework of forming processes involving cutting [39] or
contact with friction [12], both presented during the recent Esaform conferences.

The micro-macro approach when both descriptions coexist in the physical
space as well as the definition of efficient bridges between both descriptions
defined in contiguous regions are topics in active development nowadays [24]
[43] [23].

1



In an intermediate scale other approach based on the discrete finite element
was successfully applied for treating granular media, being [40] or [21] some
examples of works presented during the Esaform conferences in recent years.

1.2 Fluid mechanics framework

This section concerns the liquid state of different materials involved in forming
processes. In some cases, as in casting, the resulting constitutive equation of
involved materials results simple, but the high Reynolds number involved in
the forming processes induce numerous numerical difficulties. For other kind of
materials, the ones involving microstructure, the main difficulty is coming from
the inherent multiscale character of its mechanical behavior. This section focuses
on this complex fluids (polymer melts or particle suspensions).

Many natural and synthetic fluids are viscoelastic materials, in the sense that
the stress endured by a macroscopic fluid element depends upon the history of
the deformation experienced by that element. Notable examples include polymer
solutions and melts, liquid crystalline polymers and fibre suspensions. Rheolo-
gists thus face a challenging non-linear coupling between flow-induced evolution
of molecular configurations, macroscopic rheological response, flow parameters
(such as the geometry and boundary conditions) and final properties. Theoret-
ical modelling and methods of computational rheology have an important role
to play in elucidating this coupling.

Atomistic modelling is the most detailed level of description that can be
applied today in rheological studies, using techniques of non equilibrium molec-
ular dynamics. Such calculations require enormous computer resources, and then
they are currently limited to flow geometries of molecular dimensions. Consider-
ation of macroscopic flows found in processing applications calls for less detailed
mesoscopic models, such as those of kinetic theory.

Kinetic theory models can be very complicated mathematical objects. It is
usually not easy to compute their rheological response in rheometric flows, and
their use in numerical simulations of complex flows has long been thought im-
possible. The traditional approach has been to derive from a particular kinetic
theory model a macroscopic constitutive equation that relates the viscoelastic
stress to the deformation history. The majority of constitutive equations used in
continuum numerical simulations are indeed derived (or at least very much in-
spired) from kinetic theory. Indeed, derivation of a constitutive equation from a
model of kinetic theory usually involves closure approximations of a purely math-
ematical nature such as decoupling or pre-averaging. It is now widely accepted
that closure approximations have a significant impact on rheological predictions
for dilute polymer, solutions, or fiber suspensions.

Since the early 1990’s the field has developed considerably following the in-
troduction of the CONNFFESSIT method by Ottinger and Laso [37]. Kinetic
theory provides two basic building blocks: the diffusion or Fokker-Planck equa-
tion that governs the evolution of the distribution function (giving the proba-
bility distribution of configurations) and an expression relating the viscoelastic
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stress to the distribution function. The Fokker-Planck equation has the general
form:

dψ

dt
+

∂

∂X
(Aψ) =

∂

∂X

(

D
∂ψ

∂x

)

(1)

where dψ
dt

is the material derivative, vector X defines the coarse-grained config-
uration and has dimensions N . Factor A is a N -dimensional vector that defines
the drift or deterministic component of the molecular model. Finally D is a sym-
metric, positive definite N ×N matrix that embodies the diffusive or stochastic
component of molecular model. In general both A and D (and in consequence
the distribution function ψ ) depend on the physical coordinates x, on the con-
figuration coordinates X and on the time t.

The second building block of a kinetic theory model is an expression relating
the distribution function and the stress. It takes the form:

τp =

∫

C

g(X)ψdX (2)

where C represents the configuration space and g() is a model-dependent ten-
sorial function of configuration. In a complex flow, the velocity field is a priori
unknown and stress fields are coupled through the conservation laws. In the
isothermal and incompressible case the conservation of mass and momentum
balance are then expressed (neglecting the body forces) by:

{

∇ · v = 0
ρdv
dt

= ∇ · (−pI + τp + ηsd)
(3)

where ρ is the fluid density, p the pressure and ηsd a purely viscous component.
The set of coupled equations (1)-(3), supplemented with suitable initial and
boundary conditions in both physical and configuration spaces, is the generic
multiscale formulation. Three basic approaches have been adopted for exploit-
ing the generic multiscale model:

1. The continuum approach wherein a constitutive equation of continuum me-
chanics that relates the viscoelastic stress to the deformation history is de-
rived from, and replaces altogether, the kinetic theory model (1) and (2).
The derivation process usually involves closure approximations. The result-
ing constitutive model takes the form of a differential, integral or integro-
differential equation.

2. The Fokker-Planck approach wherein one solves the generic problem (1) to
(3) as such, in both configuration and physical spaces. The distribution func-
tion is thus computed explicitly as a solution of the Fokker-Planck equation
(1). The viscoelastic stress is computed from (2).

3. The Stochastic approach which draws on the mathematical equivalence be-
tween the Fokker-Planck equation (1) and the following Ito stochastic dif-
ferential equation:

dX = A dt+ B dW (4)
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where D = B BT and W is a Wiener stochastic process of dimension N . In a
complex flow, the stochastic differential equation (4) applies along individual
flow trajectories, the time derivative is thus a material derivation. Instead of
solving the deterministic Fokker-Planck equation (1), one solves the associ-
ated stochastic differential equation (4) for a large ensemble of realizations
of the stochastic process X by means of a suitable numerical technique. The
distribution function is not computed explicitly, and the viscoelastic stress
(2) is readily obtained as an ensemble average.

The control of the statistical noise is a major issue in stochastic micro-macro
simulations based on the stochastic approach (for more details concerning the
micro-macro approach reader can refers to the excellent review paper [28] and
the references therein). Some stochastic simulations of muti-bead-spring (MBS)
models have been successfully carried out, see for example [44]. These problems
do not arise at all in the Fokker-Planck approach. The difficulty, however, is that
the Fokker-Planck equation (1) must be solved for the distribution function in
both physical and configuration spaces. This necessitates a suitable discretization
procedure for all relevant variables, namely position x, configuration X and
time t. Until now, the dimensionality of the problem could be daunting and
consideration of molecular models with many configurational degrees of freedom
did not appear feasible. This probably explains why relatively few studies based
of the Fokker-Planck approach have appeared in the literature until very recently
at least. In [14] [30] the resolution of the Fokker-Planck equation involving a
moderate number of dimensions is considered. Another deterministic particle
approach, very close to that proposed in [13], was analyzed in [3] using the SPH
meshless approach.

An appealing strategy that allows alleviating the computational effort is
based on the use of reduced approximation bases obtained by applying the
Karhunen-Loève decomposition, succesfully applied in complex fluid simulation
in [41] and [2], however high dimensional models are out of its applicability,
because in this case the definition of a mesh results simply prohibitory.

Some attempts exist concerning the treatment of multidimensional problems.
The interested reader can refer to [11] for a review on sparse grids methods in-
volving sparse tensor product spaces, but despite of its optimality, the interpo-
lation is defined in the whole multidimensional domain, and consequently only
problems defined in spaces of dimension of the order of tens can be treated
[1]. In [10] multidimensional problems are revisited and deeply analyzed, and
for this purpose new mathematical entities are introduced. In [4] we considered
the steady state solution of some classes of multidimensional partial differential
equations by using a separated representation. In [5] this technique was extended
for solving accurately and efficiently multidimensional transient kinetic theory
models.

Some works focussing in the solution of the multidimensional Fokker-Planck
equation defining the micro-macro description were presented during the recent
Esaform conferences (see for example [6]) however these models only concerned
simple rheological flows. The real challenge for the next 10 years will be the exten-
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sion of these procedures for treating the complex flows encountered in polymer
forming processes.

2 Meshless methods: the possibility for Lagrangian

simulations and much more

2.1 Introduction

It is not easy to explain what a meshless method is in few words. Since the mesh-
less irruption after the pioneer work by Touzot and Villon [36], many different
meshless methods have arisen, with many different characteristics and names.
Just to cite a few, the Element-Free Galerkin [9], the Reproducing Kernel Par-
ticle Method [29], the Natural Element Method [46] [20], or the Generalized
Finite Element Method [45], are examples of these different methods. They are
based either in Galerkin or collocation approaches, employ different kinds of ap-
proximation for the essential variables (moving least squares, natural neighbour
approximants, wavelets, etc.) and also employ —when talking about Galerkin
strategies— different numerical integration procedures.

What is essential then in a numer-

WI

G

WI

G

Fig. 1. Covering of a two-dimensional
domain Ω by the shape functions’ sup-
port, ΩI .

ical method to be considered as mesh-

less is its ability to maintain the ac-
curacy despite the distortion of the
mesh (or, more properly, the cloud
of points). It is well-known that the
Finite Element method suffers from
lack of accuracy if the mesh becomes
distorted [7]. Meshless methods, how-
ever, adapt the connectivity of the
“elements” as the cloud of points evolves,
in a process transparent to the user.
Many meshless methods use radially-
supported shape functions (or employ
tensor-product shape functions, thus
giving a rectangular support), see Fig.
1. Thus, the connectivity of each ele-
ment (defined as the list of nodes in-
fluencing the portion of the space in which numerical integration is to be per-
formed) changes as the cloud evolves.

Element-Free Galerkin methods (EFGM) fall within the class of meshless
methods that employ cobertures of the domain such as that in Fig. 1. In this case,
EFGM employ a Galerkin perspective and Moving Least Squares interpolation to
construct shape functions with arbitrary degree of reproducibility. Reproducing
Kernel Particle Methods, although originally developed from Smooth Particle
Hydrodynamics approaches, are entirely equivalent to EFGM.

However, many meshless methods with radially-supported shape functions
lack of an appropriate interpolation along the boundaries (which is readily seen

5



from Fig. 1 if we note that interior nodes influence on the boundary values). This
is a particularly important problem in the simulation of forming processes, where
issues related to friction, for instance, are frequently noteworthy. The Natural
Element Method (NEM) [46] [20] solves this problem in a very elegant way,
by utilizing natural neighbour interpolation, instead of Moving Least Squares,
in a Galerkin framework. Natural neighbour interpolation functions do not have
circular support (instead, they cover the union of circumcircles of each Delaunay
triangle containing the node) and this fact makes possible the exact imposition
of essential boundary conditions, up to the degree of consistency of the method.

Other, similar, methods, that also employ natural neighbour-based inter-
polants have been developed in recent years and applied to the simulation of
forming processes, see, for instance, [25] [26].

Many other meshless methods exist, based on collocation as well as Galerkin
approaches, but probably the EFGM and the NEM have been the most popular
ones within the forming processes community.

2.2 Application of meshless methods to the simulation of forming

processes.

The fact that meshless methods do not lack accuracy as mesh distorts opens the
possibility to perform Lagrangian simulations instead of Eulerian or Arbitrary
Lagrangian-Eulerian ones, which had been the most employed ones. This is es-
pecially challenging in fields where traditional Finite Element procedures fail or
present difficulties. Some examples developed by the authors follow. They are
only included intending show how, qualitatively, meshless methods can help in
the simulation of very complex forming processes.

Simulation of injection moulding of short fiber reinforced thermo-

plastics. Free-surface flows is a typical example of this kind of problems. The
location of the free surface had been traditionally done by means of Volume of
Fluid (VoF) or similar techniques, in which a variable representing the portion
of an Eulerian element which is filled by a liquid must be advected with the
material velocities.

Mechanical modelling of short fibers suspensions flows is usually achieved in
the framework of dilute or semi-dilute suspensions of non-spherical particles in
a Newtonian fluid. The resulting system of equations involves the coupling of
an elliptic problem with an advection problem related to the fluid history. The
elliptic problem is associated with the equations of motion whereas the advection
equation describes the time evolution of the anisotropic viscosity tensor (fiber
orientation) or more generally the microstructural state. The second problem
presents two difficulties: it is non-linear and hyperbolic.

Coupled models take into account both the dependence of the kinematics
with the fiber orientation and the orientation induced by the flow kinematics.
Usually the coupled models are solved by means of a fixed point strategy. In this
case, at each iteration the flow kinematics results from the solution of motion and
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Fig. 2. Evolution of the orientation field in the simulation of an injection mould-
ing.

mass conservation equations, using the fiber orientation field from the previous
iteration. From the kinematics just computed, the fiber orientation is updated
solving the advection equation governing its evolution. In Fig. 2 four snapshots
of the evolution of the orientation field are shown. The orientation is represented
by elipses indicating the probability of finding a fiber oriented in each direction.

In [31] a deeper insight on the constitutive modelling of such flows can be
found. The accuracy in the numerical treatment of the free surface flow is also
noteworthy [32].

Simulation of orthogonal cutting. One of the very first applications of the
NEM to the field of forming processes was made towards the simulation of cut-
ting [17]. The extremely large deformations appearing in such a process make
meshless methods an interesting approach to be considered.

Essentially, in this first ap-

Fig. 3. Simulation of the orthogonal cutting
process.

plications a very simple visco-
plasticity model based on a
Norton-Hoff law and very sim-
ple contact detection algorithms,
that considered rigid tool sur-
faces, was employed. The main
purpose was, however, to dem-
onstrate that such a method
can easily suffer these high lev-
els of strain without lack of accuracy, see Fig. 3.

Three-dimensional simulation of the extrusion of a cross-shaped pro-

file. In order to show the capabilities of the technique presented before, we
analyze now the simulation of a cross-shaped aluminium profile.

Nodes located on the upper side of the billet were forced to move with a speed
of 2mm

s
, in order to obtain an exit velocity of 1 m

min
approximately. Initially,

slipping boundary conditions were considered between the billet and the die and
the container. The initial temperature was set to 723K. The whole model was
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considered adiabatic, including the profile surface in contact with air. In this
case a rigid-plastic Sellars-Tegart material model was used. The simulation ran
over 42 time steps of 0.025s. The obtained evolution for the equivalent strain
rate is depicted in Fig. 4.

d
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8.43617
7.83376
7.23134
6.62893
6.02652
5.4241
4.82169
4.21928
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(a) 10th time step.
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(b) 20th time step.
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(c) 30th time step.
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(d) 40th time step.

Fig. 4. Equivalent strain rate (s−1) for the extrusion simulation.

2.3 Meshless methods in the ESAFORM conferences: past, present

and future

These examples are intended for suggesting only the wide range of potential
application that meshless methods can have in the field of forming processes.
But the applications are by no means limited to the before presented. Other
examples include the simulation of expanding foams [16], Stefan problems, etc.

In all these cases, meshless methods opened the possibility for a Lagrangian
procedure, which is in some cases a very convenient way of overcoming the
before-mentioned problems of numerical diffusion in the results due to extensive
remeshing.

Concerning the ESAFORM life, meshless methods have been present, up to
our knowledge, since the conference held in Liege in 2001 [33] and their contri-
bution extends up to the ninth ESAFORM conference’s scientific prize plenary
lecture [19]. In between, many papers have been presented in ESAFORM confer-
ences employing meshless method to simulate forming processes. For instance,
there is a very active group in Portugal applying these methods to the simula-
tion of various forming proceses [51]. Applications include forging, sheet metal
forming, etc. Other contributions include applications of the so-called eXtended
Finite Element Method (X-FEM) [22] [35], or the excellent keynote given by N.
Sukumar at Salerno in 2003 [47]. Concerning RKP methods, Joyot has made
some interesting contributions along the years, see for instance [27] and refer-
ences therein. Of course, Prof. Villon has been one of the most active researchers
in this field and has presented many works on the topic along the years, see for
instance [48].

There remain some interesting challenges concerning meshless methods (both
within and out of ESAFORM life). There is a more or less unanimous opinion
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that the issue of numerical integration is crucial in this field, and many groups are
now focusing their efforts towards this end. Within ESAFORM life, there remains
some problems where meshless methods have much to say. In general, these
problems involve very large strains, as mentioned before. Friction stir welding
is an example of candidate processes. The extremely large speed of rotation,
the coupled thermo-mechanical problem and the extremely large deformations
appearing make this process an ideal candidate to benchmark the behaviour of
meshless methods.
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25. S. R. Idelsohn, E. Oñate, N. Calvo, and F. del Pin. The meshless finite element
method. International Journal for Numerical Methods in Engineering, 58:893–912,
2003.
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gium,2001.

34. N. Moes, J. Dolbow, and T. Belytschko. A Finite Element Method for Crack
Growth without Remeshing. International Journal for Numerical Methods in En-

gineering, 46:131–150, 1999.
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