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Abstract

This chapter provides a general and self-contained overview of the variational approach
to nonlinear dissipative thermo-mechanical problems initially proposed in Ortiz and
Stainier (1999) and Yang, Stainier, and Ortiz (2006). This approach allows to reformulate
boundary-value problems of coupled thermo-mechanics as an optimization problem of
an energy-like functional. The formulation includes heat transfer and general dissipative
behaviors described in the thermodynamic framework of Generalized Standard Mate-
rials. A particular focus is taken on thermo-visco-elasticity and thermo-visco-plasticity.
Various families of models are considered (Kelvin–Voigt, Maxwell, crystal plasticity,
von Mises plasticity), both in small and large strains. Time-continuous and time-discrete
(incremental) formulations are derived. A particular attention is dedicated to numerical
algorithms which can be constructed from the variational formulation: for a broad class
of isotropic material models, efficient predictor–corrector schemes can be derived, in
the spirit of the radial return algorithm of computational plasticity. Variational approx-
imation methods based on Ritz–Galerkin approach (including standard finite elements)
are also described for the solution of the coupled boundary-value problem. Some
pointers toward typical applications for which the variational formulation proved advan-
tageous and useful are finally given.

1. INTRODUCTION

Variational principles have played an important role in mechanics for

several decades, if not more than a century (see for example Lanczos, 1986 or

Lippmann, 1978). They have been mostly developed, and widely used, for

conservative systems: themost eminent examples are Hamilton’s principle in

dynamics and the principle of minimum potential energy in statics. Some

variational principles with application to dissipative systems have been

around for a long time as well, such as principles of maximum dissipation

for limit analysis (notably in plasticity).

Variational approaches present many attractive features, especially

regarding the possibilities that they offer for mathematical analysis, but also

for numerical approaches. They open an easier way to unicity, convergence,

and stability analysis of mathematical formulations and associated numerical

methods. This has motivated a very large quantity of published work and an

exhaustive review is thus out of the scope of this chapter. To directly focus

on the category of variational approaches envisioned here, let us then simply

say that, following the pioneering work of Biot (1956, 1958), the variational

form of the coupled thermo-elastic and thermo-visco-elastic problems has

been extensively investigated (see for example Batra, 1989; Ben-Amoz,
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1965; Herrmann, 1963;Molinari &Ortiz, 1987; Oden &Reddy, 1976). On

the other hand, several authors have proposed variational principles for the

equilibrium problem of general dissipative solids in the isothermal setting:

see for example Carini (1996), Comi, Corigliano, & Maier (1991), Hackl

(1997), Han, Jensen, & Reddy (1997), Martin, Kaunda, & Isted (1996),

Mialon (1986), Ortiz & Stainier (1999), in elasto-visco-plasticity, and

also Balzani & Ortiz (2012), Bourdin, Francfort, & Marigo (2008),

Francfort & Marigo (1998), Kintzel & Mosler (2010, 2011), in brittle and

ductile damage. By contrast, the case of thermo-mechanical coupling (i.e.

with conduction) in these latter classes of dissipative materials has received

comparatively less attention (cf. Armero & Simo, 1992, 1993; Simo &

Miehe, 1992, for notable exceptions).

This chapter is intended to provide an overview of recent and less recent

work by the author and colleagues on a specific variational approach (initially

described in Yang et al., 2006) to coupled thermo-mechanical problems

involving nonlinear dissipative behaviors, such as thermo-visco-elasticity

and thermo-elasto-visco-plasticity. It will also be the occasion to fill a few

gaps between previously published material, in particular by providing a

more detailed account of thermal coupling aspects for a variety of constitu-

tive models written under variational form. Links toward closely related

work by other researchers are also provided.

We start in Section 2 by setting the general thermodynamic modeling

framework serving as a foundation for the proposed variational formulation

of coupled thermo-mechanical boundary-value problems. This framework

follows closely that of Generalized Standard Materials (GSM) (Halphen &

Nguyen, 1975), with a local state description based on internal variables.

We will also recall some elements of finite transformations kinematics, as

well as balance equations in Lagrangian and Eulerian formulations (although

we will mostly work in a Lagrangian setting). This part is quite standard,

with a few departures from the mainstream approach (e.g. the use of a Biot

conduction potential). We then proceed (Section 3) to reset the constitutive

and balance equations defining thermo-mechanical boundary-value prob-

lems under a variational form. By variational, we here understand that the

problem is formulated as an optimization (or at least a stationarity) problem,

with respect to fields of state variables. Since we work with a local state

description based on internal variables, we will split the presentation in

two parts: first, the local constitutive problem (determination of internal var-

iables or their rate), and, second, the boundary-value problem (determina-

tion of fields of external variables). Each part is itself structured in two
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subparts: we first present the time-continuous evolution problem and its var-

iational formulation, followed by the time-discrete (or incremental) varia-

tional formulation. This structure of presentation, which somewhat differs

from that adopted in Yang et al. (2006), allows to show that the variational

boundary-value problem is formally identical to a thermo-elastic problem,

internal variables being handled locally through a nested constitutive varia-

tional problem. This is probably the most interesting result presented in that

specific part of the paper. After presenting the variational formulation for the

incremental boundary-value problem, we show how to add more complex

thermo-mechanical boundary conditions, such as mixed thermal conditions

(e.g. convective exchange). The variational formulation of coupled thermo-

mechanical boundary-value problems is initially presented within a quasi-

stationary context (yet including combined heat capacity and conduction

effects), but we show in subsection 3.3 how it can be extended to account

for inertia effects in the time-discrete framework. We conclude this part by

describing linearization procedure in the case of infinitesimal (small) dis-

placements and temperature variations. Note that nonlinearities can remain

within this “linearized” context, due to the presence of thermo-mechanical

coupling terms.

In Sections 4 and 5, we look in more details at the variational formulation

of (continuous and incremental) constitutive equations for some specific

models in thermo-visco-elasticity and thermo-elasto-visco-plasticity. We

start with the simplest thermo-visco-elastic model possible: linearized kine-

matics Kelvin–Voigt model with linear elasticity and viscosity. Given its rel-

ative simplicity of formulation, the variational update for this constitutive

model is treated in details, including all possible temperature dependence

effects (thermo-elasticity, thermal softening of elastic and viscous moduli).

Note that this is the only model for which a complete treatment is provided

here, some simplifying hypotheses being taken for later, more complex,

models, for the sake of clarity in the presentation. We then move on to gen-

eralized Maxwell models, which introduce internal variables (viscous

strains). The analysis of Kelvin and Maxwell models is then repeated for

finite strains kinematics. Maybe the most interesting point in that part is

the fact that, for isotropic materials at least, constitutive updates can be

reduced to solving a reduced number of scalar equations by adopting a spec-

tral approach [as given in Fancello, Ponthot, and Stainier (2006)], indepen-

dently of the complexity of elastic and viscous potentials adopted in the

models. Section 5 deals with thermo-elasto-visco-plasticity. We start with

4



crystal plasticity, which describes fine scale behavior of crystalline materials

(mostly metals for our purpose, but also some organic materials and rocks).

For this class of models, the variational formulation offers the power of opti-

mization algorithms to solve the complex problem of determining (incre-

mental) plastic slip activity, a problem which can become quite acute

when considering complex latent hardening models. The section continues

by considering plasticity models at the macroscopic scale, chiefly von Mises

( J2) plasticity. We look at both the time-continuous and time-discrete

variational formulations of linearized kinematics and finite strain thermo-

elasto-visco-plasticity. Special emphasis is given to the fact that, in the

isotropic case, the variational update can be interpreted as a radial return

algorithm. Another important result is that, admitting a specific choice of

elastic free energy potential, finite strain kinematics can be uncoupled from

the constitutive update itself, which can then be treated as in the linearized

kinematics case. This result, initially shown in Ortiz and Stainier (1999) in

the isothermal case, is here described in a coupled thermo-mechanical set-

ting. We complete this section on thermo-elasto-visco-plasticity by briefly

illustrating how to consider general elastic free energy potentials (Fancello,

Vassoler, & Stainier, 2008b) or more general plastic flow rules. The section

closes by a discussion on the problem of partition of plastic work into stored

and dissipated energy, and how it is naturally and implicitly treated within

the present formulation (Stainier & Ortiz, 2010).

In Section 6, we complete the description of our variational framework

by considering numerical approximation methods for solving coupled

thermo-mechanical boundary-value problems. The variational formulation

presented before is particularly well suited to finite element approaches, and

we first describe what results from a standard Galerkin formulation. We also

look at mixed formulations for handling (nearly) incompressible behaviors

(occurring in plasticity, for example). The variational formulation can also

be exploited by using more general Ritz–Galerkin approaches, and we

describe in particular such approaches applied to the case of general discon-

tinuities/interfaces such as shear bands or cohesive zones.

Section 7 provides some pointers toward typical applications for which

the variational formulation proved advantageous and useful. We focus in

particular on multiscale and adaptive variational approaches. Finally we

conclude by summarizing the main features and advantages of the varia-

tional approach presented in this chapter and discuss some related open

problems.
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2. GENERAL MODELING FRAMEWORK

2.1. Local thermodynamic model
We consider thermo-mechanical problems and place ourselves in a contin-

uummodeling framework. Let us then consider a thermo-mechanical prob-

lem defined on a body occupying a domain B0 2R
3 in its reference

configuration (which, for simplicity, we will identify with the configuration

occupied at the initial time t ¼ 0). The solution of the thermo-mechanical

problem is described by the displacement mapping material pointsX to spa-

tial points x:

w :B0� 0, tf½ �!R
3,x¼w X, tð Þ ð1Þ

and the absolute temperature field:

T :B0� 0, tf½ �!R
þ,T ¼T X, tð Þ> 0, ð2Þ

where [0, tf] is the time interval under consideration. The domain occupied

by the body in the deformed configuration at time twill be denoted byBt (or

more simply B when there is no ambiguity):

Bt ¼ x¼w X, tð Þ,8X 2 B0f g: ð3Þ
We adopt a local state approach, where the local material state is

described by the deformation gradient F(X, t):

F :B0� 0, tf½ �!GLþ 3,Rð Þ,F¼—0w X, tð Þ ð4Þ
where GLþ(R, 3) is the space of second-order tensors on R

3 with positive

determinant, and temperature T(X, t). Since we want to consider dissipative

behaviors, a set of internal variables Z is added to external state variables F

andT. The exact nature ofZ depends on the type of constitutive behavior, as

will be detailed below (Sections 4 and 5). Following the framework of GSM

(Halphen & Nguyen, 1975), we assume the existence of a Helmholtz

free-energy density potentialW(F, T, Z ) and a dissipation pseudo-potential

D( _F, _Z; F, T, Z) (both defined per unit undeformed volume). The last three

arguments of the dissipation pseudo-potential, separated from the main ones

by a semi-colon, denote the possible dependence of this function on the cur-

rent state of the material point. We additionally assume that forces conjugate

to state variables are additively decomposed in an equilibrium part, derived
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from the free energy, and a dissipative part, derived from the dissipation

pseudo-potential (Ziegler, 1977):

P¼PeþPd ð5Þ
Pe¼ @W

@F
F, T , Zð Þ ð6Þ

Pd ¼ @D
@ _F

_F, _Z; F, T , Z
� � ð7Þ

and

Y ¼Y eþYd ð8Þ
Y e¼ @W

@Z
F, T , Zð Þ ð9Þ

Yd ¼ @D
@ _Z

_F, _Z; F, T , Z
� � ð10Þ

where P is the first Piola–Kirchhoff (or Piola) stress tensor, conjugate to F,

and Y the forces conjugate to internal variables Z. What differentiates exter-

nal and internal variables is that the latter should produce no net work, i.e.

Y � _Z¼ Y eþYd
� � � _Z¼ 0, 8 _Z: ð11Þ

As a consequence, one must have that

Yd ¼�Y e , @W

@Z
F, T , Zð Þþ @D

@ _Z
_F, _Z; F, T ,Z
� �¼ 0: ð12Þ

This equation provides the evolution law for internal variables. Finally, we

will assume in this work that the local thermal equilibrium is always verified,

such that the specific entropy � is given by

r0�¼�@W

@T
F, T , Zð Þ ð13Þ

wherer0 is the density in the reference configuration. In the following, it will
prove useful to introduce the internal energy density potential U (F, �, Z ):

U F, �, Zð Þ¼ sup
T

r0�T þW F, T , Zð Þ½ � ð14Þ

such that

T ¼ 1

r0

@U

@�
F, �, Zð Þ: ð15Þ
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Note that objectivity (material frame indifference) imposes that state

functions such as the free or internal energy be invariant under rotations

in the spatial configuration:

W QF, T , Zð Þ¼W F, T , Zð Þ 8Q 2 SO 3,Rð Þ ð16Þ
where we have assumed that all internal variables were of Lagrangian nature.

This condition can be verified by enforcing that the free (resp. internal)

energy depends on F only through the right Cauchy–Green stretch tensor

C ¼ FT F. The Piola stress is then given by

P¼FS with S¼ 2
@W

@C
ð17Þ

where S is the second Piola–Kirchhoff (symmetric) stress tensor.

2.2. Balance equations
We now briefly recall local balance equations corresponding to conservation

principles (mass, momentum, and energy). In Lagrangian description, mass

conservation yields

r det F½ � ¼ r0 ð18Þ
where r is the mass density in the deformed configuration. Linear momen-

tum conservation yields

r0€w¼—0 �PT þr0b ð19Þ
where b denotes applied bulk forces (per unit mass), while angular momen-

tum conservation yields

PFT ¼FPT : ð20Þ
Note that, given Eq. (17), this will be automatically verified for objective

(frame invariant) constitutive models. Conservation of energy yields

r0T _�¼Pd � _FþYd � _Z�—0 �Hþr0Q ð21Þ
whereH is the nominal (Lagrangian) heat flux vector andQ the applied bulk

heat source (per unit mass). We will define the internal dissipation as

Dint ¼Pd � _FþYd � _Z. Then, using the definition (13) of entropy, we can

obtain the heat equation:

C _T ¼T
@2W

@F@T
� _FþT

@2W

@Z@T
� _ZþDint�—0 �Hþr0Q ð22Þ
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where the heat capacity C, defined by

C¼�T
@2W

@T2
F, T , Zð Þ ð23Þ

is in general a function of the current state. In the following, we will refer to

the first two terms in the right-hand side of Eq. (22) as entropic heat

source terms, in opposition to the dissipative heat source term Dint.

The Clausius–Duhem inequality (second principle of thermodynamics)

then writes

T _G¼Dint� 1

T
H �—0T � 0 ð24Þ

where _G denotes the net entropy production rate. Choosing a dissipation

pseudo-potential D( _F, _Z; F, T, Z) which is convex with respect to _F

and _Z, nonnegative and such that D(0, 0; F, T, Z) ¼ 0 will ensure that

Dint � 0. Following Biot (1958), we then introduce a conduction potential

w(G; F, T, Z ), such that

H ¼ @w
@G

G; F, T , Zð Þ where G ¼� —0T

T
: ð25Þ

Assuming convexity and nonnegativeness of w, together with the condition

w(0; F, T, Z )¼ 0, then ensures that Clausius–Duhem inequality will always

be verified.

In order to provide Eulerian versions of the above balance equations, let

us first recall some results linked to finite strain kinematics. The velocity gra-

dient is defined as L¼ _F F�1, and its symmetric part defines the Eulerian

strain rate

D¼ 1

2
LþLT
� �¼ 1

2
F�T _CF�1: ð26Þ

The Cauchy stress tensor s is given by

s¼ 1

J
PFT ¼ 1

J
FSFT ð27Þ

where J ¼ det[F]. As a consequence, we have that

P � _F¼ Js �D: ð28Þ
9



The linear momentum conservation equation then becomes

r€w¼— �sþrb ð29Þ
where we have the used mass conservation equation, while conservation of

energy becomes

rT _�¼sd �DþYd � _Z�— �hþrQ ð30Þ
with h ¼ J�1 F H is the (Eulerian) heat flux vector.

3. VARIATIONAL FORMULATION OF COUPLED
THERMO-MECHANICAL BOUNDARY-VALUE
PROBLEMS

3.1. Variational updates
In the isothermal setting, Ortiz and Stainier (1999) showed how a wide class

of constitutive models for dissipative solids could be recast under the form of

variational principles. But when the equilibrium and heat conduction prob-

lems for general dissipative solids are combined, the resulting coupled prob-

lem lacks an obvious variational structure. This lack of variational structure

reveals itself upon linearization of the coupled problem, which results in a

nonsymmetric operator. This essential difficulty accounts for the lack of var-

iational formulations of the coupled thermo-mechanical problem for general

dissipative solids. However, Yang et al. (2006) showed that an integrating

factor exists which delivers the sought-for variational structure. This inte-

grating factor hinges critically on a careful distinction between two types

of temperature: an equilibrium (or internal) temperature, which follows

as a state variable; and an external temperature, which equals the equilibrium

temperature at equilibrium.

3.1.1 Local evolution problem
At a given material point, evolution of internal variables is ruled by Eq. (12).

Taking into account the convexity of Dw.r.t. _Z, this equation can be inter-
preted as the stationarity condition associated to the following variational

principle:

_Z¼ arg inf
_Z
D _F, _�, _Z, T ; F, �, Z
� � ð31aÞ

with
10



D _F, _�, _Z, T ; F, �, Z
� �¼ d

dt
U F, �,Zð Þ½ ��r0 _�T

þD
T

Y
_F,

T

Y
_Z;F,Y F, �, Zð Þ,Z

� �
: ð31bÞ

In the above expression,Y(F, �,Z ) is the equilibrium or internal temperature, as

defined by Eq. (15):

Y F, �, Zð Þ� 1

r0

@U

@�
F, �, Zð Þ ð32Þ

whileTwill be called external temperature. Local thermal equilibrium imposes

that Y ¼ T, which corresponds to stationarity of D w.r.t. _�:

stat
_�
D _F, _�, _Z, T ; F, �, Z
� � , T ¼Y F, �, Zð Þ: ð33Þ

Note that we could have introduced local thermal dissipation (e.g. transient

heat transfer at a finer scale than that of the representative volume element

(RVE) associated to each material point) through a more general dissipation

function D( _F, _�, _Z), but we will not pursue this possibility here.

The apparent complexity of the function D( _F, _�, _Z, T; F, �, Z ) is in

practice motivated by the following properties. Derivatives of the function

w.r.t. _F and T are, respectively, given by:

@D

@ _F
¼ @U

@F
F, �, Zð ÞþT

Y
@D
@ _F

T

Y
_F,

T

Y
_Z;F,Y F, �,Zð Þ, _Z

� �
ð34Þ

and

@D

@T
¼�r0 _�þ

1

Y
@D
@ _F

T

Y
_F,

T

Y
_Z

� �
� _Fþ@D

@ _Z

T

Y
_F,

T

Y
_Z

� �
� _Z

� �
: ð35Þ

Then, if we define the effective rate potential Deff as

Deff
_F, _�,T ; F, �, Z
� �¼ inf

_Z
D _F, _�, _Z, T ; F, �, Z
� �

, ð36Þ

we can write that

@Deff

@ _F
¼Pe F,Y F, �, Zð Þ,Zð Þ

þT

Y
Pd T

Y
_F,

T

Y
_Z;F,Y F, �, Zð Þ,Z

� �
ð37Þ

@Deff

@T
¼�r0 _�þ

1

T

@D
@ _F

T

Y
_F,

T

Y
_Z

� �
� T
Y

_Fþ@D
@ _Z

T

Y
_F,

T

Y
_Z

� �
� T
Y

_Z

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼Dint

: ð38Þ
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Thus, provided that T ¼ Y(F, �, Z), it is then seen that function

Deff( _F, _�, T ) plays the role of a rate potential for the stress P and the effective

local entropy rate (i.e. local entropy rate corrected by internal dissipationDint).

For example, looking at heat equation (21), we see that local adiabatic behav-

ior would then be characterized by

@Deff

@T
_F, _�, T ; F, �, Z
� �¼ 0

, Dad
_F; F, �, Z
� �¼ stat

_�
stat
T

Deff
_F, _�, T ; F, �, Z
� � ð39Þ

and

P¼ @Dad

@ _F
_F; F, �, Z
� � ð40Þ

i.e. Dad acts as a rate potential for the stress tensor P under local adiabatic

conditions.

3.1.2 Local time-discrete constitutive problem
Under most circumstances, nonlinear problems involving history-

dependent behavior are solved numerically by incremental methods. We

thus proceed by considering a discrete time increment [t0, t]: the local mate-

rial state at time t0 ({F0, T0, Z0} or equivalently {F0, �0, Z0}) is assumed to

be completely known and, in a first step, we would like to compute

the internal material state Z associated to a given external material state

{F, T} (or equivalently {F, �}) at time t. Starting from the variational for-

mulation of the rate problem (36), we thus seek to define an incremental

function I(F, T, Z) which approximates the integral of function D over

the time increment. Noting that _U�r0 _�T ¼ _W þr0� _T , we write

I F, T ,Z; F0, T0,Z0ð Þ�
ðt
t0

D _F, _�, _Z,T tð Þ;F tð Þ, � tð Þ,Z tð Þ� �
dt

¼W F, T ,Zð Þ�W0þr0�0dT þdt D
T

T0

dF
dt

,
T

T0

dZ
dt

;F tð Þ,T tð Þ,Z tð Þ
� �	 


ð41Þ
where W0 ¼ W(F0, T0, Z0), dt ¼ t � t0, dF ¼ F � F0, dT ¼ T � T0,

dZ ¼ Z � Z0. The last term on the right-hand side, between brackets,

denotes an average value of the dissipation function over the time incre-

ment, the expression of which is discussed below. Note already that rates have

been approximated by a first-order finite difference (alternative expressions

are possible), while factors T/Y have been replaced by T/T0.
12



The incremental variational update takes the form of the following

minimization problem:

W F, T ; F0, T0,Z0Þ¼ inf
Z
I F, T , Z; F0, T0,Z0Þ:ð

�
ð42Þ

The stationarity equation corresponding to this variational problem is

given by

@W

@Z
F, T , Zð Þþdt

@

@Z
D

T

T0

dF
dt

,
T

T0

dZ
dt

;F tð Þ,T tð Þ,Z tð Þ
� �	 


¼ 0: ð43Þ

In addition, we will have that

@W
@F

¼Pe F, T , Zð Þþdt
@

@F
D

T

T0

dF
dt

,
T

T0

dZ
dt

;F tð Þ,T tð Þ,Z tð Þ
� �	 


ð44Þ

@W
@T

¼�r0 ���0ð Þþdt
@

@T
D

T

T0

dF
dt

,
T

T0

dZ
dt

;F tð Þ,T tð Þ,Z tð Þ
� �	 


:

ð45Þ
Consistency of the incremental update thus requires that

lim
dt!0

D
T

T0

dF
dt

,
T

T0

dZ
dt

;Fa,Ta,Za

� �	 

¼D _F, _Z; F, T , Z

� � ð46Þ

but also that

lim
dt!0

dt
@

@F
D

T

T0

dF
dt

,
T

T0

dZ
dt

;F tð Þ,T tð Þ,Z tð Þ
� �	 


¼ @D
@ _F

_F, _Z; F, T , Z
� �

ð47Þ

lim
dt!0

dt
@

@Z
D

T

T0

dF
dt

,
T

T0

dZ
dt

;F tð Þ,T tð Þ,Z tð Þ
� �	 


¼ @D
@ _Z

_F, _Z; F, T , Z
� �

ð48Þ
and

lim
dt!0

@

@T
D

T

T0

dF
dt

,
T

T0

dZ
dt

;F tð Þ,T tð Þ,Z tð Þ
� �	 


¼ 1

T

@D
@ _F

� _Fþ @D
@ _Z

� _Z
� �

:

ð49Þ
As discussed in Stainier (2011), the most intuitive expression
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D
T

T0

dF
dt

,
T

T0

dZ
dt

;F tð Þ,T tð Þ,Z tð Þ
� �	 


¼D
T

T0

dF
dt

,
T

T0

dZ
dt

;Fa,Ta,Za

� �
ð50Þ

where {F, T, Z}a ¼ (1 � a){F0, T0, Z0} þ a{F, T, Z} (with algorithmic

parameter a2 [0, 1]) does not verify all the above consistency conditions. An

alternative expression which does verify all the above conditions was also

provided in Stainier (2011):

D
T

T0

dF
dt

,
T

T0

dZ
dt

;Fa,Ta,Za

� �	 

¼

T0

T
D

T

T0

dF
dt

,
T

T0

dZ
dt

;Fa,T0,Za

� �
þdT

T
D

T

T0

dF
dt

,
T

T0

dZ
dt

;Fa,Ta,Za

� �
:

ð51Þ
One can see that in the case a¼ 0, or in the case of no parametric depen-

dence of D on the current state, the above expression reduces to

D
T

T0

dF
dt

,
T

T0

dZ
dt

;Fa,Ta,Za

� �	 

a¼0

¼D
T

T0

dF
dt

,
T

T0

dZ
dt

� �
: ð52Þ

In that specific case, the internal variable update becomes

@W

@Z
F, T , Zð Þþ T

T0

@D
@ _Z

T

T0

dF
dt

,
T

T0

dZ
dt

� �
¼ 0 ð53Þ

and we also have

@W
@F

¼Pe F, T , Zð Þþ T

T0

@D
@ _F

T

T0

dF
dt

,
T

T0

dZ
dt

� �
ð54Þ

@W
@T

¼�r0 ���0ð Þ

þ 1

T0

@D
@ _F

T

T0

dF
dt

,
T

T0

dZ
dt

� �
�dFþ@D

@ _Z

T

T0

dF
dt

,
T

T0

dZ
dt

� �
�dZ

� �
: ð55Þ

We can interpret these results as providing approximate incremental expres-

sions for the viscous stress, the thermodynamic forces conjugate to internal

variables:

Pd� T

T0

@D
@ _F

T

T0

dF
dt

,
T

T0

dZ
dt

� �
ð56Þ
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Yd� T

T0

@D
@ _Z

T

T0

dF
dt

,
T

T0

dZ
dt

� �
ð57Þ

and the dissipation (average value over the time step)

Dint � 1

T
Pd � dF

dt
þYd � dZ

dt

� �
: ð58Þ

These quantities are not state functions, and thus can only be approximated

in an incremental setting. Incremental approximations to the stress and effec-

tive entropy increase are then given by

@W
@F

¼PeþPd ¼P ð59Þ
@W
@T

¼�r0 ���0ð ÞþdtDint ¼ r0d�
eff : ð60Þ

In the more general case (a 6¼ 0) additional terms will appear in the incre-

mental approximations of Pd,Y d, andDint, but the resulting expressions will

remain consistent, i.e. will tend toward continuous values as dt ! 0.

A detailed study of the influence of algorithmic parameter a on precision
and convergence properties of the variational update in the case of isother-

mal elasto-visco-plasticity can be found in Brassart and Stainier (2012).

Among other results, it is shown that it is always possible to find a value

of parameter a which yields incremental approximations identical to what

would be obtained using a standard backward Euler scheme on continuous

rate equations. This value strongly depends on the model used, of course,

and will also vary with actual loading conditions (e.g. strain rate). Note that,

by consistency, the effect of a vanishes as the time increment size decreases.

3.2. Variational boundary-value problem
The variational treatment of the local constitutive problem, as detailed in the

previous section, allows to construct effective potentials of strain (or strain

rate) and temperature (and entropy rate) describing a formally thermo-elastic

behavior. The resulting constitutive relations nonetheless include the effect

of internal variables (and the associated internal dissipation). The coupled

thermo-mechanical boundary-value problem can then in turn be formu-

lated variationally using these effective potentials.
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3.2.1 Rate problem
Let us now consider the quasi-static boundary value problem consisting in

determining fields _w, _�, _Z, and T on B0 at a given time t (the current state

{F, �, Z} is assumed to be known), verifying the differential equations

—0 �PT þr0b tð Þ¼ 0

r0T _�¼Pd _F, _Z; T
� � � _FþYd _F, _Z;T

� � � _Z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Dint

�—0 �H G; Tð Þþr0Q tð Þ

8><>:
ð61Þ

together with local constitutive equation (12) and boundary conditions:

w¼�w tð Þ on @uB0, P �N ¼�t(t) on @sB0 @uB0[@sB0 and @uB0\@sB0 ¼;ð Þ,
T ¼ �T (t) on @TB0, and H �N ¼ �H(t) on @HB0 @TB0[@HB0 ¼ @B0ð
and@TB0 \ @HB0 ¼;Þ, where �w tð Þ,�t(t), �T (t), and �H(t) are imposed motion,

traction vector, temperature, and normal heat flux, respectively.

As shown in Yang et al. (2006), this boundary value problem can be

restated in variational form. To this end, let us define the functional

F _w, _�, Tð Þ¼
ð
B0

Deff =0 _w, _�,Tð Þ�w �=0T

T
;F,Y F, �, Zð Þ,Z

� �� �
dV

�
ð
B0

r0b tð Þ � _wdV �
ð
@sB0

�t tð Þ � _wdS

þ
ð
B0

r0Q tð ÞT
Y
dV �

ð
@HB0

�H tð ÞT
Y
dS ð62Þ

where we have omitted to explicitly indicate the sufficiently clear depen-

dence of D and F on the current state for brevity. Then balance equa-

tions (61) correspond to stationarity conditions for F:

D _’F, ew� 
¼ð
B0

@Deff

@ _F
�—0ewdV�

ð
B0

r0b tð Þ �ew dV�
ð
@sB0

�t tð Þ �ew dS¼ 0 8ew adm:

ð63Þ

DTF, eT� 
¼ ð
B0

@Deff

@T
eT þ @w

@G
�—0

eT
T

 !" #
dVþ

ð
B0

r0Q tð Þ
eT
Y
dV

�
ð
@HB0

�H tð Þ
eT
Y
dS¼ 0 8 eT adm: ð64Þ

while stationarity condition w.r.t. _� yieldsT¼Y, as seen previously. Apply-

ing Green–Ostrogradsky’s theorem to the above stationarity equations, and
16



replacing Y by T, yields local equations (61) and associated boundary

conditions.

As discussed in Yang et al. (2006), we may focus our attention on the

problem of determining extremal points ofF, expecting these to correspond
to stable solutions to the boundary-value problem. In a number of cases,

extremal points will actually correspond to a saddle point of the functional:

_w, _�, Tf g¼ arg inf
_w, _�

sup
T

F _w, _�, Tð Þ: ð65Þ

In the case of thermo-elasticity (i.e. Z¼;, D � 0), this was demonstrated

under assumptions of pure Dirichlet boundary conditions and sufficient reg-

ularity of solution fields (see Yang et al., 2006). More precisely, in that case,

we can write

_w, _�, Tf g¼ arg stat
_w

inf
_�

sup
T

Fthel _w, _�, Tð Þ: ð66Þ

If we exclude viscous stresses [i.e. D¼D( _Z; F, T, Z )], then the effective rate

potential Deff is concave in T [this results from the implicitly assumed con-

vexity of D( _Z )]. The boundary-value problem is then formally identical to

that of thermo-elasticity, and the previous result still holds. In the presence

of viscous stresses (for example, Kelvin–Voigt thermo-visco-elasticity), the

analysis is more subtle, and additional studies still have to be conducted for

that general case.

3.2.2 Incremental boundary-value problem
We now come back to the incremental problem. As explained earlier, we

consider a discrete time increment [t0, t], for which we consider the fields

{w0,T0,Z0} as known.We have seen in Section 3.1.2 howwe can compute

updated internal variables Z at each material point, provided external vari-

ables {F ¼ —0w, T} are given. External fields {w, T} can themselves be

computed as optimizers of the following functional:

I w, Tð Þ¼
ð
B0

W —0w,T ;F0,T0,Z0ð Þ�dt w �—0T

T
;Fa,Ta,Za

� �	 
� �
dV

�
ð
B0

r0b tð Þ �dwdV �
ð
@sB0

�t tð Þ �dwdS

þ
ð
B0

dtr0Q tð Þ log
T

T0

dV �
ð
@HB0

dt �H tð Þ log
T

T0

dS ð67Þ

where the average conduction dissipation function hwi can be treated in a

similar fashion as dissipation potential D occurring in the local incremental
17



problem. The incremental boundary-value problem thus takes a variational

form:

w, Tf g¼ arg stat
w, T

I w, Tð Þ: ð68Þ

In many cases (we will consider specific examples in the following), the

incremental potential W(F, T) shows up to be convex in F and concave

in T (i.e. unless limits of material stability have been attained). We can then

characterize the solution fields as a saddle point of the incremental functional:

w, Tf g¼ arg inf
w

sup
T

I w, Tð Þ: ð69Þ

By repeating this optimization problem, taking results of the previous time

step as initial conditions for the current increment, one can thus compute

the evolution of dissipative thermo-mechanical systems. It is important to

note that the functional I which is to be optimized changes at each time step.

Note that Canadija and Mosler (2011) have proposed an alternative

incremental variational formulation, which is written in terms of entropy

and internal temperature, in keeping closer to the time-continuous formu-

lation presented earlier.

3.2.3 Mixed thermal boundary conditions
The variational formulation of coupled thermo-mechanical boundary-value

problems described earlier only includes pure Dirichlet or Neumann bound-

ary conditions. More complex boundary conditions, such as contact or heat

convection, frequently occur. We will not discuss contact here, since it is a

topic in itself. Variational approaches to contact have for example been pro-

posed in Johnson, Ortiz, and Leyendecker (2012), Kane, Repetto, Ortiz,

and Marsden (1999), and Pandolfi, Kane, Marsden, and Ortiz (2002), and

the reader is referred to these works and references therein. With respect

to the heat transfer problem, we can easily include mixed boundary condi-

tions, where the imposed heat flux depends on the temperature at the

boundary. This kind of boundary condition can for example represent heat

exchange with a surrounding fluid by (forced or natural) convection. It can

also be used to model heat transfer to another contacting solid.

For illustration purposes, we will consider the simplest heat exchange

model, where the heat flux at a boundary is proportional to the temperature

difference between the boundary and its immediate environment:

h¼ h T �Textð Þn for x 2 @cB ð70Þ
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where @cB is the part of the (deformed) boundary where heat exchange con-

ditions are effective, Text is the temperature of the external fluid or solid, h is

a given heat exchange coefficient, and n is the outward normal to the

(deformed) boundary. Such boundary conditions can be included in the

variational formulation by adding an additional term Fc to functional

(62). This term is given by

Fc T ; F,Yð Þ¼
ð
@cB0

h

2

T �Text tð Þð Þ2
Y

JS dS ð71Þ

where JS is the ratio of a surface element in the deformed configuration to

the same surface element in the reference configuration: JS¼ n � cof F �N¼
Jn � F �T � N. The variational principle then becomes

_w, _�, Tf g¼ arg stat
_w, _�, T

F _w, _�, Tð Þ�Fc Tð Þ½ �: ð72Þ

In this modified variational principle, it is of course understood that

@TB0 [ @HB0 [ @cB0¼ @B0 and @TB0 \ @cB0¼;, @HB0 \ @cB0¼;.
In the time-discrete setting, the variational principle describing the

incremental coupled thermo-mechanical boundary-value problem can

similarly be modified by the following function:

I c T ; Fð Þ¼
ð
@cB0

dt
h

2

T �Text tð Þð Þ2
T0

JSa dS ð73Þ

where JSa denotes the surface Jacobian evaluated at time ta ¼ (1� a)t0 þ at.
The variational principle is then given by

w, Tf g¼ arg stat
w, T

I w, Tð Þ�I c T ;—0wð Þ½ �: ð74Þ

It is interesting to note that the inclusion of the term I c introduces an addi-

tional source of coupling between displacement and temperature. Indeed

the modification of the boundary area caused by deformation has a direct

effect on the total heat flux exchanged with the environment. Because of

the variational nature of the formulation, this also implies that an additional

term will appear in the mechanical balance equations (variations of F � Fc

with respect to w). This term is purely numerical, but ensures the symmetry

of the mathematical formulation. It will vanish when dt! 0, as consistency

requires. In practice, this effect can be avoided by choosing a¼ 0 in expres-

sion (73). The effect of deformation on the exchanged heat flux will then be

delayed by one time step.
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3.3. Dynamics
The variational formulation (68) accounts for rate-dependent behavior,

including transient thermal effects. It formally corresponds to a quasi-

stationary problem, where heat capacity terms are treated as rate-dependent

thermo-mechanical behavior. Inertia terms can be accounted for in the

time-discrete setting, but at the cost of directly embedding a specific time

discretization within the formulation. Indeed, we can extend the approach

initially proposed byRadovitzky andOrtiz (1999) in the isothermal context,

leading to the following modified functional:

I w, Tð Þ¼
ð
B0

r0
2bdt2

dw �dwþW F, Tð Þ�dt w �—0T

T
;Fa,Ta,Za

� �	 
� �
dV

�
ð
B0

r0b
	 tð Þ�dwdV �

ð
@sB0

�t tð Þ �dwdS

þ
ð
B0

Dtr0Q tð Þ log T
T0

dV �
ð
@HB0

dt �H tð Þ log
T

T0

dS ð75Þ

with b	 tð Þ¼ b tð Þ� 1
bdt _w0þ 1

2
�b

� �
dt€w

0

� �
. The incremental boundary-

value problem then takes the variational form

w, Tf g¼ arg inf
w
sup
T

I w, Tð Þ: ð76Þ

When combined with the following update rule for accelerations and

velocities:

€w¼
1

2
�b

b
€w0þ

1

bdt
_w0 þ

dw
bdt2

ð77Þ
_w¼ _w0þ 1� gð Þdt€w0 þ gdt€w ð78Þ

the stationarity condition of I with respect to w indeed yields a discrete

conservation of momentum equation corresponding to the classical

Newmark integration scheme of dynamics (Hughes, 2000).

The classical Newmark scheme is typically used with parameters

(b ¼ 0.25, g ¼ 0.5) in implicit dynamics (ensuring unconditional stability

in linear elasto-dynamics), or with parameters (b ¼ 0.0, g ¼ 0.5) in explicit

dynamics (with only a trivial matrix inversion when using lumped mass

matrix). Clearly, the latter case cannot be implemented within the proposed

variational framework, which thus appears to be intrinsically implicit.
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Note that variational constitutive updates also proved very useful in

deriving energy and momentum-conserving time integration schemes

(Noels, Stainier, & Ponthot, 2006, 2008), since they allow to work with

an effective incremental potential formally identical to hyper-elasticity.

3.4. Linearization
For a wide range of engineering cases, the problem can be simplified by con-

sidering thatdisplacements anddisplacementgradients are small.Thedifference

between the initial and deformedconfigurations can then be neglected, and the

relevant strain measure is the engineering strain:

«¼ 1

2
—0wþ —0wð ÞT� �� I: ð79Þ

where I is the identity second-order tensor. All the above variational prin-

ciples still hold, provided that the deformation gradient is replaced by

F� Iþ« ð80Þ
and Piola stress tensor P by Cauchy stress tensor s.

Similarly, if temperature variations are small (about a reference temper-

ature Tr), i.e.:

T ¼Trþy,
y
Tr


 1 ð81Þ

the problem can be simplified. The generalized gradient is then given by

G��—y
Tr

ð82Þ

while coefficients occurring in the time discrete variational formulation

become

T

T0

� 1þdy
Tr

: ð83Þ

A consistent approximation to the average dissipation function (eq. 3.21) is

then obtained by replacing factors as follows:

T0

T
� Tr

Trþdy
and

dT
T

� dy
Trþdy

: ð84Þ
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Finally, the “linearized” balance equations become:

— �sþr0b tð Þ¼ 0,

r0Tr _�¼Dint�— �h —yð Þþr0Q tð Þ:

�
ð85Þ

Note that the assumptions of small displacements and small temperature var-

iations are independent and not necessarily linked. Although the above

approximations lead to linear balance equations in the uncoupled case, this

is not true in general in the coupled case. Hence, the term linearization

should be considered only as meaning linearization of strain and temperature

gradient measures.

4. THERMO-VISCO-ELASTICITY

In this section, we look in more detail at variational formulations for

thermo-visco-elastic constitutive models. We start by the simplest model:

small-strains Kelvin–Voigt visco-elasticity. This model does not require

internal variables, and its relative simplicity allows to develop the details

of the variational treatment of thermo-mechanical coupling. Afterwards,

we look at more general Maxwell models, involving internal variables,

and repeat the previous analysis in the context of finite strains. Note that

in this section, we mostly consider time-discrete variational constitutive

updates, although time-continuous variational formulations are also

available.

4.1. Linearized kinematics
Wewill first briefly review the basic models of thermo-visco-elasticity under

linearized kinematics assumptions, and their variational formulation.

4.1.1 Kelvin–Voigt model
The simplest visco-elasticity model can be described by combining a linear

(thermo-) elasticity free-energy potential:

W «, yð Þ¼ 1

2
« �C yð Þ �«�ya �C yð Þ �«�1

2
C
y2

Tr

ð86Þ

where C(y) is a (temperature-dependent) fourth-order elasticity tensor, a a

second-order tensor describing (possibly anisotropic) thermal expansion, C

the heat capacity (per unit undeformed volume), and a linear viscosity

dissipation function:
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D _«; yð Þ¼ 1

2
_« �Cu yð Þ � _« ð87Þ

where Cu yð Þ is a (temperature-dependent) fourth-order viscosity tensor.

The entropy is then given by the following expression:

r0� «, yð Þ¼�@W

@y
¼C

y
Tr

þa �C �«�1

2
« �C0 yð Þ �«þya �C0 yð Þ �« ð88Þ

where we have a heat capacity term, a thermo-elastic term, and two terms

linked to thermal softening of elastic moduli. Note that, although the indi-

vidual mechanical and thermal behaviors are linear, the coupled thermo-

mechanical model will be nonlinear because of the presence of dissipative

terms (which will show in the effective entropy increase below).

In this case, there are no internal variables, and the incremental energy

potentials are given by

W «, y; «0, y0ð Þ¼W «, yð Þ�W «0, y0ð Þþr0�0 y�y0ð Þ
þdt D 1þdy

Tr

� �
d«
dt

;y tð Þ
� �	 


: ð89Þ

Using the consistent approximation of incremental dissipation functions

proposed in Stainier (2011), the last term becomes

D 1þdy
Tr

� �
d«
dt

;y
� �	 


¼ Tr

Trþdy
D 1þdy

Tr

� �
d«
dt

; y0

� �
þ dy
Trþdy

D 1þdy
Tr

� �
d«
Dt

;ya

� �
ð90Þ

Considering the specific quadratic form we chose for D in this setting, this

expression reduces to

D 1þdy
Tr

� �
d«
dt

;y
� �	 


¼ 1

2
1þdy

Tr

� �
d«
dt

� Cu y0ð Þþdy
Tr

Cu yað Þ
� �

:
d«
dt

:

ð91Þ
The resulting incremental expressions for stress and net entropy increase are

then given by

s¼ @W
@«

¼C yð Þ � «�yað Þþ 1þdy
Tr

� �
Cu y0ð Þþdy

Tr

Cu yað Þ
� �

:
d«
dt

ð92Þ
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�r0d�
eff ¼ @W

@y
¼�r0d�þ

d«
2Tr

� Cu y0ð Þþdy
Tr

Cu yað Þ
�

þ 1þdy
Tr

� �
Cu yað ÞþadyC0

u yað Þð Þ
�
:
d«
dt

ð93Þ

which are consistent with continuous expressions when dt ! 0.

4.1.2 Generalized Maxwell model
We can now consider slightly more complex visco-elasticity models, using

internal variables. In particular, generalized Maxwell visco-elasticity models

consist of an elastic branch in parallel with one or more visco-elastic bra-

nches. For the purpose of illustrating the variational formulation in that case,

we will limit ourselves to a single visco-elastic branch. Such a model is then

described by the following thermodynamic potentials:

W «, y, «uð Þ¼W 0ð Þ «, yð ÞþW 1ð Þ «e, yð Þ ð94Þ
where «e ¼ « � «u, and

D _«u; yð Þ¼ 1

2
_«u �Cu yð Þ � _«u: ð95Þ

Typically, W(0) can take a form similar to Eq. (86), while W(1) can take a

simple quadratic form:

W 1ð Þ «e, yð Þ¼ 1

2
«e �C 1ð Þ yð Þ �«e ð96Þ

where C
(1)(y) is another (temperature-dependent) fourth-order elasticity

tensor. Note that one could also add a thermo-elastic term to W(1). In

the following, we will restrict ourselves to temperature-independent viscous

moduli, for the sake of clarity and conciseness. The treatment of such tem-

perature dependence follows the same lines as shown in the Kelvin–

Voigt case.

The incremental energy potential now takes the following form:

W «, y; «0, y0ð Þ¼ inf
«u

�
W 0ð Þ «, yð ÞþW 1ð Þ «�«u, yð Þ�W «0, y0, «u0

� �
þr0�0 dy þdt D 1þdy

Tr

� �
d«u

dt

� ��
: ð97Þ
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Stationarity condition for the viscous strain yields:

�C
1ð Þ � «�«uð Þþ 1þdy

Tr

� �2

Cu � d«
u

dt
¼ 0 or

«u ¼ C
1ð Þ þ 1

dt 1þdy
Tr

� �2

Cu

" #�1

� C
1ð Þ �«þ 1

dt
1þdy

Tr

� �2

Cu �«u0
" #

:

ð98Þ
Note that in the case of multiple Maxwell branches, the viscous strain in each

of these branches can be optimized independently. Thermodynamic forces

conjugate to strain and temperature through the incremental potential are then

given by:

s¼ @W
@«

¼s 0ð Þ «, yð ÞþC
1ð Þ � «�«uð Þ ð99Þ

�r0d�
eff ¼ @W

@y
¼ r0d�þ

1

Tr

1þdy
Tr

� �
d«u �Cu � d«

u

dt
ð100Þ

where s(0)(«, y) ¼ @«W
(0)(«, y) and «u is given by Eq. (98). Once again,

these results are consistent with continuous expressions when dt ! 0.

The computation of material tangents is straightforward from the previous

expressions and will not be detailed here.

More sophisticated models can be constructed by multiplying the num-

ber of Maxwell branches and/or adding a Kelvin branch in parallel.

4.2. Finite thermo-visco-elasticity
We are now ready to repeat the previous analysis in the context of finite

transformations, following the presentation of Fancello et al. (2006). It will

appear that a key aspect for an efficient treatment of constitutive updates in

this context, at least for isotropic materials, is the use of a spectral description.

4.2.1 Kelvin–Voigt model
The above thermo-visco-elasticity models and their variational formulation

can be extended to finite strains. For example, one can consider the follow-

ing general isotropic elastic free energy potential:

W F, Tð Þ¼ f J , Tð ÞþW e Ĉ, T
� �þW t Tð Þ ð101Þ

where J ¼ det[F], Ĉ¼ F̂T F̂, F̂¼ J�
1
3F, f( J, T) an energy function linked

to volume changes (possibly including thermo-elastic effects), We a
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strain-energy function with temperature-dependent elastic moduli, andW t

a thermal stored energy (heat capacity) function. A typical example of

volumetric function is

f J , Tð Þ¼K J�1� log J�3a T �Trð Þ log J½ � ð102Þ
where K is the bulk modulus and a the coefficient of thermal expansion,

while for heat capacity, a typical example is

W t Tð Þ¼C T �Tr�T log
T

Tr

� �
ð103Þ

where C is the heat capacity (per unit undeformed volume). For the strain-

energy potential W e, many possibilities are available, among which neo-

Hookean, Mooney–Rivlin, or the general Ogden potential (see for example

Holzapfel (2000) for other possibilities).

The above free-energy potential can be combined with a general dissi-

pation potential of the form

D _F; F, T
� �¼f D; Tð Þ: ð104Þ

This specific form implies that no viscous stress is generated by pure rotations

(objectivity). The simplest case would then be given by

f D; Tð Þ¼ 1

2
D �Cu Tð Þ �D: ð105Þ

Note that in an incremental context, one must be attentive to preserving

objectivity. For example, if approximating L by dFFa
�1, rigid body rotations

will generate spurious strain rate. Suitable approximations can be built by

noting that D¼F�T _EF�1, yielding

D� 1

2dt
F�T
a dCF�1

a ð106Þ
which clearly becomes equal to zero in case of rigid-body motions. An alter-

native approximation, which preserves isochoricity (i.e. if det F ¼ det F0,

then tr D ¼ 0), is given by:

D� 1

2dt
log F�T

0 CF�1
0

� � ð107Þ
The incremental potential energy then takes the form

W F, T ; F0, T0ð Þ¼W F, Tð Þ�W F0, T0ð Þþr0�0dT

þdt f
T

T0

D;T tð Þ
� �	 


ð108Þ
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where a consistent approximation to the average dissipation function is

provided by

f
T

T0

D;T tð Þ
� �	 


�T0

T
f

T

T0

D;T0

� �
þdT

T
f

T

T0

D;Ta

� �
: ð109Þ

Considering the simple quadratic form earlier, it yields

f
T

T0

D;T tð Þ
� �	 


¼ 1

2

T

T0

D � Cu T0ð ÞþdT
T0

Cu Tað Þ
� �

�D ð110Þ

where D is given by one of the above incremental approximations.

The stress tensor is then given by

P¼ @W
@F

¼ @W

@F
þF

T

T0

D � Cu T0ð ÞþdT
T0

Cu Tað Þ
� �

� 2dt
@D

@C

� �� �
ð111Þ

while the net effective entropy variation is given by

�r0d�
eff ¼ @W

@T
¼�r0d�þ

dt
2T0

D � Cu T0ð ÞþdT
T0

Cu Tað Þ
�

þ T

T0

Cu Tað ÞþadTC
0
u Tað Þ� �� �D: ð112Þ

It is relatively straightforward to verify that these expressions are consistent

with the continuous formulation when dt ! 0.

4.2.2 Generalized Maxwell model
Following closely the presentation adopted in the linearized kinematics sec-

tion, we now introduce a finite strains version of the generalized Maxwell

model considered before. A presentation of general finite strains visco-elastic

models, including a Kelvin–Voigt branch and several Maxwell branches can

be found in Fancello et al. (2006), yet we will limit ourselves to a single

branch here. We thus consider the following free-energy thermodynamic

potential:

W F, T , Fuð Þ¼W 0ð Þ C, Tð ÞþW 1ð Þ Ce, Tð Þ ð113Þ
where we adopt the multiplicative decomposition initially proposed by

Sidoroff (1974) for finite visco-elasticity:

F¼FeFu � ð114Þ
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We recall that free-energy potentials should depend on C¼ FT F and Ce ¼
F eT F e in order to ensure objectivity. Viscous deformations are assumed to

produce no rotation:

_F
u¼DuFu ð115Þ

where Du is a viscous strain-rate symmetric tensor. Viscous strains are typ-

ically assumed to be isochoric, in which case tr[Du] ¼ 0. In the simplest

case (one Maxwell branch in parallel with an elastic branch), the dissipation

function then takes the form:

D _F
u
; Fu, T

� �¼f 1ð Þ Du; Tð Þ � ð116Þ
In order to avoid lengthy developments, we will assume in the following

that there is no parametric dependence of f(1) on T.

The incremental energy potential then takes the form:

W F, T ; F0, F
u
0,T0

� �¼ inf
Du

W 0ð Þ C, Tð ÞþW 1ð Þ Ce, Tð Þ�W F0, T0, F
u
0

� �h
þr0�0dT þdtf

T

T0

Du
� ��

ð117Þ

where one must provide an incremental update rule for Fu. The exponential

update formula ofWeber and Anand (1990), initially proposed in the frame-

work of finite elasto-plasticity:

Fu¼ exp dtDuð ÞFu
0 ð118Þ

provides the advantage of preserving the isochoric nature of viscous defor-

mation (if enforced) and will thus be used here. We can then write

Ce¼ exp �dtDuð ÞCe
tr exp �dtDuð Þ ð119Þ

where Ctr
e ¼F0

u�TC0
eF0

u�1 is a predictor (trial) elastic Cauchy–Green tensor.

Considering the specific case of isotropic materials, for which thermody-

namic potentials can be represented as functions of principal values of their

tensorial arguments:

W 1ð Þ Ce, Tð Þ¼W 1ð Þ ce1, c
e
2, c

e
3, T

� � ð120Þ
f 1ð Þ Duð Þ¼f 1ð Þ du1, d

u
2, d

u
3

� � ð121Þ
where {c1

e, c2
e, c3

e} (resp. {d1
u,d2

u,d3
u}) are the principal values of tensorCe (resp.

Du), the optimization problem of the constitutive update can be reduced to a
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simpler form. Indeed the ansatz that Du, Ctr
e , and thus Ce, are co-linear (i.e.

share the same principal directions) can then be verified a posteriori (see

Fancello et al., 2006), yielding

log leI
� �¼ log ltrI

� ��dtduI I ¼ 1, 2, 3ð Þ ð122Þ
where leI ¼

ffiffiffiffi
ceI

p
and lI

tr are the principal stretches associated to the elastic and

trial Cauchy–Green tensors. It proves convenient in practice to use the log-

arithmic principal strains eI
e¼ log(lI

e) and eI
tr¼ log(lI

tr). The optimization

problem now reduces to

inf
du
1
, du

2
, du

3

W 1ð Þ ee1, e
e
2, e

e
3, T

� �þdtf 1ð Þ T

T0

du1,
T

T0

du2,
T

T0

du3

� �� �
ð123Þ

where eI
e¼ eI

tr�dt dI
u, and where an isochoricity constraint can be added:

d1
uþd2

uþd3
u¼0. The problem is then reduced to solving three (or four in

the isochoric case) nonlinear scalar stationarity equations.

The net effective entropy variation is then given by

r0d�
eff ¼ @W

@T
¼�r0d�þ

dt
T0

@f 1ð Þ

@Du

T

T0

Du
� �

�Du ð124Þ

which is consistent with the continuous formulation when dt ! 0.

4.2.3 Viscous fluids
Newtonian fluids are described by Navier–Poisson constitutive equations:

s¼�p r, Tð ÞIþktr D½ �Iþ2mudevD ð125Þ
wheres is Cauchy stress tensor,D¼ (Lþ LT)/2 is the strain rate tensor, and

p(J, T) is the hydrostatic pressure, related to the density r and temperature T

through the equation of state (EOS). It is usually assumed that, either the

fluid flow is incompressible (tr[D] ¼ 0), either k ¼ 0 (Stokes condition),

such that the pressure is always equal to the hydrostatic pressure: tr[s]¼�p.

The Navier–Poisson constitutive equations can be seen as a particular

case of a finite-strain Kelvin–Voigt visco-elasticity model and can thus easily

be put under variational form. This is obtained by considering a purely

volumic Helmholtz free energy:

W F, Tð Þ¼ f J , Tð Þ ð126Þ
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where J ¼ det F, and a viscous dissipation potential of the form:

D _F; F, T
� �¼ mu J dev D½ � �dev D½ �: ð127Þ

It is easily verified that this yields Navier–Poisson equations, with k ¼ 0

and

p r, Tð Þ¼�@f

@J
J , Tð Þ¼�@f

@J

r0
r
,T

� �
ð128Þ

where we recall that Jr ¼ r0.
Finally, note that most non-Newtonian viscous fluid models could also

be formulated in the current variational framework.

5. THERMO-ELASTO-VISCO-PLASTICITY

Elasto-(visco-)plastic behavior is characterized by the existence of a

domain in stress space within which the material behaves elastically. On

the boundary of this domain (and outside in the case of visco-plasticity), plas-

tic deformation can occur. Traditionally, plasticity models are thus described

by the definition of a function of stress defining the elastic domain (Lubliner,

1990). In the case of nonassociated plasticity, another function of stresses can

be defined, from which the plastic strain rate is computed. In the current

setting, we will not make explicit use of such yield and flow functions,

but instead introduce a flow rule and a dissipation function (which, in the

rate-independent case, is actually the dual to the indicator function of the

admissible domain). The latter approach is more kinematic in nature, but

it is in the end equivalent to the more classical stress-based approach. It

nonetheless offers the advantage of being well adapted to the variational for-

mulation presented in this paper.

5.1. Crystal plasticity
5.1.1 Constitutive modeling
In (poly-)crystalline materials, plastic deformation is due to the motion of

dislocations along certain slip directions on specific slip planes (the combi-

nation of a particular slip direction and slip plane will be referred to as a slip

system). Following Rice (1971), we thus adopt a flow rule of the form

Lp¼ _F
p
Fp�1¼

XN
k¼1

_g kð Þs kð Þ�m kð Þ ð129Þ
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where g(k) is the slip strain, and s(k), and m(k) are orthogonal unit vectors

defining the slip direction and slip-plane normal corresponding to slip sys-

tem k. The collection g of slip strains may be regarded as a subset of the

internal variable set Z. A zero value of a slip rate _g kð Þ signifies that the

corresponding slip system is inactive. The flow rule (129) allows for multiple

slip, i.e. for simultaneous activity on more than one system over a region of

the crystal. The vectors {s(k), m(k)} remain constant throughout the defor-

mation and are determined by crystallography. In order to account for non-

monotonous loading paths, it is common to consider dislocation glide in

þs(k) and �s(k) directions as occurring in separate systems, and adding the

constraint _g kð Þ � 0 (for each of the duplicate systems) in order to preserve

consistency of the formulation.

Plastic deformations leave the crystal lattice undistorted and unrotated,

and, consequently, induce no long-range stresses. Some degree of lattice

distortion Fe, or elastic deformation, may also be expected in general.

One therefore has, locally,

F¼FeFp ð130Þ
This multiplicative elastic–plastic kinematics was first suggested by Lee

(1969), and further developed and used by many others. A classical assump-

tion is to consider that the elastic behavior is unaffected by other internal

processes (dislocations in this case), yielding the following expression for

the free energy:

W F, T , Fp, gð Þ¼W e Ce, Tð ÞþW p g, Tð ÞþW t Tð Þ ð131Þ
whereWe is the elastically stored energy (recoverable),Wp is the plastically

stored energy (not directly recoverable), for example under the form of dis-

locationmicrostructures, andW t the thermally stored energy (heat capacity).

The dependence of the elastic energy onCe (instead of Fe) ensures objectiv-

ity, as explained earlier. The rate of free energy can then be written as

_W ¼P � _F� t�gð Þ� _g�r0� _T ð132Þ
where t ¼ {t(k)} is the collection of resolved shear stresses:

t kð Þ ¼ FeTPFpT
� � �ðs kð Þ�m kð ÞÞ ð133Þ

while g ¼ {g(k)} is the collection of yield resolved shear stresses linked to

plastic energy storage mechanisms g kð Þ ¼ @g kð ÞW p.
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The kinematic of plastic slip can bemodeled through a dissipation function

D _g; g, Tð Þ. Typical expressions include power-law type formulas such as

D _g; g, Tð Þ¼
XN
k¼1

f kð Þð _g kð Þ;g,TÞ

with f kð Þð _g kð Þ; g, TÞ¼
m

mþ1
y kð Þ g, Tð Þ _g kð Þ

0

_g kð Þ

_g kð Þ
0

 !mþ1
m

if _g kð Þ � 0

þ1 otherwise

8>>><>>>:
ð134Þ

where Y¼ {Y (k)} is a collection of dissipative yield resolved shear stresses and

_g kð Þ
0 are reference slip rates. The exponent m 2 [1, þ1] controls rate-

dependency effects. In particular, rate-independent behavior can be recovered

at the limit whenm!þ1. This power-law expression is indeed often used a

way to regularize rate-independent models. Complex hardening models (e.g.

including latent hardening) can be included in the generic expression Y (k)(g,
T ) (see for example Stainier, Cuitiño, & Ortiz, 2002). More complex rate-

dependency models, e.g. based on thermal activation theories, can also be for-

mulatedunder the formof a dissipation function (again, see Stainier et al., 2002).

The rate problem of crystal plasticity can then be formulated variationally

by introducing functional

D _F, _�, T , _g, F, �, Fp, g
� �¼P _F� t� gð Þ � _g�r0 _� T�Yð ÞþD

T

Y
_g;g,Y

� �
ð135Þ

and the minimization problem

Deff
_F, _�, T
� �¼ inf

_g
D _F, _�, T , _g; F, �, Fp, g
� �

: ð136Þ

Considering for example the case of the power-law dissipation function

given in Eq. (134), stationarity conditions yield

t kð Þ ¼ g kð Þ þY kð Þ g, Tð Þ _g kð Þ

_g kð Þ
0

 !1
m

ð137Þ

where we have accounted for the fact that posterior stationarity condition

with respect to _� will yield T ¼ Y.
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5.1.2 Incremental update
In the time-discrete setting, the local variational constitutive update for crys-

tal plasticity takes the following form:

W F, Tð Þ¼ inf
g

W F, T , Fp, gð Þþdt D
T

T0

dg
dt

;g tð Þ,T tð Þ
� �	 
� �

þr0�0dT �W F0, T0, F
p
0, g0ð Þ: ð138Þ

In the above expression, a relation must be provided between Fp, dg, and
F0
p, which is consistent with the continuous flow rule (129). The exponen-

tial update (Weber & Anand, 1990), first used in the context of crystal

plasticity by Miehe (1996):

Fp ¼ exp
XN
k¼1

dg kð Þs kð Þ�m kð Þ
!
F
p
0 ð139Þ

provides such an expression, with the additional advantage that it preserves

isochoricity of the plastic flow. Consistent approximation of the average dis-

sipation function can be constructed following the general formula (51), but

for the remainder of this section, we will consider the simpler case without

parametric dependence of the dissipation function on temperature:

D
T

T0

dg
dt

;g tð Þ,T tð Þ
� �	 


�D
T

T0

dg
dt

;ga

� �
: ð140Þ

The constitutive update problem then reduces to the following con-

strained optimization problem:

g¼ arg inf
g

W F, T, Fp, gð ÞþdtD
T

T0

dg
dt

;ga

� �� �
with dg kð Þ� 0 k¼ 1, . . . ,Nð Þ

ð141Þ

and Fp given by Eq. (139). Obtaining a numerical solution to this optimi-

zation problem may not be a trivial task, especially in the presence of com-

plex (latent) hardening phenomena. Without going into the details, let us

simply say that, from our experience, constrained optimization methods

such as proposed by Bertsekas (1995), especially two-metric projection

methods, proved quite robust in this context.
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5.2. Macroscopic plasticity
In this section, we will mainly focus on J2 (von Mises) plasticity, since it is

well representative of macroscopical plasticity models, and although without

doubt the most widely used. In addition, its specific structure allows for

pushing analytic expressions farther, including in the large deformation set-

ting, yielding efficient numerical algorithms, which we will relate to the

classical radial return of Wilkins (1964).

5.2.1 Linear kinematics
Under small strains assumptions, the total deformation is additively

decomposed into an elastic strain «e and a plastic strain «p:

«¼ «eþ«p: ð142Þ
A plastic flow rule corresponding to von Mises-type plasticity can be

written as follows:

_«p¼ _�epM ð143Þ
where _�ep is the amplitude of the plastic strain rate and M its direction. The

symmetric tensorMmust of course be normalized, and the particular choice

M �M ¼ 3

2
ð144Þ

ensures that �ep corresponds to the cumulated equivalent plastic strain. In

addition, we will require that plastic deformation be isochoric:

tr M½ � ¼ 0: ð145Þ
Relation (143) can be seen as a reparametrization of plastic strain rate.

For most polycrystalline metals, it is generally accepted that work hard-

ening does not modify the elastic behavior of the material, leading to con-

sider the following expression for free energy:

W «, T , «p,�epð Þ¼W e «�«p,Tð ÞþW p «p,�ep, Tð ÞþW t Tð Þ ð146Þ
whereW e is the elastically stored energy (recoverable),W p is the plastically

stored energy (not recoverable), and W t the thermally stored energy (heat

capacity). Accounting for Eq. (143), we can write the rate of free energy as

_W ¼s � _«� s�scð Þ �M� t½ �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
�y

_�ep�r0� _T ð147Þ
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where s ¼ @«W is the (Cauchy) stress, sc ¼ @«pW
p is the back-stress (kine-

matic hardening), and g¼ @�epW
p is a yield stress associated to energy storage

mechanisms (such as dislocationmicrostructures). From the above, we see that

quantity y can be considered as conjugate to the cumulated equivalent plastic

strain�ep, when accounting for the flow rule. Following the formalismofGSM,

wewill then describe the relation between y and _�ep through the definition of a
convex dissipation potential D _�ep;�ep, T

� �
, or its conjugate D∗ y;�ep, Tð Þ.

5.2.1.1 Rate problem of visco-plasticity

Functional D _«, _�, T , _�ep,M
� �

is then given by

D _«, _�, T , _�ep,M; «, �, «p,�ep
� �¼s � _«�y_�ep�r0 _� T �Yð ÞþD

T

Y
_�ep;�ep,Y

� �
ð148Þ

and the effective rate potential is defined as

Deff _«, _�, Tð Þ¼ inf
_�ep ,M

D _«, _�, T , _�ep,M; «, �, «p,�ep
� �

: ð149Þ

Note that the minimization with respect toM can be related to the principle

of maximal dissipation:

inf
M

D, sup
M

y_�ep: ð150Þ

Accounting for constraints onM, the optimal plastic flow direction is given

by

M ¼
ffiffiffi
3

2

r
dev s�sc½ �
dev s�sc½ �k k¼

ffiffiffi
3

2

r
s

sk k ð151Þ

where s ¼ dev[s � sc], which corresponds to the normal direction to von

Mises yield criterion. Using this result, we can rewrite conjugate force y as

y¼
ffiffiffi
3

2

r
s �s� g¼ seq� g ð152Þ

where seq is von Mises equivalent stress (accounting for backstress sc).

Dissipation potential D _�ep;�ep, T
� �

takes the general form

D _�ep;�ep, T
� �¼ f _�ep;�ep, T

� �
if _�ep � 0

þ1 otherwise

(
ð153Þ
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with f a convex function such that f 0;�ep, Tð Þ¼ 0 and @_�epf 0;�ep, Tð Þ¼
sy �ep, Tð Þ� 0. Minimization of D with respect to _�ep then yields the follow-

ing result:

arg inf
_�ep

D _«, _�, T , _�ep,M; «, �, «p,�ep
� �

¼ 0 if seq� g< sy
_�ep	 : seq� g¼ @_�epf _�ep∗;�ep,T

� �
if seq� g� sy:

(
ð154Þ

where we have accounted for the fact that stationarity with respect to _� will
yield T ¼ Y. Note that in the rate-independent case, corresponding to a

function f linear in _�ep, we have @_�epf _�ep;�ep, T
� �¼ sy �ep, Tð Þ, and thus nec-

essarily seq � g ¼ sy. We thus recover the classical results of von Mises

elasto-visco-plasticity.

5.2.1.2 Constitutive updates
In most applications, the problem of interest is to compute the time evolu-

tion of stress and plastic deformations. The local time-discrete constitutive

problem then takes the following form:

W «, yð Þ¼ inf
�ep,M

W «, y, «p,�epð Þþdt D 1þdy
Tr

� �
d�ep

dt
;�ep tð Þ,y tð Þ

� �	 
� �
þr0�0dy�W «0, y0, «

p
0,�e

p
0ð Þ ð155Þ

where

«p¼ «
p
0þd�epM: ð156Þ

Consistent expressions for the average dissipation function hDi have been

proposed in Stainier (2011) and will not be detailed here. In order to avoid

cluttering the presentation, we will instead consider the special case where

there is no parametric dependence of D on temperature, in which case we

can take

D 1þdy
Tr

� �
d�ep

dt
;�ep tð Þ

� �	 

�D 1þdy

Tr

� �
d�ep

dt
;�epa

� �
: ð157Þ

Stationarity condition forM (including constraints) yields relation (151)

again, where s ¼ dev[s � sc] depends on �ep. Since dissipation function
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D _�ep
� �

is not regular, a practical approach to finding the infimum with

respect to�ep consists at first evaluating the gradient of the incremental energy

functional at the singularity point:

@

@d�ep
W «, y, «p,�epð ÞþdtD 1þdy

Tr

� �
d�ep

dt
;�epa

� �� �� �
d�ep¼0þ

¼�seqtr þ g0þð1þdy
Tr

Þ@_�epf 0;�ep0ð Þþadt@ �epf 0;�ep0ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}esy, tr
ð158Þ

where str
eq is the (trial) equivalent vonMises stress computed at material state

«, y, «p0,�e
p
0f g, and where we have used the stationarity condition on M.

Considering the convexity of the incremental energy (w.r.t. �ep), we know
that if this gradient is positive (i.e. seqtr � g0þesy, tr), then the optimum is at

d�ep ¼ 0, and the increment is elastic, while otherwise the optimum is

d�ep > 0. We thus recover a predictor–corrector scheme, such as classically

used in computational plasticity.

The von Mises criterion mostly makes sense in the context of isotropic

elasticity, in which case we can write the elastic free energy as

W e «e, yð Þ¼ f tr «e½ �, yð Þþm yð Þ dev «e½ �ð Þ2 ð159Þ
where f can be a quadratic function of tr[«e] in the simplest case, or include a

linear term if accounting for (isotropic) thermo-elasticity. If, in addition, we

consider the case of pure isotropic hardening (sc � 0), we can then write

«e¼ «etr�d�epM) s¼ str�2m yð Þd�epM ð160Þ
where «tr

e ¼«�«0
p and str¼2mdev[«tr

e ]. Considering stationarity condi-

tion (151), an immediate consequence is that s, str, and M are aligned:

M5

ffiffiffi
3

2

r
s

sk k¼
ffiffiffi
3

2

r
str

strk k : ð161Þ

Thus, in the case of purely isotropic elasto-visco-plasticity, the variational

formulation is equivalent to the classical radial return algorithm (Wilkins,

1964):

s¼ 1�
ffiffiffi
3

2

r
d�ep

dev eetr
� ��� ��

 !
str: ð162Þ
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The equivalent von Mises stress is then given by

seq ¼ seqtr �3m yð Þd�ep ð163Þ
and the stationarity condition for �ep is

�seqtr þ3m yð Þd�epþ g �ep, yð Þþ �sy �ep, yð Þ¼ 0 ð164Þ
where

�sy¼ 1þdy
Tr

� �
@f
@ _�ep

1þdy
Tr

� �
d�ep

dt
;�epa

� �
þadt

@f
@�ep

1þdy
Tr

� �
d�ep

dt
;�epa

� �
ð165Þ

is a consistent incremental approximation of the dissipative part of the yield

stress. A study of the effect of the choice of algorithmic parameter a in the

context of elasto-visco-plasticity can be found in Brassart and Stainier (2012).

5.2.2 Finite strains
Under the general finite strains regime, several options are possible to intro-

duce the notions of elastic and plastic strains. Here, we will adopt the mul-

tiplicative decomposition, first suggested by Lee (1969) and commonly used

by many other authors [see for example Simo and Hughes (1998)]:

F¼FeFp: ð166Þ
A plastic flow rule corresponding to von Mises-type plasticity can then be

written as follows:

Lp¼ _F
p
Fp�1 ¼Dp ¼ _�epM ð167Þ

with M a symmetric tensor such that

M �M ¼ 3

2
and tr M½ � ¼ 0 ð168Þ

as before (linear kinematics), i.e. we assume that plastic deformation is

isochoric and that it does not generate any rotation (thus defining a unique

intermediate configuration). Just as in previous section, we will consider that

work hardening does not modify the (hyper-)elastic behavior of thematerial,

yielding

W F, T , Fp,�epð Þ¼W e Ce, Tð ÞþW p Fp,�ep, Tð ÞþW t Tð Þ ð169Þ
where W e is the elastically stored energy (recoverable), for which we have

accounted for objectivity through the use of Ce,W p is the plastically stored
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energy (not recoverable), and W t the thermally stored energy (heat capac-

ity). Accounting for Eq. (167), the rate of free energy can be expressed as

_W ¼P � _F� FeTP�Yc
� � � MFpð Þ� g
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�Y

_�ep�r0� _T ð170Þ

where P¼ @FW is the Piola stress tensor,Yc ¼ @FpW p is a back-stress tensor

(linked to kinematic hardening), and g¼ @�epW
p is a yield stress associated to

energy storage mechanisms, as introduced in the linearized kinematics sec-

tion. From this relation, we can see that quantity Y can be considered as con-

jugate to the cumulated plastic strain �ep, when accounting for the specific

flow rule chosen. This quantity can be rewritten as

Y ¼ T�Tcð Þ �M� g ð171Þ
where T ¼ FeT PFpT is Mandel stress tensor, and Tc ¼ Y c FpT is the asso-

ciated backstress tensor.

5.2.2.1 Rate problem of finite visco-plasticity

Functional D _F, _�, T , _�ep,M
� �

is then given by

D _F, _�,T , _�ep,M;F, �,Fp,�ep
� �¼P � _F�Y _�ep�r0 _� T �Yð Þ

þD
T

Y
_�ep;�ep,Y

� �
ð172Þ

and the effective rate potential is defined as

Deff
_F, _�, T
� �¼ inf

_�ep ,M
D _F, _�, T , _�ep,M; F, �, Fp,�ep
� �

: ð173Þ

Accounting for constraints on M, the optimal plastic flow direction is

given by

M ¼
ffiffiffi
3

2

r
dev T�Tc½ �
dev T�Tc½ �k k¼

ffiffiffi
3

2

r
s

sk k ð174Þ

where s ¼ dev[T � Tc], which corresponds to the normal direction to von

Mises yield criterion, written in terms of Mandel stress tensor. Using this

result, we can rewrite conjugate force Y as

Y ¼
ffiffiffiffiffiffiffiffiffi
3

2
s �s

r
� g¼ seq� g ð175Þ
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where seq is vonMises equivalent stress (computed in the intermediate con-

figuration from Mandel stress tensor, and accounting for backstress Tc).

We thus recover a set of expressions formally similar to those obtained in

the setting of linearized kinematics, where Mandel stress tensor (related to

the intermediate configuration) is used instead of Cauchy stress tensor. This

results naturally from the variational formulation, and this is where it mainly

differs from most other formulations, which often will work with Cauchy

stress in the deformed (spatial) configuration.

5.2.2.2 Exponential mapping
In the time-discrete setting, the local variational constitutive update problem

takes the following form:

W F,Tð Þ¼ inf
�ep,M

W F, T , Fp,�epð Þþdt D
T

T0

d�ep

dt
;�ep tð Þ,T tð Þ

� �	 
� �
þr0�0dT �W F0, T0, F

p
0,�e

p
0ð Þ ð176Þ

where one must provide a time-discrete update rule for plastic deformation

Fp. The exponential update formula (Weber & Anand, 1990):

Fp ¼ exp d�epMð ÞFp
0 ð177Þ

provides the advantage of preserving the isochoric nature of plastic deforma-

tion and will thus be used here. For reasons similar to those provided in the

linearized kinematics case, we will consider no direct parametric depen-

dence on temperature in the dissipation function D, in which case a consis-

tent approximation to the average dissipation function over the time

increment is given by:

D
T

T0

d�ep

dt
;�ep tð Þ

� �	 

�D

T

T0

d�ep

dt
;�epa

� �
: ð178Þ

5.2.2.3 Hencky hyperelasticity
In finite strains, many choices are possible for the elastic free energy, even

under the assumption of an isotropic material. As was shown in Ortiz and

Stainier (1999), the specific choice of a Hencky hyperelastic free energy

allows to perform analytically the optimization with respect to M in the
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variational principle above. Hencky hyperelastic free energy is obtained by

considering a quadratic potential in logarithmic (natural) strains:

W e Ce, Tð Þ¼ f tr «e½ �,Tð Þþm Tð Þ dev «e½ �ð Þ2 ð179Þ
with

«e¼ logUe ¼ 1

2
logCe¼ 1

2
log Fp�TCFp�1
� �

: ð180Þ

Considering the exponential update formula (177) and the ansatz that

Ctr
e ¼F0

p�TCF0
p�1 and M are colinear, we can write

«e ¼ 1

2
logCe

tr�d�epM ¼«etr�d�epM: ð181Þ

Provided that there is no kinematic hardening (Yc � 0), we thus formally

recover the samevariational problemas in linearized kinematics (with logarith-

mic elastic strains), which can also be interpreted as a radial return algorithm:

M ¼
ffiffiffi
3

2

r
dev «tr

e½ �
dev «tre½ �k k¼

ffiffiffi
3

2

r
dev «e½ �
dev «e½ �k k ð182Þ

and

�seqtr þ3m Tð Þd�epþ g �ep, Tð Þþsy �ep,Tð Þ¼ 0 ð183Þ
where

seqtr ¼
ffiffiffi
6

p
m Tð Þ dev «etr

� ��� �� ð184Þ
while

�sy¼ T

T0

@f
@ _�ep

T

T0

d�ep

dt
;�epa

� �
þadt

@f
@�ep

T

T0

d�ep

dt
;�epa

� �
ð185Þ

is a consistent incremental approximation of the dissipative part of the yield

stress.

5.2.2.4 General isotropic hyperelasticity
In polycrystalline metals, elastic strains typically remain small, and the choice

of the elastic free energy is mostly a matter of convenience (in the context

of isotropic materials). Yet, visco-plasticity models can be useful in other

contexts, such as thermoplastic polymers, or adhesive glues for example

(Fancello, Goglio, Stainier, & Vassoler, 2008a). These materials may exhibit
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larger elastic strains, and it may thus be required to use more general elastic

free energy expressions to be able to reproduce their actual elastic behavior.

Considering isotropic materials, we can adopt the spectral approach

described in Fancello et al. (2008b). Indeed, for such materials, thermody-

namic potentials can be represented by functions of the principal values of

their tensorial arguments, i.e.

W e Ce, Tð Þ¼W e ce1, c
e
2, c

e
3,T

� � ð186Þ
where {c1

e, c2
e, c3

e} are the principal values of tensor Ce. In the same spirit, we

can parameterize the plastic flow direction tensor by its principal values and

vectors:

M ¼
X3
I¼1

qIN I ð187Þ

where {q1, q2, q3} are the principal values ofM, andNI¼ nI� nI, with nI the

normalized principal directions ofM (nI � nJ¼ dI J). Constraints onM trans-

late as

X3
I¼1

q2I ¼
3

2
and

X3
I¼1

qI ¼ 0: ð188Þ

Keeping with the ansatz thatM and Ctr
e are colinear (i.e. they share the same

principal directions), we can then write

eeI ¼ etr�d�epqI I ¼ 1, 2, 3ð Þ ð189Þ
where eeI ¼ log leI

� �¼ 1
2
log ceI
� �

are the principal logarithmic strains, while

etr ¼ 1
2
log ctrI
� �

, with cI
tr the principal values of the predictor (trial) Cauchy–

Green tensor. Restricting ourselves to the case without kinematic hardening

(Yc � 0), the variational constitutive update then becomes

inf
�ep, q1, q2, q3

W e ee1, e
e
2, e

e
3, T

� �þW p �ep, Tð ÞþdtD
T

T0

d�ep

dt
; �epa

� �� �
ð190Þ

with relations (189) and constraints (188). In practice, we first determine the

elastic or visco-plastic nature of the increment by looking at gradients of the

objective function at singularity points corresponding to d�ep ¼ 0. More pre-

cisely, as explained in details in Fancello et al. (2008b), we look for the min-

imal gradient in the �ep direction, for all admissible values of qI. It turns out
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that this gradient can be expressed analytically and the condition for an elas-

tic step takes the form:

�strM þ g �ep0, Tð Þþ T

T0

@D

@ _�ep
0þ;�ep0ð Þ> 0 ð191Þ

where

sM ee1, e
e
2, e

e
3, T

� �¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

X3
I¼1

@W e

@eeI
�1

3

X3
J¼1

@W e

@eeJ

 !2
vuut ð192Þ

and sM
tr ¼sM(e1

tr,e2
tr,e3

tr,T ). If the above gradient is negative, then there is an

admissible descent direction, and the solution can be found by solving the

four scalar stationarity equations with respect to �ep, q1, q2, q3 [with con-

straints (188)].

It is also interesting to note that the equivalent stress sM defined earlier

also corresponds to a classical equivalent stress computed fromMandel stress

tensor:

sM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
dev T½ � �dev T½ �

r
: ð193Þ

The Mandel stress tensor is defined in the intermediate configuration and is

symmetric in the case of isotropic elasticity. Thus, the suggested minimiza-

tion strategy amounts to computing an elastic trial Mandel stress, evaluate

the classical von Mises criterion in terms of this stress tensor, and, if the cri-

terion is verified, apply a plastic corrector step. Once again, this process par-

allels the classical predictor–corrector scheme used in small strains. In

general, it may not correspond to a radial return, though, since the predictor

of qI (corresponding to the trial state) may be different from the overall

optimal ones.

5.2.3 Alternative flow rules
The framework of variational constitutive update is of course not limited to

vonMises plasticity. It has been, for example, directly extended to flow rules

corresponding to Tresca plasticity (Ortiz & Stainier, 1999), Cam-Clay plas-

ticity (Ortiz & Pandolfi, 2004), and porous plasticity (Weinberg, Mota, &

Ortiz, 2006).

Mosler et al. have proposed a very generic approach allowing to reset a

very wide class of classical visco-plasticity models into the variational
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framework (Bleier & Mosler, 2012; Mosler, 2010; Mosler & Bruhns, 2009).

Without going into the details, let us simply say that this approach is based on

a reparametrization of the plastic flow rule in terms of a normalized stress

tensor: flow rules can then be obtained by deriving classical yield functions

(provided that they are homogeneous in stress). The only downside of this

generic approach is that it may sometimes be more difficult to integrate with

a detailed description of thermo-mechanical coupling effects (partition of

yield stress into stored and dissipative parts, see next section).

5.2.4 Heat generated by visco-plastic dissipation
Let us come back to the rate problem of finite thermo-visco-plasticity. If we

look at derivatives of the effective rate potential, we obtain:

@Deff

@ _F
¼P ð194Þ

@Deff

@T
¼�r0 _�þ

1

Y
@_�epD

T

Y
_�ep;�ep,Y

� �� �
_�ep: ð195Þ

If we take into account stationarity of Deff with respect to _�: T ¼ Y and

stationarity of functional D :Y ¼ @_�epD _�ep,�ep, T
� �

, we obtain that

@Deff

@T
¼�r0 _�þ

1

Y
Y _�ep ð196Þ

and comparing with Eq. (38), we obtain the following expression for the

internal dissipation

Dint ¼Y _�ep¼ T�Tcð Þ �Dp� g_�ep ð197Þ
where we have used the definition (171) and flow rule (167).

A long-standing issue in metal plasticity has been to estimate the internal

dissipation from the measure of plastic power T�Dp. In their pioneering

work, Taylor and Quinney (1937) experimentally measured dissipation

amounting to somewhere between 90% of plastic work (they actually used

quantities integrated over time) [see also the later review by Titchener and

Bever (1958)]. On the basis of these results, many (most) contemporary

authors use the following formula to evaluate visco-plastic dissipation in

their numerical simulations:

Dint ¼ bT �Dp ð198Þ
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with b considered as a constant material parameter (typically chosen as

b ¼ 0.9). This formula remains widely used today, despite more recent

experimental work (see for example Hodowany, Ravichandran,

Rosakis, & Rosakis, 2000; Rittel, Bhattacharyya, Poon, Zhao, &

Ravichandran, 2007) clearly showing that the ratio of dissipation to

visco-plastic power varies strongly with plastic strain and strain rate, and with

temperature.

Some models have been proposed (see for example Rosakis, Rosakis,

Ravichandran, & Hodowany, 2000; Zehnder, 1991), aiming at providing

an expression describing evolution of coefficient b. In the variational frame-

work described here, the coefficient b does not appear explicitly (although it

can be computed a posteriori). Instead the ratio of dissipation to total visco-

plastic power directly derives from the choice of free energy and dissipation

potentials. In this way, it is possible to take into account complex evolutions of

b, such as result from combined rate-dependent visco-plastic behavior and

general temperature dependence (including of stored energy, for example

associated to recrystallization). As illustrated in Stainier and Ortiz (2010), such

cases cannot be modeled by approaches such as that of Rosakis et al. (2000),

yet are naturally and implicitly accounted for in the variational approach.

6. NUMERICAL APPROXIMATION METHODS

6.1. Variational finite element approximations
6.1.1 Standard galerkin formulation
Variational boundary-value problems such as Eqs. (69) or (74) quite naturally

call for finite element numerical solution methods. For example, the space V
of admissible thermo-mechanical configurations (at time t) is given by

V¼ w :B0!R
3jw¼ �w tð Þon @uB0, —0w2GLþ 3,Rð Þ;�

T : B0!RþjT ¼ �T tð Þon@TB0g: ð199Þ
Then, approximate finite element solutions to problems (69) or (74) can be

derived by a Ritz–Galerkin approach. To this end, consider the admissible

subspace Vh, built on a given discretization Th of B0:

Vh¼ wh :B0!R
3 wh Xð Þ¼

XNnodes

a¼1

Na Xð Þxa;
�����

(

Th : B0!Rþ Th Xð Þ¼
XNnodes

a¼1

Na Xð ÞTa

)
ð200Þ

�����
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where xa ¼ w(Xa, t) are the positions of the Nnodes nodes in the current

(deformed) configuration and Ta ¼ T(Xa, t) are the temperatures at these

same nodes. As usual, the material shape functionsNa(X) are defined on ele-

ments connected to node a and set to zero elsewhere. Index h refers to the

mesh Th supporting the shape functions. Note that we have chosen here to

use the same shape functions for displacement and temperature fields, for the

sake of simplicity, but that it would also be possible to choose different shape

functions and different meshes for these two unknown fields.

The discrete deformation and temperature gradients are given by

Fh Xð Þ¼
XNnodes

a¼1

xa�=0Na Xð Þ ð201aÞ

Gh Xð Þ¼�
XNnodes

a¼1
Ta=0Na Xð ÞXNnodes

a¼1
TaNa Xð Þ

ð201bÞ

and the variational principle (69) becomes

inf
wh2Vh

sup
Th2Vh

I h wh, Th; w0, T0, Z0ð Þ ð202Þ

where w0 and T0 are computed by interpolation from nodal values of xa(t0)

and Ta(t0), while the internal variables Z0 are typically stored at integration

points. Dirichlet boundary conditions are of course enforced by setting

nodal variables xa and Ta to appropriate values on @uB0 and @TB0. Subscript

h in I h denotes the fact that volume integrals will generally be computed by

numerical quadrature, based on the chosen discretization T h. Variations of

incremental potential I h are now taken with respect to nodal unknowns,

and stationarity conditions are written

XNnodes

a¼1

fa �dxa¼
XNnodes

a¼1

ð
B0

½Ph �=0Na�r0bNa�dV�
ð
@sB0

�tNa dS

� �
�dxa

¼ 0 8dxa adm: ð203aÞXNnodes

a¼1

QadTa¼
XNnodes

a¼1

ð
B0

�r0d�
eff
h NaþdtHh � —0Na

Th
þGh

Th
Na

� �
þdtr0Q

Na

Th

� �
dV

�

�
ð
@HB0

dt �H
Na

Th
dS

�
�dTa¼ 0 8dTa adm: ð203bÞ
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where Ph, d�h
eff and Hh are, respectively, given by

Ph¼ @W
@F

Fh, Th; F0, T0, Z0ð Þ ð204Þ

r0d�
eff
h ¼�@W

@T
Fh, Th; F0, T0, Z0ð Þ ð205Þ

Hh¼ @

@G
w Gh; Fa, Ta,Zað Þh i: ð206Þ

The stationarity conditions (203a, b) yield discrete mechanical and ther-

mal balance equations, which can alternatively be written

f inta � f exta ¼ 0

Qint
a �Qext

a ¼ 0
a¼1, . . . ,Nnodesð Þ

(
ð207Þ

where internal and external nodal forces and fluxes are given by

f inta ¼
[Nelems

e¼1

ð
Oe

0

Ph �=0Na dV ð208aÞ

f exta ¼
[Nelems

e¼1

ð
Oe

0

r0bNa dV þ
[Ns
elems

e¼1

ð
@Oe

0

�tNa dS ð208bÞ

Qint
a ¼

[Nelems

e¼1

ð
Oe

0

r0d�
eff
h Na�dtHh � =0Na

Th

þGh

Th

Na

� �� �
dV ð208cÞ

Qext
a ¼

[Nelems

e¼1

ð
Oe

0

dt
r0Q
Th

Na dV�
[NH

elems

e¼1

ð
@Oe

0

dt
�H

Th

Na dS ð208dÞ

In the above expressions,
S

denotes the element assembly operator, while

Oh
e are the elementary domains. Note that balance equations (207) suggest a

(nonlinear) quasi-stationary problem, even in the presence of heat capacity

terms in the constitutive model. These terms, traditionally treated as tran-

sient terms, are here included in the effective entropy variation d�eff, and
thermal balance (both in its continuum or discrete form) is actually treated

through an entropy balance equation written over the time increment. It is

thus a different, yet equivalent, treatment from the classical approach, which

consists in writing a balance equation for instantaneous heat fluxes. Our

approach instead yields a nonlinear, rate-dependent, quasi-stationary set

of balance equations.
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6.1.2 Mixed formulations
At the core of the variational formulation (69) lies the energy functional

I w, Tð Þ¼
ð
B0

W F, Tð Þ�dtw Gð Þ½ � dV ð209Þ

i.e. the incremental functional without terms coming from external applied

thermo-mechanical loads, and where we dropped the arguments denoting

parametric dependence of potentials, in order to lighten notations for the

rest of the section. In the context of a finite element approach, this integral

is approximated by

I w, Tð Þ�
[Nelems

e¼1

I eh wh, Thð Þ ð210Þ

with elementary contributions given by

I eh wh, Thð Þ¼
ð
Oe

0

W Fh, Thð Þ�dtw Ghð Þ½ �dV : ð211Þ

In the case of incompressible material behavior, or even quasi-

incompressible behavior such as in cases dominated by plastic strains, it is

well known [e.g. see Hughes (2000) or Simo andHughes (1998)] that a stan-

dard finite element formulation will lead to locking (overestimated stiffness)

for linear triangles and tetrahedrons, as well as for bilinear quadrangles and

trilinear hexahedrons. In order to overcome this difficulty, we adopt a

hybrid (or mixed) formulation, and, following the approach proposed in

Simo and Taylor (1991), add a penalty term to integral (211):

Î
e

h wh, yh, ph, Τhð Þ¼
ð
Oe

0

W F̂
e

h, Th

� �þ peh Jh�yeh
� ��dtw Ghð Þ� �

dV ð212Þ

where yh
e and ph

e are piecewise-constant volumic deformations (not to be

confused with temperature increments in this setting) and pressures, respec-

tively (constant over each element O0
e). The modified deformation gradient

F̂
e

h is defined as

F̂
e

h¼
yeh
Jh

� �1
3

=0wh with Jh¼ det =0wh½ �: ð213Þ

The variational principle then becomes

inf
wh, yh

sup
ph, Th

Î wh, yh, ph,Thð Þ with wh, yh, ph and Th admissible ð214Þ
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with

Î wh, yh, ph, Thð Þ¼ Î wh,yh, ph,Thð Þ�
ð
B0

r0b tð Þ �dwhdV

�
ð
@sB0

�t tð Þ �dwhdS þ
ð
B0

dtr0Q tð Þ logTh

T0

dV

�
ð
@HB0

dt �H tð Þ logTh

T0

dS: ð215Þ

Euler–Lagrange equations pertaining to yh and ph are given by,

respectively:

DyÎ wh, yh, ph, Thð Þ,eyhD E
¼
[Nelems

e¼1

ð
Oe

0

DyW F̂
e

h, Th

� �
,eyehD E

� peh
eyehh i

dV ¼ 0

8eyeh adm: ð216Þ

DpÎ wh, yh, ph, Thð Þ,eph� 
¼ [Nelems

e¼1

ð
Oe

0

Jh�yeh
� �

dV

" #ep e
h ¼0 8ep e

h adm:

ð217Þ
Equation (217) immediately yields the expression for the piecewise constant

volumic deformation

yeh¼
1

Oe
0

�� ��
ð
Oe

0

det —0wh½ � dV : ð218Þ

Considering that

DyW F̂
e

h, Th

� �
,eyehD E

¼ @W
@F

F̂
e

h, Th

� �� 1

3
ye�1
h
eyehF̂e

h

� �
¼ 1

3
ye�1
h tr t F̂

e

h, Th

� �� �eyeh
ð219Þ

where we have introduced the notation:

t F̂
e

h, Th

� �� @W
@F

F̂
e

h, Th

� �
F̂
eT

h , ð220Þ

Eq. (216) then yields

peh¼
1

Oe
0

�� ��
ð
Oe

0

p F̂
e

h, Th

� �
dV ð221Þ
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with

p F̂
e

h, Th

� �¼ 1

3
ye�1
h tr t F̂

e

h, Th

� �� �
: ð222Þ

We can now proceed to compute elementary contributions to nodal

forces and fluxes. Since we have

D’, Jh, ewh

� 
¼ Jh=0ewh �=0wh
T ¼ Jhtr =ewh½ � ð223Þ

we can write

D’W F̂
e

h, Th

� �
, ewh

� 
¼ @W
@F

F̂
e

h, Th

� � �yeh13 J
�1

3

h =0ewh�
1

3
J
�4

3

h D’Jh, ewh

� 

=0wh

� �
¼ @W

@F
F̂
e

h, Th

� � �yeh13J�1
3

h =0ewh�
1

3
tr =ewh½ �=0wh

� �
¼ t Fe

h,Th

� � �dev =ewh½ �: ð224Þ

We then have

D’I
e
h wh, Thð Þ, ewh

� 
¼ ð
Oe

0

t Fe
h, Th

� � �dev =ewh½ �þ peh Jh tr —ewh½ �� �
dV

ð225Þ
which can alternatively be written

D’I
e
h wh, Thð Þ, ewh

� 
¼ ð
Oe

0

dev t Fe
h, Th

� �� �þ Jhp
e
hI

� � �—ewhdV : ð226Þ

The latter expression defines a recovery method for Kirchhoff stress

field:

teh� dev t Fe
h, Th

� �� �þ Jhp
e
hI ð227Þ

or, alternatively, an effective Piola–Kirchhoff stress tensor:

Pe
h�

yeh
Jh

� �1
3 @W

@F
F̂
e

h,Th

� ��1

3

@W
@F

� F̂e

h

� �
F̂
e�T

h þ Jhp
e
hF̂

e�T

h

� �
: ð228Þ

The nodal internal forces array is then given by
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f inta ¼
[Nelems

e¼1

ð
Oe

0

Pe
h �=0Na dV : ð229Þ

Nodal internal fluxes are identical to those obtained through the standard

formulation (208c), where the net entropy variation is computed by

r0d�
eff
h ¼ @W

@T
Fe
h, Th

� �
: ð230Þ

6.2. Alternative variational Ritz–Galerkin approximations
Galerkin approximations are not limited to the piecewise polynomial func-

tions of finite elements. Various Ritz–Galerkin approximations can be

derived by using different test functions in the time-continuous and/or

time-discrete variational principles.

A particular example that we detail here is that of adiabatic shear bands.

Adiabatic shear bands are localized regions of intense shear (which take the

form of a band in 2D, of a layer in 3D), where thermo-mechanical coupling

effects play a prominent role. The thickness of these bands or layers can be

very small compared to other characteristic lengths of the problem, in which

case explicit resolving of the displacement (strain) and temperature fields

with the band becomes prohibitive. As illustrated in Yang, Mota, and Ortiz

(2005), shear bands can then be represented as discontinuities (in displace-

ment) to which one associates a specific behavior. The macroscopic behav-

ior of the shear band can be obtained by assuming specific (families of )

profiles of (plastic) strain and temperature: for example, Yang et al. (2005)

considered uniform strain rate, directly computed from the macroscopic

velocity jump and the thickness of the band, together with a Gaussian tem-

perature profile. The main inconvenient of this specific choice is that the

band thickness must be chosen a priori and becomes a material parameter,

although it is actually an evolving quantity depending on global strain, strain

rate, and temperature. This inconvenience was partly overcome in Su

(2012), where the analytical solutions of Leroy and Molinari (1992) are used

as basis functions. These functions allow to represent arbitrary (and indepen-

dent) thicknesses of localization for strain and temperature. This latter

approach was applied both to the stationary case (adiabatic shear bands in

the established regime) and to the transient or evolutionary case (in an incre-

mental time-discrete context).
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Regarding the modeling of discontinuities and/or interfaces, an alterna-

tive approach consists in directly formulating interface models, for example

with plasticity (Jérusalem, Stainier, & Radovitzky, 2007) or cohesive dam-

age (Mosler & Scheider, 2011).

7. EXAMPLES OF APPLICATIONS

This section provides a (very) brief illustration of some applications for

which a variational formulation offers significant advantages: multiscale and

adaptive approaches.

7.1. Variational multiscale models
Variational formulations are well adapted to multiscale approaches. Indeed

they tend to provide systematic rules to operate scale transitions: microstruc-

tures and/or micro-scale fields should minimize (optimize in general) some

overall macroscopic energy functional. For example, postulating a specific

family of recursive microstructures (laminates), it is possible to construct

macroscopic (variational) constitutive models accounting for the formation

of evolving subgrain microstructures in polycrystalline materials submitted

to (very) large plastic deformations (Aubry & Ortiz, 2003; Conti & Ortiz,

2005; Ortiz, Repetto, & Stainier, 2000).

We can also look at the more general problem of constructing constitu-

tive models able to describe the overall (homogenized) behavior of hetero-

geneous materials. Under isothermal conditions, the homogenization

problem takes the following variational form:

�W �Fð Þ¼ inf
w2K �Fð Þ

1

B0j j
ð
B0

�W =0wð ÞdV ð231Þ

whereB0 is the domain occupied by aRVE, andK(�F) is the set of admissible

displacement mappings, depending on the kind of boundary conditions

imposed on the RVE in order to enforce the average gradient of deforma-

tion �F. Thanks to the use of the effective incremental potential W, this

expression remains valid for all heterogeneous materials which phases’

behavior can be described in the framework of GSM. This homogenization

problem can then be solved numerically (Bleier and Mosler, 2013;

Miehe, 2002) or semianalytically in some specific cases (Brassart, Stainier,

Doghri, & Delannay, 2011, 2012). In this latter example, a variational
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mean-field approach was derived for composites materials with elasto-visco-

plastic phases (small strains).

Note that all these contributions have, for the moment, been restricted to

the isothermal case.

7.2. Variational adaptive methods
Variational approaches are also well suited to adaptive methods. Once again,

the main key is the use of the incremental potential W, which allows to

extend methods initially designed for (hyper-)elasticity to general dissipative

behaviors.

Optimizing with respect to mesh position, in addition to the optimiza-

tion with respect to the displacement field, leads to the variational Arbitrary

Lagrangian–Eulerian formulation of Mosler and Ortiz (2006). In a variation

to that method, the same authors also proposed a technique to locally refine

mesh discretization on variational (minimization of effective incremental

energy) approach (Mosler & Ortiz, 2007, 2009).

8. CONCLUSIONS

In this chapter, we presented an overview of a variational approach to

coupled thermo-mechanical boundary-value problems involving nonlinear

dissipative behaviors. Starting from a thermodynamic description in the

framework of GSM, time-continuous and time-discrete variational princi-

ples can be established by writing energy or energy-rate functionals to be

optimized with respect to material state fields. Having adopted a local

approach, optimization with respect to internal variables can be done at

the local (i.e. material point) level, the remaining optimization problem then

corresponding to an effective thermo-elastic boundary-value problem. The

case of thermo-visco-elastic and thermo-elasto-visco-plastic behaviors was

treated in more details. First noteworthy results are that, for isotropic mate-

rials, a spectral description of thermodynamic potentials leads to efficient

update algorithms. Another one is that the predictor–corrector algorithmic

structure of the classical radial return of computational plasticity can be

recovered in most cases. The case of damage, either elastic damage or com-

bined with one of the previous models, was not treated here, although var-

iational approaches can also be developed in that direction (e.g. Balzani &

Ortiz, 2012; Kintzel & Mosler, 2010, 2011). We then looked at variational

approximation methods for the boundary-value problem, either by finite

elements or by other Ritz–Galerkin approaches, and briefly illustrated

53



applications in the context of multiscale problems and adaptive techniques.

Another potential class of applications of the variational approach to

coupled thermo-mechanics is in the field of algorithmic solution techniques:

partitioned solvers, staggered schemes, could be derived by taking advantage

of the variational structure (e.g. symmetry, but also the fact that the solution

corresponds to an optimum).

An interesting perspective is the extension of this variational framework

to other types of coupling. Indeed there is a clear parallel between thermo-

mechanics and diffusion-mechanics problems (or thermo-diffusion-

mechanics since temperature typically plays an important role in this type

of problems). Beyond that, coupling between mechanics and electro-

magnetism also leans itself to a variational treatment (see for example

François-Lavet, Henrotte, Stainier, Noels, & Geuzaine, 2013; Miehe,

Rosato, & Kiefer, 2011; Thomas & Triantafyllidis, 2009).

As it was previously mentioned, another interest of variational formula-

tions is that they are well adapted to mathematical analysis. From this point

of view, questions such as existence and unicity of solutions to problems

combining dissipative, time-dependent mechanical behavior and heat trans-

fer can benefit from the proposed variational treatment. A particularly inter-

esting case in that regard seems to be the problem of thermo-visco-elasticity,

to the solution of which no extremum property can be clearly associated.

Finally a challenging open question is that of a variational characterization

of entire trajectories in the space of state fields. Indeed, the current approach

relies on the construction of a separate variational problem at each time incre-

ment. The possibility to define optimal trajectories for rate-dependent dissi-

pative systems, as can be done through Hamilton’s principle in the dynamics

of conservative systems is an appealingobjective, not yet reacheddespite some

first results (Conti & Ortiz, 2008; Mielke & Ortiz, 2008).
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