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Abstract This chapter deals with some models for interfaces in
the case of masonry structures. Some experimental studies are re-
called in the first part. In the second part, four interface models
are presented.

1 Introduction

The aim of the chapter is to present some ideas for modeling interfaces in
masonry structures. Devising means of modeling interfaces between solids
in structural assemblies is obviously now of great importance in the fields
of mechanical technology and civil engineering. These interfaces contribute
crucially to the strength of many structures, such as optics lenses, airplanes,
asphalt pavements and masonry, for example. It is therefore necessary to
develop rather fine models. One of the main problems which often arises
in this context is that of developing a unified theory: from the tribological
point of view, the contact is often unique, in the sense that it depends on the
materials, roughness, wear, etc., and especially on the mechanical system
involved. The problem of cracking in pavements is obviously quite different
from that of the cornering of an airplane tire. Another problem is due to the
smallness of the interface in comparison with the size of the structure, as well
as the possibly weak mechanical characteristics (in the case of old mortar,
for example). A large number of studies have been devoted to the behavior
of interfaces. Two main modeling approaches used for this purpose are phe-
nomenological modeling and deductive modeling. In the first approach, the
thickness of the interface is taken to be zero and the mechanical properties
are obtained from physical considerations and experiments (see for exam-
ple Frémond (1987); Point and Sacco (1996); Freddi and Frémond (2006);
Raous (2011); Bonetti and Frémond (2011) and references therein). The
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second approach consists in focusing on the thin layers of material at the
micro-mechanical level, which are usually called the interphase. The me-
chanical parameters of the interface model, characterized by zero thickness,
are identified on the basis of the parameters of the material constituting
this interphase. These boundary conditions have been extensively used to
model imperfect interface properties. One of the method commonly used
to model interface conditions is based on the use of asymptotic techniques
(see for example Klarbring (1991); Licht and Michaille (1997); Lebon et al.
(1997, 2004); Lebon and Ronel (2007); Lebon and Rizzoni (2008) and refer-
ences therein), in order to include microscopic considerations in the interface
model.

Figure 1. Irregular type of masonry a) b) d) Typical Lozerian structures,
France c) Miramas-Le-Vieux, France.

Obviously, one of the problem which arises when modeling interfaces in
masonry is due to the the irregularity of the structures (see figure 1). In
this chapter, we will deal only with fairly regular structures (see figure 2).
Another problem arises with the constitutive equation for the blocks because
stones are quite rigid blocks (see Lucchesi et al. (2008); Como (2010)). In
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Figure 2. Examples of regular masonry a)Lozere, France b) Bologne, Italy
c) Albi, France d) Ferrara, Italy.

what follows, we will deal only with deformable elastic bricks.
The last main problem depends on whether or not mortar is present in the
structure and if so, how to write the constitutive equation for the mortar.
If there is no mortar, the contact between blocks can be assimilated to dry
friction. In the presence of mortar, it is necessary to model this component.
The thickness of the mortar is also an important modeling parameter. If
the mortar is thin, an interface law can be used directly for this purpose
(see figure 3). If the thickness of the mortar is not negligible, it is neces-
sary to introduce some additional considerations in order to account for the
interactions between the bricks and the mortar (see figure 4).

In this chapter, it is proposed to present some interface laws. In the
first part, the classical phenomenological law of unilateral contact with dry
friction is recalled. In the second part, a phenomenological law of adhe-
sion is presented and modeled based on the adhesion variable introduced
by Fremond (Frémond (1987)). Two deductive interface laws are presented:
the first one is linear and the second one is non linear and takes the dam-
age which occurs at interface of this kind into account. The last modeling
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Figure 3. A wall without mortar: a study at local level.

approach presented here includes mechanical processes responsible for the
failure, such as the unilateral contact, the friction at the microscopic scale
and the normal and tangential damage. The four models discussed in this
chapter were developed in the context of multibody mechanics.

This paper is composed of three parts. In the first part, experimental
results are recalled. The second part is devoted to the modeling of friction
between blocks with no mortar. In the third part of the paper, the phe-
nomenological model of adhesion is presented in the form of two imperfect
interface models based on the use of asymptotic techniques. Some numerical
examples are provided.

2 Some comments on experimental results

2.1 Brick-brick interactions: dry friction

Michel Jean (Jean and Moreau (1994)) conducted experiments on a small
wall (figure 5) consisting of 105 rigid blocks. each of which was 49 mm high,
and 124 mm wide (62 mm in the case of half bricks). The wall was set on
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Figure 4. A wall with mortar: a study at local level.

a rigid foundation. The left half of the rigid foundation could be moved
down. The total possible displacement was 6 cm.

Figure 5 shows the displacement of the blocks. Note that the interactions
between the blocks are limited to contact (there is no penetration) and dry
friction. The displacement of the blocks is strongly heterogeneous, especially
along the diagonal.

2.2 Brick-mortar interactions

This section deals with the behavior of deformable blocks. The local
behavior of the interfaces between full and hollow bricks and mortar joints,
which are typical quasi-brittle interfaces (see Gabor (2002); Gabor et al.
(2006)), has been studied by various authors. We will attempt here to
summarize the results obtained.
The experimental device developed by Fouchal (2006); Fouchal et al. (2009)
(figures. 6 and 7) was designed to study on the local scale the shear behavior
of a simple assembly consisting of two and three full or hollow bricks (210×
50 mm) connected by a mortar joint 10 mm thick. The samples were
subjected to a monotonous increasing load up to failure.
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Figure 5. Experimental device involving 105 blocks (Jean and Moreau
(1994))

Figure 6. Experimental device involving two bricks

The following findings were obtained (see also figure 8):
• rigid elastic behavior up to the failure, followed by friction sliding
behavior;

• the behavior of full bricks was fragile beyond the limit strength;

• the behavior of hollow bricks was quasi-fragile beyond the limit strength;

• hollow brick samples showed great dispersion, mainly due to the non
uniform distribution of the mortar spikes and local defects in the com-
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Figure 7. Experimental device involving three bricks

ponents of the bricks;

• samples consisting of two and three bricks showed similar behavior.
The choice of basic cell therefore has no effect on the local scale.

3 Masonry structures without mortar: dry friction
modeling (model 1)

This section focuses on structures devoid of mortar, or including mortar
with a very low stiffness. In a first approach, the contact is assumed to
involve dry friction with no penetration between the blocks.

For the sake of simplicity, we have adopted the framework of contact
between two deformable solids (see figure 9). The contact can be defined
by a punctual correspondence between two surfaces in contact Γ1

c and Γ2
c

belonging to the domains Ω1 and Ω2 of �d (d = 2, 3), respectively. We
assume that initially Γc = Γ1

c = Γ2
c . The relative displacement between

two points located on the two surfaces in contact is denoted by [u] with
[u] = u1 − u2. Let F be the density of the contact forces. We take n1 and
n2 to denote the external unit normal vectors to the boundaries of the two
domains. The decomposition into normal and tangential parts is written:

[u] = [uN ]n1 + [uT ] with [uN ] = [u].n1 (1)

F = FNn1 + FT with FN = F.n1 (2)
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Figure 8. Typical behavior of the mortar/brick interface (with full and
hollow bricks)

3.1 Unilateral contact

The contact conditions (Signorini conditions) are written:

FN ≥ 0; [uN ] ≥ 0; FN [uN ] = 0 (3)

3.2 Dry Friction

The friction conditions (Coulomb’s law) are written:

||FT || ≤ μ|FN |
||FT || < μ|FN | ⇒ [u̇T ] = 0
||FT || = μ|FN | ⇒ ∃λ ≥ 0, [u̇T ] = λFT

(4)

where μ is the friction coefficient.

3.3 Formulations

The bodies are assumed to be elastic and the deformations are assumed
to be small. In this case, formulation of three kinds can be used: primal (the
unknowns are the displacements), dual (the unknowns are the stresses) and
mixed formulations (the unknowns are the displacements and the stresses).
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Figure 9. Dry contact between two blocks

In this chapter, two kinds of formulations are presented. Note that there
exists a large class of methods for solving problems of this kind (see Raous
et al. (1988); Lebon and Raous (1992); Chabrand et al. (1998); Lebon (2003);
Fortin et al. (2002); Alart and Curnier (1991); Alart and Lebon (1995);
Wriggers (2006) and references therein). Two corresponding algorithms are
presented below.

Primal formulation (see Cocu et al. (1995))
Let us take H1(Ω) to denote the order 1 Sobolev space, and H and H0

to denote the subspaces of (H1(Ω))2 defined by

H = {v ∈ (H1(Ω))2, v = U on Γd},
H0 = {v ∈ (H1(Ω))2, v = 0 on Γd},

(5)

We define K as the convex of contact of kinematically admissible fields
K = {v ∈ H, [vN ] ≥ 0 on Γc}. u0 is taken to denote the initial displacements
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fields.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u0 ∈ H be given, find u ∈ V = H1(0, T ;K) such that u(0) = u0 in Ω

a(u, v − u̇) + j(u, v)− j(u, u̇) ≤ l(v − u̇), ∀v ∈ H0∫
Γc

σN (u)([zN ]− [uN ])dl ≤ 0, ∀z ∈ K

(6)
with

j(u, v) = −
∫
Γc

μσN (u)||[v̇T ]||dl,

l(v) =

∫
Ω

Fvdx+

∫
Γf

fvdl

a(u, v) =

∫
Ω

e(u)Ae(v)dx.

(7)

Using a finite difference, u̇(tk+1) " uk+1−uk

Δt = Δuk

Δt , with uk = u(tk), at
time tk+1, we have{

Find uk+1 = uk +Δuk ∈ K such that

a(uk+1, v −Δuk) + j(uk+1, v)− j(uk+1,Δuk) ≤ l(v −Δuk), ∀v ∈ K.
(8)

Note that the results obtained on the existence, unicity and regularity of the
solution for this problem have been discussed in Cocu (1984). An example
of non uniqueness is given in Hild (2003).

Fixed point Method FPM (see Raous et al. (1988); Lebon and Raous
(1992)) In the following sections, the indices k (time) will be omitted (this
is a static formulation). The above problem is expressed as a fixed point
problem on the sliding limit (Duvaut and Lions (1976); Cocu (1984))

λ −→ −μσN (u(λ)), (9)

u is the solution of a variational inequation similar to the above one, where
j(., .) is replaced by j(.) defined by

j(v) =

∫
Γc

λ|vT |dl. (10)

The latter problem is equivalent to the minimization of L(v) = 1
2a(v, v) −

l(v) + j(v) in K. It is possible to regularize the non-differentiable term
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in the minimization problem, by replacing the absolute value by a smooth
function. For example, a suitable value of

√
x2 + ε2 or εLn(ch(x/ε)) can

be chosen (Lebon (1995)). This regularization procedure does not affect
numerical structures. The problem is usually discretized by a linear inter-
polation (Finite Element Method). Let h be the discretization step. The
displacement gives to a vector of dimension Nh. If Ih is the set of degrees of
freedom involved in the friction, the fixed point iteration consists in finding
the vector of dimension Ih, λh, which is the fixed point of the previously
discretized problem. The algorithm, which is convergent, is written:

0 Initialization u0 be given
1 Fixed Point (Iteration k) λk −→ −μσN (u(λk−1))
2 Minimization (Relaxation)

A Initialization uk,0 = uk

B Resolution (iteration n, (aij) is the stiffness matrix)
Case 1 With a normal component of a contact node

u
k,n+ 1

2
i = 1

aii
(fi −

j=i−1∑
j=1

aiju
k,n
j −

j=Nh∑
j=i+1

aiju
k,n+1
j )

If u
k,n+ 1

2
i ≥ 0 then uk,n+1

i = 0.

(11)

Case 2 With a tangential component of a contact node

uk,n+1
i =

1

aii
(fi −

j=i−1∑
j=1

aiju
k,n
j −

j=Nh∑
j=i+1

aiju
k,n+1
j

+λk
i ε(u

k,n+1
i ))

If x ≥ 0, ε(x) = 1, if x ≤ 0, ε(x) = −1, if x = 0, ε(x) = 0.
(12)

Case 3 With a component of a free node (not involved in the
contact)

uk,n+1
i =

1

aii
(fi −

j=i−1∑
j=1

aiju
k,n
j −

j=Nh∑
j=i+1

aiju
k,n+1
j ). (13)

C Convergence test : Yes : uk+1 = uk,n+1, Go to 3; No : Go to B
3 Convergence Test Yes = End; No = Go to 1

At each iteration k, the energy present in the discretized convex Kh has
to be minimized. This step is performed using the relaxation procedure
presented above. Since the functional is strictly convex, the minimization
procedure has a unique solution.
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Mixed formulation (see Alart and Curnier (1991); Alart and Lebon
(1995))

The idea underlying this method is to write the problem as an equilib-
rium equation, ⎧⎨⎩

Find u and λ such that
F int(u) + F ext + F([u], F ) = 0,

a(F −F([u], F )) = 0,
(14)

where a is a given coefficient, F ext are the given external forces, F int are
internal forces which depend on the constitutive equation and the kinemat-
ics, and F([u], λ) is the friction map. In the case of a node in contact with a
rigid obstacle (i.e. [u] = u), in elasto-statics, we have (see Alart and Curnier
(1991); Alart and Lebon (1995))

F(u, F ) = projR−(τN )n+ projC(projR− (τN ))(τT ), (15)

proj is the projection operator, C(FN ) is the Coulomb’s cone and r is a
parameter (usually equal to −r−1). τN et τT are given by

τN = FN + ruN , τT = FT + ruT . (16)

The non-linear problem is then written

D(x) + U(x) = 0 (17)

where

D(x) =
[

Au+ fext

aF

]
and U(x) =

[ F(u, F )
−aF(u, F )

]
. (18)

This system is solved using a Generalized Newton method

xi+1 = xi − (#D(xi) + ∂U(xi))−1(D(xi) + U(xi)) (19)

∂U(xi) is a point in the Jacobian set of matrices. The linearized system (19)
is solved by a solver dedicated to non symmetric systems. The algorithm
can be summed up as follows:

0 Initialization x0 = (u0, λ0) be given

1 Resolution (Non-symmetric linear system)
yi+1 = (#D(xi) + ∂U(xi))−1(D(xi) + U(xi))

2 Updating xi+1 = xi − yi+1

3 Convergence Test Yes = End; No = Go to Step 1
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Concluding comment The numerical problem can be solved using the
open computer code LMGC90 (http://www.lmgc.univ-montp2.fr/̃ dubois-
/LMGC90/). This code is a numerical platform dedicated to the modeling
and simulation of dynamic multibody problems. Problems are approached
in the general framework of dynamics (see Moreau (1988); Jean (1999)).
The discretized equations involved in the problem are written:

Mq̈ = F (q, q̇) + P (t) + r,
+ interface conditions
+ initial conditions and boundary conditions

(20)

where q is a parametrization of the system (degrees of freedom), M is the
mass matrix, F (q, q̇) + P (t) are the internal and external loading vectors,
and r is the vector of contact forces.
The problem of the 105 blocks presented in the previous section can be
solved using this technique. The results are presented in figure 10. These
results were obtained by J. J. Moreau (Jean and Moreau (1994)). The
correspondence observed seems to be perfect.

Figure 10. Comparison between experimental and numerical findings on
the example of 105 blocks (Jean and Moreau (1994))
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4 Masonry blocks with mortar

4.1 A phenomenological model taking the adhesion into account
(model 2)

In this section, the RCCM model is presented (Raous et al. (1999);
Monerie and Raous (2000)). This adhesion model was used to model mor-
tar/brick interfaces in Fouchal et al. (2009). In this model, the unilateral
contact conditions (non penetration between the mortar and the brick, as
in the previous section) are combined with dry friction and adhesion be-
tween bricks and mortar. The local constitutive equations required for this
model are deduced from thermodynamic considerations and based on a ma-
terial surface hypothesis on the contact zone. The basic idea underlying this
model is to introduce a new state variable describing the contact state. This
adhesion intensity variable, denoted b, was initially introduced by Frémond
(1987). This variable gives the relative proportion of the active links be-
tween two bodies in contact. This variable is chosen so that:

• b = 1, total adhesion
• 0 < b < 1, partial adhesion
• b = 0, no adhesion

As in the previous section, we are working in the framework of the con-
tact between two deformable solids, and the same notations are adopted
here. w is taken to denote the Dupré energy, and CN (resp. CT ) to de-
note the initial normal (resp. tangential) stiffness of the interface. In what
follows, p, q and r are three given numbers. The constitutive equations of
the interface are given by the following equations, based on state laws and
complementarity laws:

Unilateral contact with adhesion

RN − CN [uN ]bp ≥ 0; [uN ] ≥ 0; (RN − CN [uN ]bp)[uN ] = 0 (21)

Friction with adhesion

||RT − CT [uT ]b
q|| ≤ μ|RN − CN [uN ]bp|

||RT − CT [uT ]b
q|| < μ|RN − CN [uN ]bp| ⇒ [u̇T ] = 0

||RT − CT [uT ]b
q|| = μ|RN − CN [uN ]bp| ⇒ ∃λ ≥ 0,

[u̇T ] = λ(RT − CT [uT ]b
q)

(22)

Evolution of the intensity of adhesion

0 = −(w − ( 12CN [uT ]
2 + 1

2CT |[uT ]|2)br)− if b ∈ [0, 1[ (23)
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Note that if there is no adhesion (b = 0), this model involves the classical
Signorini-Coulomb problem.

A graphic interpretation of the normal part of this RCCM model given in
figure 11 (for (p, q, r) = (2, 2, 1)) shows the changes with time in the normal
forces depending on the normal displacement jump. The changes in b lead
to irreversible effects. If b decreases, the adhesive forces will decrease and
eventually disappear. In the case of pure traction ([uN ] > 0), the adhesion
resistance (RN = CN [uN ]p) is activated (elasticity without damage). b
decreases when the displacement becomes sufficiently large for the elastic
energy to become larger than the adhesion limit w.

Figure 11. Normalized normal forces versus the normalized normal jump
in the displacement

A numerical example (see Fouchal et al. (2009))
Problems are usually approached using θ-methods and the Non-Smooth

Contact Dynamics (NSCD) method (Moreau (1988); Jean (1999)). Due to
the contact conditions, a fairly small time-step is chosen and the problem is
condensed in the local frame associated with the contact nodes. The local
problem is solved using a non-linear Gauss-Seidel method.
The interface is governed by the RCCM law presented above. Contact
between bodies is defined by contact nodes. Contact nodes are located
between two nodes in the mesh of an element in contact at distances of 0.2
and 0.8, respectively, along each of the segments in contact.
The bodies (bricks and mortar) are modeled using Q4 quadrangular finite
elements. The numerical tests are performed with a constant time step
equal to Δt = 0.5 ∗ 10−3 s. The computations require 2000 increments in
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order to reach values resembling the experimental data, and θ (in the time
integration method) is fixed and taken to be equal to 0.55.
The example presented shows the evolution of a triplet of full bricks and
comparisons are made in figures 12 and 13 between two experiments and
the numerical results.

Figure 12. Damage evolution in a triplet of full-bricks

4.2 Deductive models: linear (and non linear) multi-scale models

Generalities on asymptotic methods There exist a large class of asymp-
totic methods, such as matched asymptotic expansions (Eckhaus (1979);
Sanchez-Hubert and Sanchez-Palencia (1992)). The general idea is to dilate
(blow up) the interphase from the thickness η to 1 (see Figure 14). We have
two expansions of the displacement uη, the strain e(uη) and the stress ση

in the powers of η, that is, an external one in the adherents and an internal
in the joint. We have to connect these two expansions along the interface.
In what follows, we study a problem in 2 dimensions in order to simplify
the computations. The relations obtained in the internal expansions will be
expressed using values that intervene in the external expansions.

a) External expansions The external expansion is a classical expansion
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Figure 13. Comparison between experimental and numerical results ob-
tained on full brick triplets

Figure 14. Blow-up process
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in powers of η

uη(x1, x2) = u0(x1, x2) + ηu1(x1, x2) + ...,
eij(u

η)(x1, x2) = e0ij + ηe1ij + ...,

elij = 1
2 (

∂ul
i

∂xj
+

∂ul
j

∂xi
),

ση
ij(x1, x2) = σ0

ij(x1, x2) + eσ1
ij(x1, x2) + ...

(24)

b) Internal expansions In the internal expansion, we perform a blow-up of
the second variable. Let y2 = x2

e . The internal expansion gives

uη(x1, x2) = v0(x1, y2) + ηv1(x1, y2) + ...,
εij(u

η)(x1, y2) = η−1e−1
ij + e0ij + eε1ij + ...,

el11 =
∂vl

1

∂x1
,

el22 =
∂vl+1

2

∂y2
,

el12 = 1
2 (

∂vl
2

∂x1
+

∂vl+1
1

∂y2
),

ση
ij(x1, y2) = η−1τ−1

ij (x1, y2) + τ0ij(x1, y2) + ητ1ij(x1, y2) + ...,

ση
ij,j =

∞∑
l=−2

ηl(
∂τ l

i1

∂x1
+

∂τ l+1
i2

∂y2
).

(25)
We use the convention

vl = 0, l < 0, τ l = 0, l < −1. (26)

c) Continuity conditions The third step in the method consists in the con-
necting of the two expansions. If the interface between the mortar and the
brick is perfect, we have continuity of the displacement and of the stress
tensor along this interface. This gives:

(i) v0(x1,±1/2) = u0(x1,±1/2),
(ii) τ−1(x1,±± 1/2) = 0,
(ii) τ0(x1,±1/2).e2 = σ0(x1,±1/2).e2.

(27)

A linear multi-scale model (model 3) The equilibrium equation be-
comes:

(η−1τ−1
ij + τ0ij + ητ1ij + ...),j = 0 (28)

We obtain

τ−1
ij = 0

τ0i2,2 = 0
(29)

that is
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[
τ0i2.e2

]
= 0 (30)

The interphase is assumed to be linearly elastic, and the above theory is
applied to this kind of material. We have

η−1τ−1
ij + τ0ij + ητ1ij + ... = Cijkl

(
η−1e−1

kl + e0kl + ηe1kl+
)

(31)

where C denotes the stiffness tensor.
We obtain:

τ012 = C1212v
0
1,2

τ022 = C2222v
0
2,2

(32)

that is
τ012 = C1212

[
v01

]
τ022 = C2222

[
v02

] (33)

Using the continuity conditions, we obtain

σ0
ij = 0 in the brick and the mortar

σ0.e2 = Ĉ
[
u0

]
along the interface

(34)

where Ĉ is a matrix consisting of C1212 and C2222. Note that this technique
was used in Rekik and Lebon (2010) and Rekik and Lebon (2012).

An example of a non linear multi-scale model including micro-
cracks (model 4) (see Pelissou and Lebon (2009))

General considerations and notations
The model described in this section is an extension of the bulk model

introduced in Gambarotta and Lagomarsino (1997), which takes the damage
to the mortar joint into account. The interface modeling procedure (figure
15) consists of three steps:

• Let us take a macroscopic bulk model for quasi-fragile materials;
• The structure is assumed to consist of three phases: material 1 (brick,
for example), material 2 (mortar, for example) and a thin interphase
between the two materials, consisting of the material described in the
first step;

• Since the interphase is thin, an interface model is developed by per-
forming an asymptotic analysis, as described above (Geymonat and
Krasucki (1997); Lebon and Ronel-Idrissi (2004)) (the thickness of the
interface tends to zero).
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Figure 15. Interface modeling in three steps

The model obtained memorizes some of the geometrical and mechanical
characteristics of the interphase, such as the thickness, elastic coefficients,
normal and tangential stress, damage variable, etc.

For the sake of simplicity, the structure is taken to occupy an open
bounded set Ω of �2 with a smooth boundary ∂Ω. The two dimensional
space is referred to the orthonormal frame (O, x1, x2).

First step: The bulk model
In this section, the bulk model introduced by Gambarotta and Lago-

marsino (1997) is briefly described. In this model dedicated to masonry
structures, the masonry is regarded as a ”material” showing nonlinear dam-
age behavior. The macroscopic behavior is accounted for by applying av-
eraging process based on microscopic considerations. In the line with the
classical procedure, the strain tensor is decomposed in its linear and non-
linear (anelastic) parts:

e = eel + ean (35)

where
σ = Ceel and ean = Sσσ (36)

At the local level (in an elementary volume, see figure 16), the stress vector
is decomposed into its normal σN and tangential σT parts, and the normal
and tangential components of ean are expressed by (37) :{

eanN = hαH(σN )σN

eanT = kα(σT − f)
(37)
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where f = σT if σT ∈ I = ]− μσN , +μσN [and f = ±μσN if σT /∈ I (figure
17), H is the Heaviside function of the unilateral response of the joint and
α is the damage variable. h and k are positive coefficients standing for the
opening and sliding compliances of the mortar joint and μ is the internal
friction coefficient.

Figure 16. Normal and tangential stress vector components

Figure 17. Relation between f and σT (friction threshold)

We can write

eant = kαχI(σT )(σT ± μσN ) (38)
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Figure 18. Evolution of R(α)

where χI is the characteristic function of the tangential damage under-
gone by the set I, such that:

- If σT ∈ I, χI(τ) = 1, there is tangential damage.
- If σT /∈ I, χI(σT ) = 0, there is no tangential damage.
Therefore Sσ is given locally in matrix form by:

Sσ =

(
hαH(σN ) 0

± kαχI(σT )μ kαχI(σT )

)
(39)

The damage is governed by a yield condition Φ(α) ≤ 0, where

Φ(α) = Y −R(α)

Y =
1

2
hH(σN )σ2

N +
1

2
kχI(σT )σ

2
T

(40)

where R is the toughness of the material defined by (see figure 18)

R(α) = R0α, if 0 ≤ α ≤ 1

R(α) = R0/α, if α ≥ 1
(41)

Second step: The interphase
In this section, the structure is taken to consist of two materials sepa-

rated by a thin interphase which is a ”mixture” of the other two materials.
The interphase is assumed to be parallel to the x1-axis and the thickness,
which is constant, is denoted by η. In what follows, the constitutive equa-
tions are those given in the previous section, i.e., the interface consists of a
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quasi-brittle material. The elastic part is assumed to be isotropic, and in
view of the external normal vector x2, the constitutive equation is

σ =
(
Id+ CSσ

)−1

Ce = Cσε (42)

Upon introducing the Lamé’s coefficients, λ and G, we can write:

Cσ =

⎛⎜⎝ λ+ 2G− λ2hαH
1+(λ+2G)hαH λ− λ(λ+2G)hαH

1+(λ+2G)hαH 0
λ

1+(λ+2G)hαH
λ+2G

1+(λ+2G)hαH 0

− ±μλGkαχI

(1+(λ+2G)hαH)(1+GkαχI)
− ±μ(λ+2G)GkαχI

(1+(λ+2G)hαH)(1+GkαχI)
G

1+GkαχI

⎞⎟⎠
(43)

Interface behavior
Using this asymptotical approach (see the previous section or Lebon and

Ronel-Idrissi (2004) in another context), and substituting the asymptotic
expansions into the constitutive equations and the equilibrium equations, we
obtain expressions linking the stress vector to the jump in the displacement
denoted [u]. This gives:

τ022 = lim
e→0

λ+2G
1+(λ+2G)hαH

∂v0
2

∂y2

τ012 = lim
e→0

±μ(λ+2G)GkαχI

(1+(λ+2G)hαH)(1+GkαχI)
∂v0

2

∂y2
+ lim

e→0

G
1+GkαχI

∂v0
1

∂y2

(44)

By integration, the A-GL (Asymptotic Gambarotta-Lagomarsino) model is
therefore given by the following system (in the terms of the normal and
tangential components):⎧⎪⎪⎨⎪⎪⎩

σN =
CN

1 + CN h̄αH(σN )
[uN ]

σT =
±CN CT μ k̄αχI

( 1 + CN h̄αH(σN ) ) ( 1 + CT k̄αχI )
[uN ] +

CT

1 + CT k̄α χI
[uT ]

(45)
where

CN = (λ+ 2G)/e

CT = G/e

h̄ = he

k̄ = ke

(46)

The resulting matrix is not diagonal, contrary to the classical case: a non
symmetric coupling term occurs between the normal compliance term CN

and the tangential compliance term CT . It can be noted that the configu-
ration of traction when f = 0 is combined in this general expression with
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that of the compression when f = σT and when the friction threshold is
reached at f = ±μσN .

The damage is governed by a yield condition Φ̄(α) = Ȳ − R̄(α) ≤ 0,
where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ȳ =
1

2
h̄H(σN )σ2

N +
1

2
k̄ χI(σT ) (σT −±μσN )2

R̄ (α) = lim
e→0

Re =

⎧⎨⎩R̄0 α if 0 < α < 1

R̄0

α
if α > 1

(47)

A numerical example: shear test on a simple brick Let us perform
an academic shear test on a single rectangular piece. The piece is bonded at
the bottom and subjected to horizontal forces on the left. Details of this test
are presented in figure 19. This horizontal force which is equal to 20 kN , is
applied progressively. The load is applied on the right and left sides. The
(academic) coefficients are CN = CT = 500 kNcm−3, μ = 0.3, h̄ = k̄ =
0.04kN−1cm3, R̄0 = 10kNcm−1.

Figure 19. Shear test

Due to the geometry and the loading conditions, the behavior of the
contact zone is very complex. Figure 20 shows the evolution of the dam-
age along the contact zone, which is strongly non linear. In particular,
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the damage increases strongly in an intermediate zone, which is subjected
to both shear and traction forces. Note that the tangential displacement
shows a linear pattern of evolution in the first phase and a non linear pat-
tern corresponding to the failure, in the second phase, as was to be expected.
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Figure 20. Damage evolution for four typical elements (shear test).

5 Conclusion

In this chapter, four of the many existing interface models are presented. It
is quite difficult to solve large problems using this approach. In Rekik and
Lebon (2010, 2012), we established that it can be possible to solve larger
problems (small walls), however. It will obviously be necessary in future
studies to review all the existing models (a simple look at Science DirectTM

with the keywords ”masonry” and ”interface” gives more than 2500 papers),
in order to choose the most suitable one and use efficient solvers (DDM, MG,
etc.) before it will be possible to solve real physical problems.
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