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Posterior concentration rates for empirical Bayes procedures,
with applications to Dirichlet Process mixtures

Sophie Donnet* Vincent Rivoirard! Judith Rousseautand Catia Scricciolo®

June 16, 2014

Abstract

In this paper we provide general conditions to check on the model and the prior to derive
posterior concentration rates for data-dependent priors (or empirical Bayes approaches). We
aim at providing conditions that are close to the conditions provided in the seminal paper
by |Ghosal and van der Vaart| (2007a). We then apply the general theorem to two different
settings: the estimation of a density using Dirichlet process mixtures of Gaussian random
variables with base measure depending on some empirical quantities and the estimation of
the intensity of a counting process under the Aalen model. A simulation study for inhomo-
geneous Poisson processes also illustrates our results. In the former case we also derive some
results on the estimation of the mixing density and on the deconvolution problem. In the
latter, we provide a general theorem on posterior concentration rates for counting processes
with Aalen multiplicative intensity with priors not depending on the data.

Keywords: Empirical Bayes, posterior concentration rates, Dirichlet process mixtures,
counting processes, Aalen model.
Short title Empirical Bayes posterior concentration rates.

1 Introduction

In a Bayesian approach to inference, the prior distribution should, in principle, be chosen
independently of the data; however, it is not always an easy task to elicit the values of the prior
hyperparameters and a common practice is to estimate them by reasonable empirical quantities.
The prior is then data-dependent and the approach falls under the umbrella of empirical Bayes
methods, as opposed to fully Bayesian methods. More formally, consider a statistical model
(IP’((,n), 0 € ©) over a sample space X (") together with a family of prior distributions (- | v),
~v € T', on the parameter space ©. A Bayesian statistician would either set 7y to a specific value or
integrate it out using a probability distribution in a hierarchical specification of the prior for 6.
Both approaches would lead to a prior distribution for 6 that does not depend on the data, say
7, resulting in a posterior distribution (- | X (n)). However, it is often the case that knowledge
is not a priori available to either fix a value for «y or elicit a prior distribution for it, so that these
hyperparameters are more easily estimated from the data. Throughout the paper, we will denote
by 4, a data-driven selection of the prior hyperparameters. There are many instances in the
literature where empirical Bayes selection of the prior hyperparameters is performed, sometimes
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without explicitly mentioning it. Some examples concerning the parametric case can be found
in |Casella) (1985), [Berger| (1985) and |Ahmed and Reid| (2001). Regarding the nonparametric
case, Richardson and Greenl (1997)) propose a default empirical Bayes approach to deal with
parametric and nonparametric mixtures of Gaussian random variables; [McAuliffe et al.| (2006])
propose another empirical Bayes approach for Dirichlet process mixtures of Gaussian random
variables, while in [Knapik et al.| (2012) and Szabé et al.| (2013) an empirical Bayes procedure
is proposed in the context of the white noise model to obtain adaptive posterior distributions.
There are many other instances of empirical Bayes methods in the literature, especially in
applied problems. Quoting Hjort et al. (2010), “Efron| (2003) argues that the brightest statistical
future may be reserved for empirical Bayes methods”.

In this paper, our aim is not to claim that empirical Bayes methods are better than fully
Bayesian methods in some way, but rather to provide tools to study frequentist asymptotic
properties of empirical Bayes posterior distributions, given their wide use in practice. Surpris-
ingly, very little is known, in a general framework, on the asymptotic behavior of such empirical
Bayes posterior distributions. It is common belief that, if 4, asymptotically converges to some
value v*, then the empirical Bayes posterior distribution associated with 4, is eventually close
to the Bayesian posterior associated with v*. Results have been obtained in explicit specific
frameworks in Knapik et al| (2012) and |Szabo et al.| (2013) for the white noise model; in |Clyde
and George| (2000) and (Cui and George| (2008) for wavelets or variable selection. Recently,
Petrone et al. (2014) have investigated asymptotic properties of empirical Bayes posterior dis-
tributions: they have obtained general conditions for frequentist consistency of empirical Bayes
posteriors and, in the parametric case, studied when strong merging between Bayesian and
maximum marginal likelihood empirical Bayes posterior distributions takes place.

In this work, we are interested in studying the frequentist asymptotic behavior of empirical
Bayes posterior distributions 7(- | X(™, 4,) in terms of contraction rates. Let d(-, -) be a loss
function, say a metric or a pseudo-metric, on © and, for 8y € O, let U, be a neighborhood
of Oy, i.e., a set of the form {6 : d(0, 6y) < €} with ¢ > 0. The empirical Bayes posterior
distribution is said to concentrate at 8y, with rate ¢, relative to d, where ¢, is a positive
sequence converging to 0, if the empirical Bayes posterior probability of U, tends to 1 in Péz)—
probability. In the case of fully Bayesian procedures, there has been so far a vast literature on
posterior consistency and contraction rates since the seminal articles of Barron et al.| (1999)
and |Ghosal et al.| (2000)). Following ideas of |Schwartz| (1965)), |Ghosal et al.| (2000)) in the case of
independent and identically distributed (iid) observations and |Ghosal and van der Vaart| (2007a))
in the case of non-iid observations have developed an elegant and powerful methodology to assess
posterior contraction rates which boils down to lower bound the prior mass of Kullback-Leibler
type neighborhoods of Péz) and to construct exponentially powerful tests for the testing problem
Hy: 0 =0gversus Hy : 0 € {0 : d(0, 6y) > €,}. However, this approach cannot be taken to deal
with posterior distributions corresponding to data-dependent priors. Therefore, in this paper,
we develop a similar methodology for deriving posterior contraction rates in the case where the
prior distribution depends on the data through a data-driven choice 4, of the hyperparameters.

In Section [2] we provide a general theorem on posterior contraction rates for empirical Bayes
posterior distributions in the spirit of those presented in |Ghosal and van der Vaart| (2007al),
which is then applied to nonparametric mixture models. Two main applications are considered:
Dirichlet mixtures of Gaussian distributions for the problem of density estimation in Section
and Dirichlet mixtures of uniform random variables for estimating the intensity function of
counting processes obeying the Aalen model in Section |4 Dirichlet process mixtures have been
introduced by [Ferguson (1974)) and have proved to be a major tool in Bayesian nonparametrics,
see for instance Hjort et al.| (2010).

Rates of convergence for fully Bayesian posterior distributions corresponding to Dirichlet



process mixtures of Gaussian distributions have been widely studied and it has been proved that
they lead to minimax-optimal procedures over a wide collection of density functional classes,
see (Ghosal and van der Vaart| (2001), |Ghosal and van der Vaart| (2007bl), Kruijer et al.| (2010),
Shen et al| (2013) and |Scricciolo| (2014). Here, we extend existing results to the case of a
Gaussian base measure with data-dependent mean and variance, as advocated for instance by
Richardson and Green (1997)). Furthermore, due to some inversion inequalities, we get, as a
by-product, empirical Bayes posterior recovery rates for the problem of density deconvolution
when the errors are ordinary or super-smooth and the mixing density is modeled as a Dirichlet
process mixture of normal densities with a Gaussian base measure having data-driven chosen
mean and variance. The problem of Bayesian density deconvolution when the mixing density is
modeled as a Dirichlet process mixture of Gaussian densities and the errors are super-smooth
has been recently studied by Sarkar et al. (2013).

In Section [4], we focus on Aalen multiplicative intensity models, which constitutes a major
class of counting processes that have been extensively used in the analysis of data arising from
various fields like medicine, biology, finance, insurance and social sciences. General statistical
and probabilistic literature on such processes is very huge and we refer the reader to Karr
(1991), |Andersen et al. (1993), |Daley and Vere-Jones (2003) and Daley and Vere-Jones| (2008))
for a good introduction. In the specific setting of nonparametric Bayesian statistics, practical or
methodological contributions have been obtained by |Lo (1992), |Adams et al.| (2009)) or |Cheng
and Yuan (2013). First quite general theoretical results have been obtained by Belitser et al.
(2013) who established the frequentist asymptotic behavior of posterior distributions for inten-
sities of Poisson processes. We extend their results by considering Aalen multiplicative intensity
models instead of simple Poisson models (see Theorem . In Theorem (4] we derive rates of
convergence for empirical Bayes estimation of monotone non-increasing intensity functions in
counting processes satisfying the Aalen multiplicative intensity model using Dirichlet process
mixtures of uniform distributions with a truncated gamma base measure whose scale parameter
is estimated from the data. Numerical illustrations are also presented, in this context.

Proofs and technical derivations are postponed to Section [5} Instrumental and auxiliary
results are reported in the Appendix in Section [0}

Notations and context. Let X(™ € X" be the observations with (X ) A, Pén), 0 € O)
a sequence of experiments, where X(™ and © are Polish spaces endowed with their Borel o-
fields A, and B respectively. We assume that there exists a o-finite measure x(™ on X (for
convenience of notation, we suppress dependence on n in (™ in what follows) dominating all
probability measures }P’én), 6 € ©. For each 0 € O, we denote £,,(0) the associated log-likelihood.
We also denote by Eén) the expectation with respect to Pén). We consider a family of prior
distributions (7(- | 7)),er on ©, where T' € R? with d > 1, and we denote by 7(- | X, 7) the
posterior corresponding to the prior 7 (- | v) which is given by

I e Odm (6 | )

= , BekB.
f@ et Odn (0| )

n(B| XM, )

We denote by KL(+; -) the Kullback-Leibler divergence. Given 61,602 € ©O,, we denote by
Vi(01; 62) the recentered k-th moment of the log-likelihood difference associated to 6 and 6.
So, we have:

KL(61; 02) = B [0,(01) = £a(05)],

Vi(O1; 02) = EGV (160 (01) — £n(02) — EGY[6,(61) — £ (02)]]"].



We denote by h(f1, f2) the Hellinger metric between two densities fi and fa, i.e., R2(f1, f2) =
[(Vfi(z) — /f2(x))?dz. Throughout the text, we denote by D((, B, d(, -)) the (-covering
number of B by d-balls of radius (, for any set B, any positive constant ( and any pseudo-
metric d(-, -). We denote 6y the true parameter.

2  General result on posterior concentration rates for empirical
Bayes

Let 4,, be a measurable function of the observations. The associated empirical Bayes posterior
distribution is then (- | X(™, 4,). In this section, we present a general theorem to obtain
posterior concentration rates for the empirical Bayes posterior (- | X (n), An). Our aim is
to give conditions resembling those usually considered in fully Bayesian approaches. For this
purpose, we first define the usual quantities. We assume that, with probability going to 1, 4,

belongs to a subset k), of I*:

P (4 € K5) = o(1). (2.1)
For any positive sequence (up)n, let Ny (u,) stand for the wu,-covering number of I, relative
to the Euclidean distance which is denoted by || - ||. For instance, if ), is included in a ball of

radius R, then N, (u,) = O((Rn/un)?).
As in|Ghosal and van der Vaart|(2007a)), for any €, > 0, we introduce the €,-Kullback-Leibler
neighborhood of 6y defined, for k > 1, by

B = {0 : KL(fg; 0) < ne2, Vi(fo; 6) < nF/2ek ).

Let d(-, -) be a loss function on ©. We consider the posterior concentration rates in terms of
d(-, -) using the following neighborhoods:

Unrte,, ={0 € © : d(0, 0) < Me,}
with M > 0. For any integer j, we define
Sn,j = {9 €0: d(@o, 9) € (jﬁn, (] + 1)6n]}.

In order to obtain posterior concentration rates with data-dependent priors, we express the
impact of 4, on the prior in the following way: for all v, v/ € ', we construct a measurable
transformation 1, : © — © such that if 6 ~ 7 (- | v) then 1, /() ~ 7(- | 7). Let e,(:, -) be
another semi-metric on © x ©. We consider the following set of assumptions. Let ©,, C © and
k be fixed.

[A1] There exist a sequence (uy), and B, C Bk,n such that
Nu(un) = of(nep)*'?) (2.2)

and

sup sup ngj){ inf Lty (0)) — £n(B0) < —neg} = o(No(un)™).  (2.3)
YEKn e B, Yy = lI<un

[A2] Defining for all v € Ky, dem(m(”)) = SUD|\y/ v <un ety (9))(:”("))du(a:(”)), we have

sp Jore, @n(X™)dn(0]7)
veKn m(Bn | 7)

= O(Nn(un)_le_Q"E%) (2.4)

and there exist constants ¢, K > 0 such that



e for all j large enough,

sup T8 1€ )

- < eKni*en/2, (2.5)
vekn  T(Bn|7)

e for all € > 0, for all § € ©,, with d(6p, 0) > € there exist tests ¢, (0) satisfying

E((an) [6n(0)] < e X7, sup  sup / 1 - ¢n(0))dQ7,, < o~ Kne?. (2.6)
’ V€K en(07,0)<Ce J () ’

e for all j large enough,
logD(Cjem Sn,ja en(‘a )) < K(] + 1)271631/2' (27)
We then have the following theorem.

Theorem 1 Let 6y € ©. Assume that the estimator 7, satisfies (2.1) and the prior satisfies
assumptions [A1] and [A2], with ne2 — oo and €, — 0. Then, for Ji large enough,

ES (U5, | X, 40)] = o(1),

where U§ . is the complementary of Uy, in ©.

The proof of Theorem [I| shows that the posterior concentration rate of the empirical Bayes
posterior based on 4, € K, is bounded from above by the worst concentration rate over the
classes of posterior distributions corresponding to the priors (7 (- | 7), v € K,). In particular,
assume that each posterior 7(- | X, ~) converges at rate €,(y) = (n/logn)~*"), where
v — a(7) is Lipschitzian, and 4, converges to v* at rate v, with v, = o((logn)~!) namely K,, =
[7* — vn, v +vy], then the posterior concentration rate of the empirical Bayes posterior is of the
order O(e,(7")). Indeed, in this case, sup e, {€n(7)/€n(v*)} = sup,ex, (n/ log n)leM—e(r’l) =
O(1). This is of special interest when €, (") is optimal. Proving that the posterior distribution
has optimal posterior concentration rate then boils down to proving that 4, converges to the
oracle value ~*.

Remark 1 As in|Ghosal and van der Vaart (2007a), we can replace conditions (2.6) and (2.7))
by the existence of a global test ¢, over S, ; similar to equation (2.7) of |Ghosal and van der
Vaart (20074d]) satisfying

Eéz) [Pn] = O(Nn(un)—l), sup sup / (1— (ﬁ")sz,n < S
vEKnR HESn,]‘ x(n)

without modifying the conclusion. Note also that when the loss function d(6, 6y) is not bounded
it is often the case that obtaining exponential control on the error rates in the form e~ Kne o
e~ Kni*el is not possible for large values of j. It is enough in that case to consider a modification
CZ(H, o) of the loss which affects only the values of 6 for which d(6, 6y) is large and to prove
and for d(0, 0o), defining Sy j and the covering number D(-) with respect to d(-, ).

As an illustration of this remark, see the proof of Theorem [}

The assumptions of [A2] are very similar to those for establishing posterior concentration
rates proposed for instance by |Ghosal and van der Vaart| (2007a)) (see their Theorem 1 and the
associated proof). We need to strengthen some conditions to take into account that we only
know that 4, lies in the compact set K,, with high probability.



The key idea here is to construct a transformation )., ,» which allows to transfer the depen-
dence on the data from the prior to the likelihood, similarly to what is considered in [Petrone
et al. (2014). The only difference with the general theorems of (Ghosal and van der Vaart| (2007a))
lies in the control of the log-likelihood difference £;,(¢y /(0)) — £5,(60) when |y —~'|| < uy. In
nonparametric cases where ne2 is a power of n, u, can be chosen very small as soon as k can
be chosen large enough so that controlling this difference uniformly is not such a drastic con-
dition. In parametric models, where at best ne2 is a power of logn, this become more involved
and u, needs to be large or K,, needs to be small enough so that N, (u,) can be chosen of
order O(1). Note that in parametric models it is typically easier to use a more direct control
of m(0 | v)/m(0 | v), the ratio of the prior densities with respect to a common dominating
measure. In nonparametric prior models this is usually not possible since no such dominating
measure exists in most cases. In Sections [3] and [} we apply Theorem [I] to two different types
of Dirichlet process mixture models: Dirichlet process mixtures of Gaussian distributions used
to model smooth densities and Dirichlet process mixture model of uniforms to model monotone
non-increasing intensities in the context of Aalen point processes. It is interesting to note that
in the case of general nonparametric mixture models there exists a general construction of 1., /.
More precisely, consider a mixture model in the form

K
FO) = pjhe,(), K ~mk, (2.8)
j=1
and, conditionally on K, p = (pj)szl ~ mp and 01, ..., Ok are iid with cdf G,. The Dirichlet

process mixture corresponds t0 Tx = 0(4) and 7, is the GEM distribution obtained from the
stick-breaking construction, see for instance |Ghosh and Ramamoorthi (2003). Models in the
form also cover priors on curves if the (pj)K:1 are not restricted to the simplex. Denote by
7(- | 7) the prior probability on f induced by (2.8)). Then, for all v, € T, if f is represented
as and is thus distributed according to 7 (- | v), then

K
FO) =D pihy (), with 85 =G (G,(8)),
j=1

is distributed according to (- | 7), where G:{/l(~) denotes the generalized inverse of the cumu-
lative distribution function.

We now give the proof of Theorem

Proof. We consider a chaining argument and we split K,, into N, (u,) balls of radius u,, and
we denote by (¥i)i=1, ..., N, (un) the centers of these balls. We have

By (US| X, )] < B max pu (3] < Nalwn) | max B [pn()], (29)
with
. Jus e ODO~0 O dn (| )
pu(yi) = sup - w(Uj, [ X, 9) = sup }

=il <uin =il <un  Jo €n@0EME)=Eo)dm (8 | ;)

We now study, for any ¢, Eéz) [on(7i)]. We mimic the proof of Lemma 9 of |Ghosal and
van der Vaart| (2007a). For every j large enough, by (2.7)), there exist L;, balls of cen-
ters 01, ..., 0;r,,, with radius (je, relative to the ej-distance, covering S, ; N O, with



Ljn < exp(K(j + 1)?ne2/2). We then consider tests ¢,,(6;,) satisfying (2.6) with € = je,. By

setting

= max max 0;
¢ .]>J1 66{1 j,n} ¢n( J’K),

we obtain
—_ 2.2 _ 2.2
n § :L]ne Knj4ez :O(e KJlnen/Q).
j>J1

Moreover, for any j > Ji, any 0 € S, ; N O, and any ¢,

| 0= 604Q),, <
Xx(n)

Since for all @ we have p,(7;) < 1, using the usual decomposition,

(n) (n) e
En n 1 S n+IP) ATLZ +~701’L17
on(0] < g + B (45, + — == C
with
7 lv=yill<un Jo
and

Cos = B n ((M(0) ~n(B0) g (g | %.)] ,

(1—-¢,) sup /

ly—=ill <un Ujlg
We study each term of (2.12f - First, by using and ( -,
) [én) = o( N (1) ™).

Secondly, since

en inf (@i @)=t >

(2.10)

(2.11)

(2.12)

=il <un {inf |y s < €7 P CN O 00) >e=ni >
we have
PO(AC ) < B { / inf el @) —ta(00) 7O 17) e2nei}
o ° LB, Ih=vill<un m(Bn | i)

(n) dr(0 | v) _

S IP)QO {\/%n 1{inf||“r—7iHSu efn (¥ (v;,7)(0))— Zn(90)>e nen} ( n | ")/7,)
(n) dn (6| %)

< PGO {/Bn 1{inf|h,,yi“§u efn (P (73,7)(0))—tn(60) <o~ nen} ( N | 71) >1l—e

< (1—emhy! / Pé’;){ i 6 (6y,(0)) — £a(60) < —ne }

o Iy =il <un

= O(Nn(un)_l)a
by (2.3]). Also, we have

Cri < EYV|(1— o) sup el (i) (0)~n(80) dﬂ(m%)]
]lgn lvy=vill<un
< / / (1= #u)dQ, ndm(9 | )
5yen X
1€n
<

j>J

7

Q Ndr(0 | i) + / / 1—¢n)dQY . dm(0 ] ).
fo, @en®an@ 130+ 52 [ 1= 6@t an0 20



By using , and ,

Cri < D e Rn(S5 MO0 | ) + 0o(Na(un) e 5(By | )

)

j=J1
< Z e*Knj%%/Zﬂ'(Bn | vi) + O(Nn(un)*le*%e%w(én 7))
j>J0
—1_—2né2 o
= o(Nn(un) e nﬂ-(Bn | 72))
and
eZne% c N B
max - C..=0 U .
1=1, ..., Np(un) 7T(Bn ’%) ,1 ( n( n) )
Having controlled each term in (2.12)), by (2.9), the proof of Theorem [1}is achieved. ]

3 Adaptive posterior contraction rates for empirical Bayes Dirich-
let process mixtures of Gaussian densities

Let X(" = (X1, ..., X,,) be n iid observations from an unknown Lebesgue density p on R.
Consider the following prior distribution on the class of densities P = {p: R — R, | ||p|1 = 1}:

[ee]
p() = prol”) == / b0 (- — 0)dF(6),
F ~DP(arN(, s2)), o ~1G(v1, 10), 11, 12 >0,

(3.1)

where ap is a positive constant, ¢,(-) = 0~ 1¢(- /o), with ¢(-) the density of a standard Gaussian
distribution, and N, ,2) denotes the Gaussian distribution with mean m and variance 52, Set
7= (m, s?) e CR xR%, let 4, : R" = T be some measurable function of the observations.
Typical choices are 4, = (X,,, S2), with the sample mean X,, = Y. ; X;/n and the sample
variance S2 = Y (X; — X,,)?/n, and 4y, = (X, Ry), with the range R,, = max; X; — min; X;
as in [Richardson and Green| (1997). Let K, C R x R% be compact, independent of the data
X ™) and such that

PO (3, € Ky) = 1+ o(1). (3.2)

Throughout this section, we assume that the true density pg satisfies the following tail condition:

—colz|”

po(x) Se for |z| large enough, (3.3)
with finite constants cp, 7 > 0. Let E, [X1] = mp € R and Vary,[X;] = 7'02 e Ry If 4, =
(Xn, S2), then condition is satisfied with IC,, = [mo — (logn)/v/n, mo + (logn)/\/n] x
(7 — (1og 1)/ v/, 73+ (0g 1)/ y/n], while, if 3 = (X, Rn), then Ky, = [mo — (logn)/v/n, mo +
(logn)/+/n] x [a, 2(2¢cy  logn)'/7).

Mixtures of Gaussian densities have been extensively used and studied in Bayesian nonpara-
metric literature. Posterior contraction rates have been first investigated by |Ghosal and van der
Vaart| (2001) and (Ghosal and van der Vaart| (2007b)). Following an idea of |[Rousseau| (2010)),
Kruijer et al. (2010)) have proved that nonparametric location mixtures of Gaussian densities
lead to adaptive posterior contraction rates over the full scale of locally Holder log-densities on
R. This result has been extended to the multivariate set-up by [Shen et al.| (2013)) and to super-
smooth densities by Scricciolo| (2014). The key idea behind these results is that, for an ordinary
B-smooth density pg, given o > 0 small enough, there exists a finite mixing distribution F™,



with N, = O(c~!|logo|P?) support points in [—ag, as], for a, = O(|loga|*/7), such that the
corresponding Gaussian mixture density pp« , satisfies

n KL (po; preo) S 02, 2V (po; pre o) S o™, k> 2, (3.4)

see, for instance, Lemma 4 in |[Kruijer et al.| (2010). In all these articles, only the case where
k = 2 has been treated for the inequality on the right-hand side (RHS) of (3.4), but the
extension to any k > 2 is straightforward. The regularity assumptions considered in [Kruijer
et al.| (2010)), Shen et al.| (2013) and |Scricciolo (2014) to verify are slightly different. For
instance, Kruijer et al.| (2010)) assume that log po satisfies some locally Holder conditions, while
Shen et al. (2013) consider Holder-type conditions on py and Scricciolo| (2014]) Sobolev-type
assumptions. To avoid taking into account all these special cases, we state as a condition.
We then have the following theorem, where the distance d defining the ball Uy, ., with center at
po and radius Ji€, can equivalently be the Hellinger or the IL;-distance. Note that the constant
J1 may be different for each one of the results stated below.

Theorem 2 Suppose that py satisfies the tail condition and that the inequality on the
RHS of holds with k > 8(28+1). Consider a prior distribution of the form , with an
empirical Bayes selection 4y, for v, and assume that 4, and IC,, satisfy condition , where
K C [m1, ma] x [a1, az(logn)®'] for some constants my, ma € R, a1, as > 0 and by > 0. Then,
for a sufficiently large constant J; > 0,

EW[r(US,., | X™, 4)] = o(1),  with &, =n /) (logn)*s,
for some constant ag > 0.

In Theorem [2], the constant ag is the same as that appearing in the rate of convergence for
the posterior distribution corresponding to a non data-dependent prior with fixed ~.

The crucial step for assessing posterior contraction rates in the case where pg is super-
smooth, which, as in the ordinary smooth case, consists in proving the existence of a finitely
supported Gaussian mixture density that approximates pg with an error of the appropriate order,
requires some refinements. We suppose that py has Fourier transform py(t) = [~ e"“po(x)dw,
t € R, that satisfies for some finite constants p, L > 0 the integrability condition

o
/ 1o (8) 2621 4t < 2712, with r € [1, 2], (3.5)
—0o

where the regularity of pg, which is measured through a scale of integrated tail bounds on the
Fourier transform pg, is related to the characteristic exponent r. Densities satisfying condition
are analytic on R and increasingly “smooth” as r increases. They form a larger class than
that of analytic densities, including relevant statistical examples like the Gaussian distribution
which corresponds to r = 2, the Cauchy distribution which corresponds to » = 1, all symmetric
stable laws, Student’s-t distribution, distributions with characteristic functions vanishing out-
side a compact set as well as their mixtures and convolutions. In order to state a counter-part
of requirement for the super-smooth case, we consider, for a € (0, 1], the p,-divergence
of a density p from py which is defined as pa(po; p) = o H{Ep, [(po/p)*(X1)] — 1}. Following
the trail of Lemma 8 in |Scricciolol (2014])), it can be proved that, for any density po satisfying
condition , together with the monotonicity and tail conditions (b) and (c), respectively, of
Section 4.2 in Scricciolo| (2014), for o > 0 small enough, there exists a finite mixing distribution
F*, with N, support points in [—a,, a5, so that

pPa(po; PP o) S e~/ for every a € (0, 1], (3.6)



where a5 = O(c~"/"2)) and N, = O((as/0)?). Since
n”'KL(po; pr,0) = Jm, ps(po; Pre.o) < palpo; preo) - for every € (0, 1],

inequality (3.6|) is stronger than that on the LHS of (3.4) and allows to obtain an almost sure
lower bound on the denominator of the ratio defining the empirical Bayes posterior probability
of the set US . , see Lemma 2 of Shen and Wasserman| (2001).

Theorem 3 Suppose that py satisfies condition and that the tail condition holds
with T > 1 such that (1 — 1)r < 7. Suppose also that the monotonicity condition (b) of Section
4.2 in \Scricciolo| (2014) is satisfied. Consider a prior distribution of the form , with an
empirical Bayes selection 4, for v, and assume that 4, and IC,, satisfy condition , where
K C [m1, ma] x [a1, az(logn)®'] for some constants my, ma € R, a1, ag > 0 and by > 0. Then,
for a sufficiently large constant J; > 0,

ES[r(US,, | X™, 4)] = o(1),  with e, = n~'/?(logn)>/2+3/".

We now present some results on empirical Bayes posterior recovery rates for mixing distribu-
tions. These results are derived from Theorem [2] and Theorem [3] via some inversion inequalities.
We first consider the case where the sampling density pg is itself a mixture of Gaussian densities
and derive rates for recovering the true mixing distribution relative to any Wasserstein metric
of order 1 < ¢ < co. We then assess empirical Bayes posterior recovery rates relative to the
Lo-distance for the density deconvolution problem in the ordinary and super-smooth cases.

We begin by recalling the definition of Wasserstein distance of order q. For any 1 < ¢ < oo,
define the Wasserstein distance of order q between any two Borel probability measures v and
v/ on © with finite gth-moment, i.e., [o d?(6, p)v(df) < oo for some (hence any 6p) in ©, as
Wy(v, V') == (inf yeniw, ) foxe @48, 0')p(d0, d6))'/4, where p runs over the set II(v, /) of all
joint probability measures on © x © with marginal distributions v and /. When ¢ = 2, we take d
to be the Euclidean distance || -||. Posterior rates, relative to Wasserstein metrics, for recovering
mixing distributions have been recently investigated by |[Nguyen| (2013). In the following result,
the prior probability measure corresponds to the product of a Dirichlet process, with a data-
dependent base measure arNy, , and a point mass at a given o, in symbols, DP(arN5,,) X g,

Corollary 1 Suppose that po = Fy * ¢o,, where the true mizing distribution Fy satisfies the
tail condition Fy(0 : 0] > t) < ecot® for t large enough and oy denotes the true value for the
scale. Consider a prior distribution of the form DP(arNs, ) X 64, and assume that ¥, and K,
satisfy condition , where IC,, C [my, ma] x [a1, az(logn)®t] for some constants my, ma € R,
ai, ag > 0 and by > 0. Then, for every 1 < q < oo, there exists a sufficiently large constant
J1 > 0 so that

ES [r(F © Wy(F, Fo) > Ji(logn) ™2 | XM, 4,)] = o(1).

The result implies that optimal recovery of mixing distributions is possible using Dirichlet
process mixtures of Gaussian densities with an empirical Bayes selection for the prior hyper-
parameters of the base measure. |Dedecker and Michel| (2013)) have shown that, for the deconvo-
lution problem with super-smooth errors, the rate (log n)_l/ 2 is minimax-optimal over a slightly
larger class of probability measures than the one herein considered.

We now assess adaptive recovery rates for empirical Bayes density deconvolution when
the errors are ordinary or super-smooth and the mixing density is modeled as a Dirichlet
process mixture of Gaussian densities with a data-driven choice for the prior hyper-parameters
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of the base measure. The problem of deconvoluting a density when the mixing density is
modeled as a Dirichlet process mixture of Gaussian densities and the errors are super-smooth
has been recently investigated by [Sarkar et al. (2013). In a frequentist set-up, rates for density
deconvolution have been studied by Carroll and Hall (1988), Fan (1992), Fan| (1991b)), [Fan
(1991al). Consider the following model

X =Y +¢,

where Y and € are independent random variables. Let py denote the density of Y and K the
density of the error measurement £. The density of X is the convolution px(-) = (K *py)(-) =
[ K(-—y)py (y)dy. The density K is assumed to be completely known and its Fourier transform
K to satisfy either

|I/(\'(t)| >A+tH)72 teR, (ordinary smooth case) (3.7)
for some 1 > 0, or
IK(t)| > e " teR, (super-smooth case) (3.8)

for some g, r > 0. The density py is modeled as a Dirichlet process mixture of Gaussian densities
as in with an empirical Bayes choice 4, of 7. Assuming data X(™ = (X1, ..., X,,) are iid
observations from a density pox = K * poy such that the Fourier transform pgy of the mixing
density poy satisfies

/ (14 t2)%|poy (t)|?dt < 0o for some > 1/2, (3.9)

— 00

we derive adaptive empirical Bayes posterior convergence rates for recovering pgy .

Corollary 2 Suppose that K satisfies either condition (ordinary smooth case) or condi-
tion (super-smooth case) and that poy satisfies the integrability condition . Consider
a prior for py of the form , with an empirical Bayes selection 4, for . Suppose that
pox = K = poy satisfies the conditions of Theorem[d in the ordinary smooth case, with d being
the Lo-distance, or those of Theorem|3in the super-smooth case. Then, there exists a sufficiently
large constant J; > 0 so that

E®). [r(llpy — povll2 = Jren | X™, 42)] = o(1),

where, for some constant k1 > 0,

n BRG] (logn)s1 . if K satisfies (3.7),
€n — N
(logn)=P/", if K satisfies (3.8)).

The obtained rates are minimax-optimal, up to a logarithmic factor, in the ordinary smooth
case and minimax-optimal in the super-smooth case. Inspection of the proof of Corollary
shows that, since the result is based on inversion inequalities that relate the ILa-distance
between the true mixing density and the random approximating mixing density to the Lg/ILi-
distance between the corresponding mixed densities, once adaptive rates are known for the
direct problem of Bayes or empirical Bayes estimation of the sampling density pgx, the proof
can be applied to yield adaptive recovery rates for either the Bayes or the empirical Bayes
density deconvolution problem. If compared to the approach followed by [Sarkar et al. (2013),
the present strategy simplifies the derivation of adaptive recovery rates in a Bayesian density
deconvolution problem. The ordinary smooth case seems to be first treated here even for the
fully Bayesian adaptive density deconvolution problem.
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4 Applications to counting processes with Aalen multiplicative
intensity

In this section, we illustrate our results on counting processes with Aalen multiplicative in-
tensity. Bayesian nonparametric methods have so far been mainly adopted to explore possible
prior distributions on intensity functions with the aim of showing that Bayesian nonparametric
inference for inhomogeneous Poisson processes can give satisfactory results in applications, see,
e.g., [Kottas and Sansd| (2007)). First frequentist asymptotic behaviors of posteriors like con-
sistency or computations of rates of convergence have been obtained by Belitser et al.| (2013])
still for inhomogeneous Poisson processes. As explained in introduction, Theorems [4] and [5] in
Section [4.2] extend these results. Section [4.3]illustrates our procedures on artificial data.

4.1 Notations and setup

Let N be a counting process adapted to a filtration (G;); with compensator A so that (N — Ay)y
is a zero-mean (G;)-martingale. A counting process satisfies the Aalen multiplicative intensity
model if dA; = Y;A(t)dt, where X is a non-negative deterministic function called, with a slight
abuse, the intensity function in the sequel and (Y;); is a non-negative predictable process.
Informally,

E[N[t, t +dt] | G,-] = YiA(t)dt, (4.1)

see Andersen et al. (1993), Chapter III. We assume that A; < oo almost surely for every t.
We also assume that the processes N and Y both depend on an integer n and we consider
estimation of A (not depending on n) in the asymptotic perspective n — oo, while 7" is kept
fixed. The following cases illustrate the interest for this model.

- Inhomogeneous Poisson process. We observe n independent Poisson processes with
common intensity A. This model is equivalent to the model where we observe a Poisson
process with intensity n x A, so it corresponds to the case Y; = n.

- Survival analysis with right-censoring. This model is popular in biomedical prob-
lems. We have n patients and, for each patient i, we observe (Z;, ¢;) with Z; = min{X;, C;},
where X; represents the lifetime of the patient, C; is the independent censoring time and
0; = 1x,<c;- In this case, we set N} = §; x 1z,<t, Y = 1z,>¢ and A is the hazard rate
of the X;’s: if f is the density of X, A(t) = f(¢)/P(X; > t). Then, N (respectively Y)
is obtained by aggregating the n independent processes N%’s (respectively the Y’s): for
any t € [0, T], Ny=> 1 Ny and V; = > 1 | Y.

- Finite state Markov process. Let X = (X(t)); be a Markov process with finite
state space S and right-continuous sample paths. We assume the existence of integrable
transition intensities \p; from state h to state j for h # j. We assume we are given n
independent copies of the process X, denoted by X!, ..., X". For any i € {1, ..., n},
let N,f "J be the number of direct transitions for X7 from h to j in [0, t], for h # j. Then,
the intensity of the multivariate counting process M = (N9), ., is (A Y)p;, with
Y;ih = Lixi(t—)=n}- As previously, we can consider 0 (respectively Y") by aggregating the
processes M’ (respectively the Y's): 9t = S0 0 VA =37 Vit and t € [0, T]. The
intensity of each component (Nthj)t of (M) is then (An;(¢)Y,*);. We refer the reader to
Andersen et al.| (1993), p. 126, for more details. In this case, N is either one of the N"J’s
or the aggregation of some processes for which the \y;’s are equal.
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We denote )y the true intensity and we define p,(t) := Eg\? [Y;] and i, (t) := n~"tpn(t). We
assume the existence of a non-random set {2 C [0, T'] such that there are two constants my, mo
satisfying for any n,

m1 < inf ﬁn(t) < sup ﬂn(t) < mgy (4'2)
te) teQ

and a € (0, 1) such that if T, := {sup,cq [n71Y; — fin(t)| < ami} N {sup,cqc Yz = 0}, where Q¢
is the complementary set of 2 in [0, T, then

n%npg? (T,) = 1. (4.3)
Assumption (4.2)) implies that on 'y,

Vter (l_a)/]'n( ) <

:\“<

< (1+ Q)fin(0): (4.4)

Remark 2 Since our results are asymptotic in nature, we can assume, without loss of gener-
ality, that (4.2) is true only for n large enough.

Remark 3 Our assumptions are satisfied, for instance, for the ﬁrst two dllustrative models
introduced above. For inhomogeneous Poisson processes, and (| are obviously satz’sﬁed
with Q = [0, T since Yy = pn(t) = n. For right-censoring models wzth Yt = 1Z >t; i=1,

we denote by ) the support of the Z;’s and by Mg = maxQ € R,. Then, and (| . are
satisfied if Mg > T or Mg < T and P(Z; = Mgq) > 0 (the concentration mequalzty s implied
by using the DKW inequality).

Recall that the log-likelihood for Aalen processes is given by, see |Andersen et al. (1993),

T T
la(N) = /O log(A(t))dN, — /O A(t)Yedt. (4.5)

Since N is empty on 2¢ almost surely, we only consider estimation over 2. So, we set

]-'_{/\:Q—>R+ : /Q)\(t)dt<oo}

endowed with the classical Li-norm: for all A, X € F, let |A — X|[|1 = [ |A(t) — N (t)|dt. We
assume that the true intensity Ao satisfies \g € F and, for any A € F, we write A = M)\, where
My = [, A(t)dt and X € Fy, with Fy = {f € F: [, f(t)dt = 1}. Note that a prior probability
measure 7 on J can be written as m1 ® 77, where 71 is a probability distribution on /7 and
s is a probability distribution on R;. This representation will be used in next section.

4.2 Empirical Bayes and Bayes posterior concentration rates for monotone
non-increasing intensities

In this section, we concentrate on estimation of monotone non-increasing intensities, which is
equivalent to considering A\ monotone non-increasing in the above described parameterization.
To construct a prior on the set of monotone non-increasing densities on [0, 7|, we use their rep-
resentation as mixtures of uniform densities as provided by Williamson! (1956) and we consider
a Dirichlet process prior on the mixing distribution:

Az) = /oo H(O’Z)(x)dp(e), P|G,, A ~ DP(AG,), (4.6)
0
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where G is a distribution on [0, T]. This prior has been studied by [Salomond| (2013) for
estimating monotone non-increasing densities. Here, we extend his results to the case of a
monotone non-increasing intensity of an Aalen process with a data-dependent v. We denote by
7(- | N) the posterior distribution given the observations of the process N.

We study the family of distributions G, with density denoted g, belonging to one of the
following families of densities with respect to the Lebesgue measure: for v > 0, a > 1,

1 1 1

-1
94(0) = G(T,y)’Yaea_l@_wﬂ{ogegT} or (0 - T> ~ I(a, ), (4.7)

where G is the cumulative distribution function of a I'(a, 1) random variable. Assume that,
with probability going to 1, 4, belongs to a fixed compact subset of (1, co) denoted by K. We
then have the following theorem, which is an application of Theorem

Theorem 4 Let &, = (n/logn)~/3. Assume that the prior wpr on the mass M is absolutely
continuous with respect to the Lebesgue measure with positive and continuous density on Ry and
that it has a finite Laplace transform in a neighbourhood of 0. Assume that the prior w (- | )
on A is a Dirichlet process mizture of uniform distributions defined by , with A > 0 and the
base measure G, defined by . Let Ay, be a measurable function of the observations satisfying
IP)&) (Am € K) =1+ 0(1) for some fized compact subset KL C (1, 00). Assume also that and
are satisfied and for any k > 1 there exists C1 > 0 such that

([oi- un<t>>2dt)k

Then, there exists J; > 0 such that

Ao < Cyn” (4.8)

Egz) [m(A: A= Xolli > Ji&n | N, 4n)] = o(1)

and

sup ES [r(A = [IA = Xolly > Jién | N, 9)] = o(1).

yek
The proof of Theorem 4] is given in Section It consists in verifying conditions [A1] and
[A2] of Theorem [l|and is based on a general theorem on posterior concentration rates for Aalen
processes which is presented below since it is of interest on its own. Let v, be a positive sequence
going to 0 such that nv2 — oo. For all j > 1, we define

A U e
=4 A = ||y < L L
Sy ={Xe A 3ol < 2
WhereM)\O:fQ)\O(x)dx,XO:M)\_Ol)\O. ForH>0andk:22,ifk[2]:min{2£:EGN, 2t >k},
we define
Ao

<n' Ml

oo

2
_ _ _ - v -
Brn(H, Mo, vn) ={XEF1: hB*(No, \) € ————— max E;(M\, \) <02,
ey ( 0; Un) { 1 (Ao )71+10g||%||00 2§j§?§[2] (Ao, A) <
where, for every integer j, Ej(Xo, A) = [, Ao(z) |log Ao(x) — log X(w)’j dz and || - [|o stands for
the sup-norm.

Theorem 5 Let v, be a positive sequence satisfying v2 > logn/n and v, = o(1). Assume that
and are satisfied and that the prior wyr on the mass M is absolutely continuous with
respect to the Lebesgue measure with positive and continuous density on Ry. Assume also that
is satisfied for some k > 2. Finally, assume that the prior m on X satisfies the following
assumptions for some H > 0.
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(i) There exists F,, C Fi such that
m (Fp) < e ot (B (H, X, vn)),
with ko as defined in , and for all £, 6 > 0,
log D(&, Fu, || 1]1) <nd  for all n large enough.
(13) For all ¢, 8, B > 0, there exists Jy > 0 such that, for all j such that Jy < j < /vy,

_ Wl(gn,z) < OU+1)*nv}
71'I(Bk,n(-[_—,a )\07 Un)) o

and B
log D(Cjvn, Snj N Fn, |- 1) < (5 + 1)%nv

Then, there exists J; > 0 such that, when n — oo,
E(Xé)[ﬂ()\ A= Xoll1 > Jion | N)] = O((nw?)~F/2).

To the best of our knowledge, the only other paper dealing with posterior concentration rates
in related models is [Belitser et al. (2013) which considers inhomogeneous Poisson processes.
Theorem [ differs from their general Theorem 1 in two aspects. First, we do not restrict ourselves
to inhomogeneous Poisson processes. Second, and more importantly, our set of conditions is
quite different. More specifically, we do not need to assume that \g is bounded from below and
we do not need to bound from below the prior mass of neighborhoods of Ay for the sup-norm,
but merely the prior mass of neighborhoods for the Hellinger distance, as in Theorem 2.2 of
Ghosal et al.|(2000)). Our aim, in Theorem is to propose a set of conditions to derive posterior
concentration rates on the intensity which are as close as possible to the conditions used in the
density model by parameterizing A as A = My\, where X is a probability density on €.

Remark 4 Note that if \ € Ban(H, X, vp), then, for anyj > 2, E;(Xo, \) < H' 7202 (logn)?—2
so that, using Proposition |1 l if we replace By, ,(H, Xo, vy) with X\ € Ban(H, Ao, vy) in the as-
sumptions of Theorem [5, we obtain the same type of conclusion: for any k > 2, such that

condition (4.8|) is satisfied,
E (N A= ol = S | N)] = O((nv2) ™/ (log n)kei=2)/2)

with an extra (logn)-term on the right-hand side above.

Remark 5 We now prove that Assumption 1s reasonable by considering the previous
examples. Obviously, is satisfied in the case of inhomogeneous Poisson processes since
Y; = n for every t. For the censoring model, i = Y 1" | 1z,>1. We set, for any i, V; =
1z,>t —P(Z1 > t). Then, for k > 1,

</Q(Yt_“n(t))2dt>k] - /OT (; Vz’>2dt

k

A

E{"

2%k
< T’H/ E (Zv) dt
T n n k
< C(k,T) / ZE&Z’W’CH(ZEW]) dt
0 i=1 i=1
S Clk‘nka
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where C(k, T) and Ci depend on k and T by using the Holder and Rosenthal inequalities
(see, for instance, Theorem C.2 of|Hdrdle et al.| (1998)). Under some mild conditions, similar
computations can be derived for finite state Markov processes.

4.3 Numerical illustration

We now present a numerical experiment to highlight the impact of an empirical prior distribu-
tion for finite sample sizes n, in the case of an inhomogeneous Poisson process. Let (W;);—1. n(7)
be the observed points of the process N over [0,7], N(T') being the observed number of jumps
over [0,7]. We recall that the intensity function has the form n\o(t) = nMy,Ao(t) (n being
known) where fOT At)dt = 1.

The estimations of My, and A can be done separately, given the factorisation in ([4.5)). Provided
the use of a Gamma prior distribution on M)y, (My, ~ I'(ar, bar)), we have

M)\O‘N ~ F(CLM + N(T),bM +n)

The non-parametric Bayesian estimation of ) is more involved. However in the case of Dirichlet
process mixtures of uniforms as a prior model on A\ we can use the same algorithms as those
considered for density estimation. In this Section we restrict ourselves to the case where the base
measure in the Dirichlet process is the second possibility in , namely G =p [% + ﬁ} 1.
It satisfies the assumptions of Theorem [4] and also presents computational advantages. Hence,
three hyperparameters are involved in this prior, namely A the mass of the Dirichlet process,
a and 7. The hyperparameter A strongly conditions the number of classes in the posterior
distribution of A. In order to mitigate its influence on the posterior, we propose to consider a
hierarchical approach and set a Gamma prior distribution on A: A ~ I'(a4,b4). In the absence
of additional information, we set a4 = by = 1/10, corresponding to a weakly informative prior.
Theorem [ applies for any a > 1. We arbitrarily set a = 2, the influence of a is not studied in
this paper. We compare three strategies for the determination of v in our simulation study.

Strategy 1: Empirical Bayes - We propose the following empirical estimator:

Yo =0 [W(n)] (4.9)
which comes from the following equality:

o 1 N(T) T 1
E [Wx)|N(T)] =E NT) SWi|N@T)| = /0 ¢ /0 5 W0)(1)dG(0) dt

i=1
1
~y oo o=v/(v=7) q
= — ::\I/
2F(a)/1 = hye = )

T

Strategy 2: Fized v - In order to avoid the empirical prior, one can fix v = 7. In order to
study the impact of a bad choice of « on the behaviour of the posterior distribution, we
propose to choose g far from a well calibrated value for ~, which would be v* = U1 (Eyj,¢,)
with Eypeo = E[W|N(T)]. Since, in the simulation study, we know the true Ag, v* can be
computed and we consider

T
Y =p -V Y Epe), where Eypeo = / tA(t)dt, p € {0.01,30,100} (4.10)
0
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Strategy 3: Hierarchical Bayes - We consider a hierarchical prior on v given by:

v~ T(ay,by)

In order to make a fair comparison with the empirical posterior, we center the prior
distribution on 4. Besides, in the simulation study, we set two different hierarchical
hyperparameters (a.,by), corresponding to two prior variances. More precisely, (a.,by)
are such that the prior expectation is equal to 4 and the prior variance is U,zy, the values
of o, being specified in Table

Samples from the posterior distribution of (X, A4,v)|N are generated using a Gibbs algorithm,
decomposed into two or three steps:

1] XNA~N 2] ANy N[BT 44NN,

step [3]! only existing if a fully Bayesian strategy is adopted on the hyperparameter v (strategy
3). We use the algorithm developed by [Fall and Barat| (2012]).

The various strategies for calibrating the hyperparameter + are tested on 3 different intensity
functions (non null over [0, 7], with T' = 8):

Xoa(t) = [4Tpg(t) +2 Uj3g(t)]
)\0,2 (t) — 6_0'4t
1
Xogs(t) = cos™ ! @(t)]l[(]m (t) — (6 cos™ ! d(3)t — g cos™ ! <I>(3))]l[3’8] (t)

where ® is the probability function of the standard normal distribution. For each intensity Ao.1,
Ao2 and Mg 3, we simulate 3 datasets corresponding to n = 500, 1000, 2000 respectively. The
histograms of the 9 datasets with the true corresponding normalized intensities Ag; are plotted
on Figure|[l| In the following we denote by D! the dataset associated with n and intensity A.;.
For each dataset, we adopt the 3 exposed strategies to calibrate . The posterior distributions
are sampled using 30000 iterations of which are removed a burn-in period of 15000 iterations.
To compare the three different strategies used to calibrate -y, several criteria are taken into
account: tuning of the hyperparameters, quality of the estimation, convergence of the MCMC,
computational time. In terms of tuning effort on -, the empirical Bayes (strategy 1) together
with the fixed v approach are comparable and significantly simpler than the hierarchical one,
which increases the space to be explored by the MCMC algorithm and consequently slows
down its convergence. Moreover, setting an hyper-prior distribution on ~ requires to choose
the parameters of this additional distribution (a, and b,) and thus postpone the problem, even
though these second order hyperparameters are supposed to be less influential. In our particu-
lar example, computational time, for a fixed number of iterations here equal to Nz, = 30000,
turned out to be also a key point. Indeed, the simulation of the A conditionally to the other
variables involves an accept-reject (AR) step. For some particular values of 7 (small values
of 7), we observe that the acceptance rate of the AR step can be dramatically low, automati-
cally inflating the execution time of the algorithm, this phenomenon occurring randomly. The
computational times (CpT) are summarized in Table |1, which also provides for each of the 9
datasets the number of points (N7), the 4 computed using formula and to be compared
with the targeted value W1 (Ey.,), the perturbation factor p used in the fixed ~ strategy and
the standard deviation of the prior distribution of v 0., (the prior mean being %) used in the
two hierarchical approaches. The second hierarchical prior distribution (last columns of Table
1)) corresponds to a prior distribution more concentrated around the empirical value 4.
On Figure [2] (respectively 3| and , we plot for each strategy and each dataset the posterior
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Empirical ~ fixed Hierarchical Hierarchical 2

Nt ~ CpT oV (Eiheo) CpT oy CpT oy CpT

Dy 499 | 0.0386 523.57 2085.03 12051.22 447.75

Xoa  Digee 1036 | 0.0372  783.53 | 0.01 x 0.0323 1009.58 | 0.005  791.28 0.001  773.33
Do 2007 || 0.0372  1457.40 1561.64 1477.50 1456.03
D2y, 505 || 0.6605 1021.73 1022.59 663.54 1047.42
M2 D3 978 | 0.6857 1873.05 | 100 x 0.6667 1416.40 | 0.1 1207.07 | 0.01 2018.89
D20 2034 || 0.6827 4849.80 2236.02 2533.62 4644.55

D3y, 483 || 0.4094  782.19 822.12 788.14 788.00
Mo Dipo 1058 | 0.4398 1610.47 | 30 x 0.4302 2012.96 | 0.1 1559.17 | 0.01  1494.75
D3y00 2055 || 0.4677 3546.57 9256.71 3179.96 2770.83

Table 1: Values of v (or the hyperparameters of its prior distribution) and computational time
required for the Gibbs algorithm with 30000 iterations. Np: number of observations for each
dataset D?. CpT: Computational Time. o,: standard deviation of the prior distribution on 7

median of \; (respectively Ao and A3) together with a pointwise credible interval using the
0.1% and 0.9% empirical quantiles obtained from the posterior simulation. Table [2] gives the

distances between the estimated normalized intensities \; and the true )\;, for each dataset and
each prior setting.

On Ao (which a simple 2-steps function), the 4 strategies lead to the same quality of estimation
(in term of losses / distances between the functions of interest). In this case, it is thus interesting
to have a look at the computational time in Table We notice that for a small v or for a
diffuse prior distribution on 7 (so possibly generating small values of 7) the computational
time explodes. In practice, this phenomenon can be so critical that the user may have to stop
the execution and re-launch the algorithm. Moreover, interestingly the posterior mean of the
number of non empty components in the mixture (computed over the last 10000 iterations) is
equal in the case n = 500 to 4.21 in the empirical strategy, 11.42 when + is fixed arbitrarily,
6.98 under the hierarchical large prior and 3.77 with the narrow hierarchical prior. In this case
choosing a small value of « leads to a posterior distribution on mixtures with too many non
empty components. This phenomena tends to disappear when n increases.

For MAp2 and A3, a bad choice of v - here v too large in strategy 2 - or a not enough
informative prior on ~ (hierarchical prior with large variance) has a significant negative impact
on the behavior of the posterior distribution. Contrariwise, the medians of the empirical and
the informative hierarchical posterior distribution of A\ have similar losses, as seen in Table

5 Proofs

The notation < will be used to denote inequality up to a constant that is fixed throughout. We
denote by C a constant depending on mi, me, k and so forth, which may change from line to
line.

5.1 Proof of Theorem 2| on empirical Bayes Dirichlet process mixtures of
Gaussian densities for the ordinary smooth case

To prove Theorem |2, we must verify assumptions [Al] and [A2]. We first define the change of
parameter ¢ ,/(pr,). Under the Dirichlet process mixture prior we can write, when the base
measure is associated to the parameter v = (m, s?), that ppo(-) = > j>1PjPe (- — 0;) almost
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Figure 2: Estimation of A\; from D2y, (first column), Dy, (second column) and Dy, (third
column) using the four strategies: empirical prior (line 1), fixed  (line 2), hierarchical empirical
prior (line 3), concentrated hierarchical empirical prior (line 4) . True density (plain line),
estimation (dashed line) and confidence band gdotted lines)
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Figure 3: Estimation of Ay from D2y, (first column), D?y,, (second column) and D3, (third
column) using the four strategies: empirical prior (line 1), fixe v (line 2), hierarchical empirical
prior (line 3), concentrated hierarchical empirical prior (line 4) . True density (plain line),
estimation (dashed line) and confidence band gﬁotted lines)
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Figure 4: Estimation of A3 from D3y, (first column), D3y, (second column) and D3, (third
column) using the four strategies: empirical prior (line 1), fixe v (line 2), hierarchical empirical
prior (line 3), concentrated hierarchical empirical prior (line 4) . True density (plain line),
estimation (dashed line) and confidence band §%Otted lines)



Ao,1 Ao,2 Ao,3
Dl Digo  Diooo | Dioo Diooo  D3oo | D30 Diooo  Diono
Empir | 0.0246 0.0238 0.0207 | 0.0921* 0.0817* 0.0549* | 0.1382 0.0596 0.0606
d Fixed | 0.0161 0.0219 0.0211 | 0.5381 0.7221 0.6356 | 0.3114 0.2852 0.2885
2 Hierar | 0.0132 0.0233 0.0317 | 0.1082 0.1280 0.0969 | 0.2154 0.1378 0.1405
Hiera 2 | 0.0191 0.0240 0.0208 | 0.0925* 0.0815* 0.055*2 | 0.1383 0.0607 0.0724
Empir | 0.0014 0.0006 0.0006 | 0.0010 0.0010  0.0008 | 0.0008 0.0005 0.0006
d Fixed | 0.0014 0.0006 0.0006 | 0.0251 0.0376  0.0378 | 0.0084 0.0095 0.0104
L Hierar | 0.0005 0.0006 0.0020 | 0.0033 0.0050 0.0034 | 0.0066 0.0070 0.0072
Hiera 2 | 0.0009 0.0006 0.0006 | 0.0011 0.0011 0.0009 | 0.0009 0.0005 0.0013
Empir | 0.0909 0.0909 0.0909 | 0.1828 0.1369  0.0833 | 0.1421 0.0462 0.0428
Fixed | 0.0909 0.0909 0.0909 | 0.3261 0.5022 0.4271 | 0.1707 0.1818 0.2020
I lloe Hierar | 0.0909 0.0909 0.0909 | 0.2330 0.2007 0.1389 | 0.2154 0.1000 0.1190
Hierar2 | 0.0909 0.0909 0.0909 | 0.1886  0.1413 0.0835 | 0.1515 0.0513 0.0555

Table 2: Distances between the estimated and the true density for all datasets and all strategies.
Distance Lj in horizontal block one, distance Lo in horizontal block two, distance || - || in
horizontal block three.

surely, with the 6; ~ N, .2y independently and independently of the (pj)j>1. Without loss of
generality, we assume that KC,, = [my, ma] X [s2, s2], with —0o < m; < ma < 00, 57 > 0 and s2
possibly going to infinity as a power of logn. Consider a wu,-covering of [m1, mg]| with intervals
Iy, for k=1, ..., Lmn, where Ly, = |(mg —m1)/u,], and a covering of [s?, s2] with intervals
of the form J; = [s3(1 + uy,)'™ 1, s2(1 4+ uy)!Y], for I = 1, ..., Lg,, where Ly, < 2u;'log(s,/s1)
and such that L,, — oo as n — oco. We suppose that u, — 0.
Fors? € Ji,l =1, ..., Lgy, let p = (s2/s3)1/? < (14u,) /2, with s? = s3(1+u,)! !

m € Iy, k=1, ..., Lpy, writing mg = my + (k — 1)uy,, if, for every j € N, 9 ~ N
and 0; = pg(eg — myg) + m, then 0; ~ N(m,52) = N,.
F ~ DP(arNy),

, and, for
My, 8 2) = N’Y'
Therefore, condltlonally on o, for

ijd)o

7j>1

Uy (PFa)( = [05(pr = 1) + m — mapl]) (5.1)

is distributed according to a Dirichlet process location mixture of Gaussian distributions, with
base measure N... The following inequalities are used repeatedly in the sequel,
QI+u)?>p>1,  —mpun <m— pmy, < up.

With abuse of notation, we also denote by 1, /(6;) = pe(0; —my) +m for any 7' = (my, s 2) and
v = (m, s?). We first verify assumption [A1]. From condition (3.4)), let o € (0,,/2, 20,,), with
Op = e}/ﬁ, and F* be as defined in (3.4)), so that F* = Z;V:”l
between any two 6;’s bounded from below by d; = ae%b for some b > 0. Construct a partition
U; )M1 of R following the proof of Theorem 4 of Shen et al| (2013). Let a, = ag|logo|'/".
The partltlon is such that (U;)X j)j=1 is a partition of [—as, as] composed of intervals in the form
[07—07/2, 07+6;/2],j =1, ..., Ny, and of intervals with diameter smaller than or equal to o to
complete [—a,, ag]. Then, construct a partition of (—oo0, —a,) and (aq, co) with intervals Uy,
j > K, such that 1 > N, (U;) > o€2’. Note that, as in [Shen et al|(2013), M < o~ (logn)'+1/7

and that, for all j < K, N,(U;) 2 %

p;'f 59; with the minimal distance

€205/ > & for some b > b uniformly in v € K. As in
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Shen et al.| (2013)), define B, as the set of (F, o) such that o € (0,/2,20,) and

* 20’ : v’
Z|F(Uj)_pj| §2€n ) lglgnMN’Y(Uj) Zen /2

Following Lemma 10 of |Ghosal and van der Vaart| (2007b), we obtain that for some constant ¢
independent of v € ICp,,

f (B —co~t(logn)* /T 5.9
7lenICn7T( 7)) 2 (5.2)

Moreover, for all (F, o) € By, with 7/ = (mg, s?) and any v € Iy x J,

pFO’ Zp]¢a — s, ’y ) > Z H|9’ |<agpj¢cr( Qb’y,'y’(ej))

jz1 j>1
l2—0% (e +1)un+(az+1)ud
AV 52
> Z ]1|o;\gaopj¢a($ —0))e n
Jj=1
Note that n=to, ! = ¢2. Choosing u, < n~ 20, (logn)™"7 = n=t2(logn)~*/7, we obtain

that on the event A, = {37 | |X; — mo| < n7Zk,}, for k, > (logn)'/7, using the inequality
logz > (x — 1)/x valid for x > 0,

bn(pFo) — €n(po) > €n(PE, o) — ln(po) + nlogc, — 4dnoy, 2[(a2 + 1)uZ + (ap + V)un(2a0 + 75 kn)]
> Un(pF0) = bn(po) + nlogcy — C'ne,
> Un(PFoo) — ln(po) +nlce — 1) — C’/nei
> lu(pr,0) = ba(po) — 206" — C'n€;, > €u(pr, o) — fulpo) — ne;, — C'ney,

with a constant C’ large enough, where pg, ,(7) = c; > i1 11‘9/|<aapj¢g( —0;) and ¢, =
> j0t<a, Pi = (1= 2e2') > (1 — e ) because b’ > 1. The proof of Theorem 4 of |Shen et al.
= g

(2013), together with condition (3.4), implies that [A1] is satisfied. We now prove [A2]. As in
Proposition 2 of [Shen et al. (2013), consider

Fon={ (F,o0):0,<o0<adp, F:ijégj, |9j\§n1/2 Vi< Hp, ijgen , (5.3

Jj=1 J>Hn
with o, = er/? , on, = exp(tne?) for some t > 0 depending on the parameters (vq, v2) of
the inverse- gamma distribution for o, and H, = |ne2/logn|. For some x¢ > 0, let a, =

2x0(logn) V7, v = (my, s7) € Ky, v € I, x J; and |z| < a,/2. If ] > a,, then |z — 0] > |9\/2
and, for u,, < n~2, we can bound Pro as follows:

, l=tlunflol+)
— /qba o (0))AF (6 /%x— dF'(6)

< e3an(an—&-l)una’2/2 /

B 16]<an

bo( — O)AF'(0) + / 6o (= 0)(1 — Sun))AF'(9)

10]>an

< eoU/m) /9< b (x — 0)dF'(6) +(1+O(1/n))/ 5, (x — 0)dF"(0)

|0]>an

B 60(1/n) oA = / G (L — / ’
</0San¢ (z=6)dF (0)+/|0>an¢ L (z—0)dF (9))
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where F' ~ DP(agN,/), 6, = o(1 — 1/n?)~Y/2. Now, since IP)I()E) (Qp) =1+ o0(1), with Q,, =
{—a,/2 < min; X; < max; X; < a,/2}, we can replace R with ,, and define for all (F, o) € F,,

F.o _ o(1/n) o
07 () = T_q, /2,a, /2 (2)e ( /9 Po(z — 0)dF(0) + /

10]>an

G5, (€ — O)dF (9)>

Igan

Similarly, we can replace pro by proll_q,/2 4,/2- We then have that qf’g and pr, are con-
tiguous and ¢ —proli =o(1/n). Therefore, we can consider the same tests as in Lemma 1
of \Ghosal and van der Vaart| (2007b) and is verified, together with . 2.7) using Propo-
sition 2 of [Shen et al| (2013)). Since 1mphes condition , there only remams to
verify assumption (2.4). The difficulty here is to control q5 7 as 0 — 0. Indeed, ¢y’ 7 can
be used as an upper bound on 1. ./ (prs) for all (F, o) with ¢ > o,, when |z| < a,/2,
which we are allowed to consider since we can restrict ourselves to the event €2,. Thus,
oo, @Y7 ([—an/2, an/2") dn(F | y)dr(0) = o(e™2"%)x(B) | v) uniformly in y € K,. We
now study
| @ (an2 an/2) dn(F | 2)dn (o).
oo,

We split (0, g,,) = U]‘?’;O[QnQ_(jH), 0,277). Then, for all o € [g,2-U*V), ,277), j > 0, define
Un; = n ten(0,277)%, with e, = o(1) and 8 > 1/2 to guarantee that u,; < n~2, so that,
similarly to before, for all v € I,

sup w’y,’y’ (pF,cf(l'))ﬂ[—an/Q, an/2] ($) < qi,o(x)’

=7 lI<un, ;
with the distance ||y — /|| = |m — my| + |s/s; — 1|. For all v € K,,, using a wu,, j-covering of
{7+ Iy =4Il < un} with centering points v;, i = 1, ..., N;, where N; < (uy/un,j)?, we have

7 (z) < max /R SUp Gl — by (0))AF (D)

1SISNG TR |1y —ill <un,

[T =y, (0) [up 5 (1+]y %(Q)DdF 0
< a o? < max ¢
- 19';]%/ /‘bo w’y% )) ( ) 1<z<)]i7 nzgaz( )

with g,; the probability density over [—a,/2, ay/2] proportional to
2anun,]’(1+an)

/|9< Po(x =Py (0))e o> dF(0) + / Po (2 = Yy, (0)) (1 = o(1/n)))dF(0),

|0|>an

so that

tni < F([—an, ay))et6moenosm)/n (1 p((—a,, an]))(140(1/n/2)) = 14 0(en(logn) /™ /n).

This implies that, for e, < (log n)*l/i

gnQ’j .
/ QY ([=an/2, an/2A")dn(F | 7)dr(0) S Njn(le, 27UV, g,27))

g,2- U+

4 — _9i-1
< ’LLnTL2 4, 224] 2 /O’

whence fa<gn 5 ([—an /2, an/2)")dn(F | y)dn(o) < e %' /2 and (2.4) is verified, which com-
pletes the proof of Theorem
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5.2 Proof of Theorem (3| on empirical Bayes Dirichlet process mixtures of
Gaussian densities for the super-smooth case

The main difference with the ordinary smooth case lies in the fact that, since the rate ¢, is

almost parametric, we have ne2 = O((logn)~) for a suitable finite constant £ > 0 so that, in

order to compensate the number N, (u,) of points, we need that, for some set B,

sup  sup ]PI(,Z) < inf L (Vs (PFe)) — lnlpo) < —ne > < emCnen (5.4)
’YG’Cn PF, aeBn II’Y_’Y HS’U’"

for some constant C' > 0. It is known from Lemma 2 of |Shen and Wasserman (2001) that if
PFo € Sp = {pF,U : pa(pO; PF,U) < 5721} then
P (€n(pra) — fn(po) < —n(1+ C)ed) < e o0,

Po

Consider the same set K, and the same wu,-covering as in the proof of Theorem Take
on = O((logn)~'/"). Let 0 € (op, op + e D (/7)") for some positive constant d1 It is
known from Lemma 6.3 of Scricciolo| (2014) that there exists a distribution F* = S =150,
with N, = O((as/0)?) points in [—ag, a,], where a, = O(c~"/("2)), such that, for some
constant ¢ > 0, n~ ' max{KL(po; pr+o), V2(po; preo)} < e—¢(1/9)" " Inspection of the proof
of Lemma 6.3 reveals that all arguments remain valid to bound above any p,-divergence
Pa(po; pr+o) for a € (0, 1]. In fact, using the inequality valid for all a, b > 0, |a® — b%| <
la® — b8|*/B, with 0 < «a < B, having set in our case § = 1, we have pq(po; PFo) <
a1 Ep, {[|lpo(X1) — pre o (X1)|/pF* o (X1)]*}. All bounds used in the proof of Lemma 6.3 for the
various pieces in which n~'KL(po; pr+ ) is split can be used here to bound above pa (po; PF*.o)-
Thus, pa(po; pr o) S e /9", Construct a partition (U; ) 7y of R, with Uy := (U U)e,U; >
07 and A(U;) = O(e=a(/o)") j =1,..., N,. Then, inf,ex, minj<;<n, N-(U;) Z e‘cl(l/”)r.
Defined the set

Ny
B, =X (F,0): 0€ (op, on+ e~ d1(1/on)" Z - pj 1< e—c1(1/o)"

we have infyex, (B | 7) 2 exp{—c2No, (1/0n)"} = exp{—03(log n)5t6/m} = e=esnen and, for
every (F, o) € By, it results pa(po; Pro) S e—c2(1/on)" < 2 Moreover, reasoning as in the proof
of Theorem [2| for u, < k' o2e(logn)~ (™2 on the ¢ event Ap = {370 |1Xs — mo| < 7kt
for k, = O(n),

ln(pFo) — €n(po) = n(PF,.0) — n(po) + n(co — 1)
— 4noy?[(ag + Dy, + (aa + 1)un (20, + 70kn)]
> En(pFn,a) — ln(po) — ne C/ne

for some positive constant C’, with pFn () = c;t doi>1 ]1|9'|<a(,pj¢a( — 0%), where ¢, =
> 10/ |<a, P > (1—e~a(l/on)") > 1 — €2, Hence, the proof of Lemma 2 of Shen and Wasserman
(2001)) implies that is satisfied. The other parts of the proof of Theorem [2] I go through to
this case. We only need to verify that both IP)% (AS) and IP’Z(,:)L)(Q%) go to 0. Indeed, by Markov’s
inequality, IP’;()Z) (AS) <n7l < e~%nen . Also, IF’;(,Z)(Q%) < e~¢4ne. because of the assumption
that po has exponentially small tails.

26



5.3 Proof of Corollary (1) on empirical Bayes posterior contraction rates for
mixing distributions in Wasserstein metrics

We appeal to Corollary in Scricciolo| (2014) and the following remark which gives an indication
on how to remove the condition that © is bounded. In particular, we need that, for every
1 < ¢ < o0, there exist ¢ < u < 0o and 0 < B < oo such that Ep[|X[*] < B with [DP(arN5,,)]-
probability one, for almost every sample path when sampling from IP’](DZO). This can be proved
appealing to the properties of the tails of the distribution functions sampled from a Dirichlet

process as in |Doss and Sellke| (1982).

5.4 Proof of Corollary |2/ on adaptive empirical Bayes density deconvolution

The result is based on the following inversion inequalities which relate the LLo-distance between
the true mixing density and the random approximating mixing density to the Lo /IL;-distance
between the corresponding mixed densities:

|K *xpy — K *poy]\g/(6+n), ordinary smooth case,
Py —pov|l2 <

(—log ||K *py — K *poy||1)~?/", super-smooth case.
In what follows, we use “0s” and “ss” as short-hands for “ordinary smooth” and “super-smooth”,
respectively. To prove the preceding inequalities, we instrumentally use the sinc kernel to
characterize regular densities in terms of their approximation properties. We recall that the

sinc kernel ( ) () L
. - sinz)/(rx), if x#0,
sine(z) = { 1/x, if 2=0,

has Fourier transform sinc identically equal to 1 on [—1, 1] and vanishing outside it. For § > 0,
let sincs(+) = sinc(-/d) and define gs as the inverse Fourier transform of sincs/ K,

1 1y SINCs
gs(x) = /6_mj Slricd(t)dt, z €R.
2m K(t)

Let g5 = sfn?(;/l? be the Fourier transform of gs5. So, sincs = K*gs and py *sincs = (py K )*gs =
(K * py) * gs. We then have

Ipy — pov |13 < ||py * sincs —poy * sincs ||3 + ||py — py * sincs ||3 + ||poy: — poy * sincs |13
< ||py * sincs —poy * sincg ||% + |lpy — py * sincg ||§ + 526

because |poy — poy *sincs [|3 = [ |poy (t)[*|1 — sincs () [2dt < 627 f|t‘>1/5(1 +12)8|poy () |2dt <
6% by assumption (3.9). Now, recall that py = pp, = F * ¢,. For (F, o) € F, defined as

in (5.3), with 0 > g, o C§(logn)*2, where 2ky > 1, C%/2 > (268 + 1)/[2(8 + 1) + 1] and
6 > n~/RBMH] e have

Ipy — py *sincs ||} = / [y (1)]7dt = / |E(8) Pl (1) dt < / 6o (1) |dt
[t|>1/6 [t|>1/6 [t|>1/6
< (02/5)7167(0/6)2/2 < [5(logn)2l€2]716702(10gn)2”2/2 < 528
In the ordinary smooth case,
[py * sincs —poy * sincs [|3 = || (K * py) * g5 — (K * poy) * gs||3

< g / R (1)]25%() — pov ()2t
[t|<1/6

< 6| K % py — K * poy |3
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In the super-smooth case,

|py * sincs —poy * sincs [|3 = [|[(K * py) * g5 — (K * poy) * gs|13 < | K * py — K * poy |13]|gs3.

1 o0 /\t 2 1 e —r
losl = 5- | e, _ 1 [ IR e
21 Joo |K(t)? 21 Jsjt<1

where

Combining pieces, for (F, o) € Fy,

|K *py — K *poy |3 x 6721, os case,

5—

lpy — pov 13 < 6% + S
| K % py — K *poy||5 x e® ", ss case,

so that the optimal choice for ¢ is

| O(IK *py — K * poy || )/ Bty os case,
O ((—log || K * py — K % poy|[1)~Y"), ss case.

Taking into account that py = pr, = F * ¢, for 1 < g < oo, we have

1K py = Kxpoy [lg = K+ Fx 05 — K xpoy) g = (K *F) x5 = Kxpoy g = [Prex.c = K *poy g-

Then,

lpy — poyll2 = lpFe — Pov |2 S { lprir.o — K pOYHQ/( ), 0s case,
7 ~
(—log [lprer,c — K * poy|1) BT ss case.

For suitable constants 71, k1 > 0, let

n—(B+n)/[2(8+m)+1] (logn)ft, os case,
wn =

n~12(logn)™, ss case,

and let €, be as in the statement. Hence, for all (F, o) € F,, the following inclusions hold:

{(Fv U) : HpF*K,o - K *pOYH? 5 @bn} - {(F’ U) : ||pY *pOYHQ S En}a Os case,
{(F, 0) : lpreko — K xpovl1 S v} C{(F, 0): [[py —pov|2 < €n}, ss case.

For ¢ = 2 in the ordinary smooth case and ¢ = 1 in the super-smooth case, if 7({(F, o) € F, :
lprsr,ec — K *poyllg S ¥n} | X ("), 4,) = 1in Péﬁz(—probability or Péz?—almost surely, then also
7({(F, o) : |py —povll2 S €n} | X, 4,) — 1 in the same mode of convergence and the proof

is complete. [

5.5 Proofs for Aalen models

For any intensity A, we still denote M) = fQ t)dt and A = My N L' X\ € Fi. To prove Theorem
4] and Theorem 5] we need the following 1ntermed1ate results that are based on classical tools
subsequently defined. Recall that €, = (log n/n)l/ 3 and set €, = J1&, for some J; > 0 large
enough. The first result controls the Kullback-Leibler divergence and moments of £,,(Ag) — £, (),
where £,,(\) is the log-likelihood evaluated at A, whose expression is given in .
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Proposition 1 Let v, be a positive sequence converging to 0 such that nv,21 — 00. For H >0,
let
Bkﬂ(H, A0, Un) = {)\ e Bk,n(Ha 5\0, Un), |M)\ — M)\0| < Un}.

Then, for all k > 2 and X\ € By ,(H, Ao, vn), under (4.2),
KL(Ao; A) < sone?,  Vi(Aos A) < (no?) &
where K, ko depend only on k, Cix, H, Ao, m1 and ma; an expression of ko is given in (6.5]).

The second result establishes the existence of tests that control the numerator of posterior
distributions.

Proposition 2 Assume that conditions (i) and (i) of Theorem[5 are satisfied. For any positive
integer j, define

Snj(vn) ={A: X € F, and ju, < 1A= Xoll1 < (j+ 1)vp}.

Then, under (4.2), there exist Jo, p, ¢ > 0 such that, for all j > Jy, there exists a test ¢y ; €
[0, 1] such that

B [Ir, éng] < Ce™™%, sup  Bp[lr, (1 - ¢y)] < Ce™ ™™ if j < pfu,
€S ; (vn)

B [1r, én] < Cemeivn, i )Ex[lrn(l — On )] < Ce™™™if j > pfun
€on,;(Un

for C a constant.

5.5.1 Proof of Theorem 4]

Proof. Without loss of generality, we assume that = [0, T]. To apply Theorem (1| we
must first define the transformation 1), ... Note that the parameter v only influences the prior
on A and has no impact on My. As explained in Section [2l we can consider the following
transformation: for all v, v/ € R* , we set, for any =z,

Gi/l(Gv(‘gj)) 7

[ee) o8] 1 -1 ) (ZL‘)
_ 1 0,0, (.’L’) — (0 G, (G (9 )))
Nw) = o= W) = Yo — e

j=1 j=1 ¥

with
pj =V, H(l -Vi), V;~Beta(l, A), 6; ~G, independently.

I<j

So, if X is distributed according to a Dirichlet process mixture of uniform distributions with
base measure indexed by -, then v, / (M) is distributed according to a Dirichlet process mixture
of uniform distributions with base measure indexed by 7/. We prove Theorem 4| for both types
of base measure introduced in . Let G denote the cumulative distribution function of a
I'(a, 1) random variable and g its density. Then, for the first type of base measure we have

_ GHGOOCHT)/COT)  pp

and G;,l(GW(H)) =T if § > T. Therefore, for any 0 € [0, T, if v/ > ~ then

_ _ 0
GLHG() <0, GHG0) 2 T (5.5)



The second inequality of (5.5)) is straightforward. The first inequality of (5.5)) is equivalent to
G(v9)G(Y'T) < G(v'0)G(~T) and is deduced from the following argument. Let

A(0) = G(0)G(Y'T) — G(Y'0)G(\T).

Then, A(0) = 0 and A(T') = 0. By Rolle’s Theorem there exists ¢ € (0, T') such that A’(c) = 0.
We have

A'(0) = 79(10)G(v'T) — 7/ 9(7 0)G(YT)
so is proportional to 82 1e=7? (42 =M0G(y'T)— (v/)*G(~yT)). The function inside the brackets
is increasing so that A’(0) < 0 for 6 < ¢ and A’(0) > 0 for 6 > c. Therefore, A is first decreasing

and then increasing. Since A(0) = A(T) = 0, A is negative on (0, T'), which achieves the proof
of (5.5)). For the second type of base measure, we have for § < T,

Ty 0
V(T =0+0v/)

Vy.o >0, GIG(0) =
and is straightforward.

We first verify assumption [Al]. At several places, by using and , we use that
under IP)E\H)(- | '), for any interval I, the number of points of N falling in I is controlled
by the number of points of a Poisson process with intensity n(1 + a)mo falling in I. Let
u, = 1/(nlogn), so that u, = o(é2) and choose k > 6 so that u,! = o((né2)*/?) and
holds. For kg given in Proposmon we control IP&O) (€a(X) = £n(Xo) < —(ko + 1)ne2). We

k/2

follow most of the computations of [Salomond| (2013). Let e,, = (né2)~*/2 and set

6
Aon () = M with 0, = inf {0 : / o(z)dz > 1 — en}
fO )\0 dx 0 n

and \g, = M /\og‘On- Define the event 4, = {VX € N, X <0,}. We shall need the following
result. Given N a Poisson process with intensity n(1 + a)maXo. If N[0, T] = k, we denote
N = {Xy, ..., Xi} and conditionally on N[0, T| = k, X1, ..., X) are i.i.d. with density Ao.
So,

PU(AG | T,) < ZIP’(" 3X; > 6, | N[0, T] = KB (N[0, T] = k)

k=1
00 0 k
_ 3 (n) (N _
< ;;(1 </0 )\g(t)dt> )IP’/\O (N[0, T] = k)
k

[07 T] = k)

IA
()¢
N\
—
|
/N
—_
|
N
N—
N———
'ﬂ
O
=

Now, we have

P (£0(X) = €a(Mo) < — (o + 2)né2 | Ty) < P (£,(A) = £a(No) < — (ko + 2)né2 | Ay, Tn) P (AS | T).
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We now deal with the first term. On I';, N A,,,

On T
£a(M0) = bu(Non) + /0 1og(w) )dNt— /0 (Mo(t) — Aow (1)) Vidt

on(®)

o TS In o () Yzdt

= {n(Aon) + N[0, T]log (/ Ao(t)dt> - MAO/ Mo(t)Yedt + M,\Om
0 0 S No(t)at

T
Ao (t)dt Ao (t)Yedt T_
< En()\On) + M)\o f@n fO ! M>\0 / )\o(t)Y;gdt

Jo 7 Ao(t)dt
en(14+a)m
< En()\on) -+ MAOW'

So, for n large enough, for any A,

P (£a(N) = £a(Mo) < — (ko + 2002 | Ay T) < B (6a(A) — la(Aon) < —(ko + 1)né2 | Ay, L)
= P\ (£a(N) — €a(Aon) < (ko + 1)né2 | T)
because IP’ ( | Ap) = Pf\nol() For all A = M\ € By ,,(H, Aon, €), using Proposition we

obtain
B (£a(N) = bn(Aon) < —(si0 + 1)né | T) = O((n2) /%), (5:6)

To prove (2.3)), we need to control inf.cpy qu,] fn(M. )\wﬂm/(j\)). Using (5.5)), we have for any
'Y/ € ['Va v+ un]a on Iy,

oo - (t)
Py \ \ \ ’Y+un G"Hl'un(G (9 )) G’Y“l'“n(GV(ej)D
_ un (M) (t) < (A () < un (M) (T +§ j —
7+un¢w+ (M) (@) <y (N @) < Py, (V) (F) j:1p3 G'y—i-un(G"/(gj))

so that for n large enough,

Myunn(1 + a)me
Yt Un

inf  L(Mythy (V) >JW/?%W%)UEW—
¥ €[y, y+un]

r . g
- /0 log (Mt 4, (A) () ANy 4 N[0, T]log ( T uﬂ)

< Un
> (Mt (V) —

(Myn(1 4+ a)me + 2NJ0, T)

and, on the event { N[0, T < 2M,,mon} which has probability going to 1,

i (M () 2 (M, (V) = 7™ (MA(L+ @)ma o dmadyJun. (5.7)

Combining this lower bound with (5.6), we obtain that, for all A = My, (N), with
1/}7,7-&-11”()\) S Bkm(H, )‘Uru €n) and ’M/\ - M)\O’ < €n,
"€ly, ytun]

Py <7 Jnf Ca(Mxthy,/ (X)) = €n(No) < —(ko + 2)nep | An, Fn> = O((n&;)™/?)

and assumption [A1] is satisfied if J? > ko-+2. We now verify assumption [A2]. First, mimicking
the proof of Lemma 8 of Salomond| (2013), we have that over any compact subset K’ of (0, c0),

inf w1 (Bin(H, Ao, &) | 7) 2 e (5:8)
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for some Cj, > 0, when n is large enough. Let By = {\: ¥y 114, (A) € Brn(H, Aon, €), My €
[M), — €n, M), + &]}. Then

(B | 7) = T1(Bin(H, Aons &) | 7+ un)mar ([Myy — €y My, + &)
which, together with (5.8)), implies that

inf (B > —20,né2
%Ielic”( alv) >e

when n is large enough, so that (2.5)) is satisfied as soon as J; is large enough. We now control

the measure Qv ny With

dQ3, =1r, x sup  exp(ln(Mythy,(N)))du

IV =7 I<un

and p is the measure such that under p the process is an homogeneous Poisson process with
intensity 1. Using (5.5)) and similarly to (5.7), we obtain that, for all 4" € [y, v + uy],

ij ]1(79' ’0J> )

J ’ Y

and we have

Q) () = B

)

T
lr, sup  exp <T M)y / Yy 4 (A) (1) Yidt + log (Mxihy,(A)(2)) dNt>]
V' €[y, vHun] 0

g [1r, exp(nma(1 + @) Myun/(y + un) + log(1 + u,/v) N[0, T))]
( [1r, exp(nma(1 + @) Myy ™y, + upy TINO, 1))]

< exp (nmg(l + a)Myy M + (14 a)nmg My (e'n/7 — 1))

< exp (3nma(1 + a)y_lM,\un)

when n is large enough. Let ¢, ; be the tests defined in Proposition [2 over Sy, ;(€,). Using the
previous computations, we have

Q)1 — ¢y <EV [(1 = dng) exp(nma(l + @) May g, + upy " N[0, T])1r, ]
< ermaltttho~ e (B0 (1~ g, )1p, JEYY [N 0Ty 1)

—1 _ -2 -2 _ -
e4nm2(1+a)’y Myun max{e cnj 6n/27 e CTLjEn/Q}'

IN

As in Salomond (2013), we set F,, = {A : A(0) < M,} with M, = exp (cine?) and c;
is a positive constant. From Lemma 9 of |Salomond| (2013)), there exists a > 0 such that
sup, e m1(Fly) < e~e1(@ne; 5o that when n is large enough,

Sup/ QA,n(X(n))dTH(AIV)WM(MA)dMA56Cl(aﬂ)m%/ exp (6 M) mar (My)d M)y,
vekr Jrt JFe R+

< e (a+1)ne

)

with § that can be chosen as small as needed since nu,, = o(1). This proves (2.4) by choosing
c1 conveniently. Combining the above upper bound with Proposition 2 together with Remark
1, achieves the proof of Theorem O

32



5.5.2 Proof of Theorem [5]

The proof of Theorem [5] is similar to the proof of Theorem 1 of |Ghosal and van der Vaart
(2007al) once Proposition [1| and Proposition 2| are proved. Let U, = {\: ||A = Xo|1 > Jivn}
and recall that

fUn )\O)dﬂ(/\)

ff ezn()‘) Zn(>\0)dﬂ'()\) ’

where £,,(\) is the log-likelihood evaluated at A. We use notations of Proposition 1| and Propo-
sition 2l Writing

m(Un | N) =

D, = / eln )~ 00) 4 (1),
f
we have

B (D, < -0 B 1T n)

(n) explln(A) — la(Xo)]dm(A) _ . 0?4 1o 71 (Bgn(H, Ao, vn))
< B! (/BM(HM) : < (o -+ o+ log ))

(B (H, X, vn)) (B (H, Ao, Un))
Note that since v2 > logn/n,
(Bl (H, A, vn)) 2 71 (Brn(H, 2oy va) ) 2 71 (Brn(H, Ao, vg) e 0/
so that using Proposition [I] and the Markov inequality, we obtain that
P (Dy < 00y (B (H, Do, 0n)) ) S (m02) ™42,

Moreover, implies that (S, ;(vn)) < m1(Sy,;) and using the tests ¢, ; of Proposition
we have for J; > Jp, mimicking the proof of Theorem 1 of |(Ghosal and van der Vaart| (2007a),

Lo/vn] —enj?o
(n) . (n) , ro+1)nv ™ (Sn J)e
E [1n,m (A A= Aoflt > Jioa V)] < Z EYy [Lr,éns] + Z ((ro+1)nw T Ao,vn))
>0 =
o(ko+1) "%711 (5’ )e—cnjvn e(f-co—&-l)nvﬁﬂ-l (F€) (n) 2 _ _
+ _ 1\ +]P’n D,, < e~ ot nvig () (H, Ao, v
J>PZ/:’U 71 (Bgn(H, Ao, vn)) 71 (B (H, Ao, vn)) ( h (i3 )))

which proves the result since ]sz) (T'S) = o(1).

6 Appendix

We use in the sequel that for any densities f and g, ||f — gll1 < 2h(f, g).

6.1 Proof of Proposition
We recall that the log-likelihood evaluated at A is given by

T T
L) = /O log(A(£))dN; — /O A(t)Yidt,
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see |[Andersen et al.| (1993). Since on Q¢ N is empty and Y; = 0 almost surely, in the sequel we
assume, without loss of generality, that Q = [0, T|. We denote by

T T
Mn()\)—/o M@)o (z)dez, Mn()\o)—/o Ao () o (z)dex,

2 @) M@)o
)\n(l')— Mn()\) = fOTj\(t)ﬂn(t)dt d )‘0771( )

Then, by using straightforward computations,

_ AO('T)/Jn(x) _ j‘O(m)ﬂn(l’)
Mn(Xo) [T Xo(t)fin(t)dt

KL (o ) = B [n(X0) = a()] = Ma (o) (KL(XO,H; An) + z\j\j:&)) —1-log < e >>

= M, (\o) [KL(Xo,n; An) + ¢ <J\]\ZL((§>))>}

< nmo M)y, [KL(/\M? An) + 6 (JJ\ZL(()\)\O))>] 7

where ¢(x) =2 — 1 —logx and

c ot T o)) <
KL(Aon; An) = /0 log < () ) o (t)dt.

Now, we control KL(S\Q,n; An) for X € Byn(H, Mo, vn). By using Lemma 8.2 of |Ghosal et al.
(2000), we have

o o Xon
KLXon; An) < 2020, Mn) (1+1og 20m )
2/% < mo 5\0
< 2h%(Aom, An) (1+1og { — ) +log||=
mq )\ o
- - A
< 2<1+log (?j))hz()\o,n, An) <1+log 20 ) (6.2)
1 [e')

since 1 + log(ma/my) > 1. We now deal with h?(Xg,, An). We have

2 kY ~ N ~
2/ 3 _ 3 ) — 3 x T = /\O(x)lu’n($) - >\($)Mn(f’3) T
P 2n) = / ( Ban (o) =y A >> ‘ / <\/f NoMimBdt —\ f X(t)ﬂn(t)dt> !

A
[\
3
I
«
—
>0
IS
S é"
5
=
oL
~
|
—
>~
~ |
S
N
=
(oW
~
~_
QU
8

2 -
< QmQUn + ﬂ}7/2(/\0, /\),
m1

1 1 ?
U= (\/ T ho@)fim(x)dz \/ ] A(scmn@)da:) |
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We denote by

N 1 / - - _
€n 1= ——= - AMx) — No(x)) fin(z)d,
so that 1 5
. < T _ mz. vy
el < o [ 1A@) = Ro(@)ln(o)de < 2720 (5o, )
Then,
1 1 o2 omE,
U, = — 1— < < 2R2( 0, M.
" f)\o(:v)/ln(x)dx( \/1+€n) ~dmy T my (o, Y
Finally,
- - 2meo m2 -
R2Nom, M) < —= (14 —2 ) h2(Xo, ). 6.3
( 0,m ) = my < + m%) ( 05 ) ( )

It remains to bound ¢ ( ]\])[/[:((/\/\0)) ) We have

T T
3,00) = Ma] £ [ A0 = do0a (0 < s [ 130 = da(0) e

mo < <
< M, (A My [|A— N\ M, - M
S iy, (Ao) (M|l oll1 + [M) o)
ma M, (o) oo ma(2M)y, + 1) My (No)vn
< —— — (2M> . h(X, X\ M, — M < .
S M (2Moh(X, Ao) + | M xol) < iy,

Since ¢(u+ 1) < u? if |u| < &, we have for n large enough,

M)\ _ m32My +1)?
¢(Mn<xo>)§ ML (64)

Combining (6.1)), (6.2)), (6.3) and (6.4)), we have KL(\o; \) < konov?2 for n large enough, with

4 m m2 ma(2My,. + 1)2
Ko = m3My, <m1 (1 + log (mii)) (1 + m%) + 2(2M3, 1) ) : (6.5)

2772
1 miMg,

We now deal with
Var(Ao; A) = ESV 16 (M0) — La(A) — ESY €M) — £a(N)][?¥],

with £ > 1. In the sequel, we denote by C' a constant that may change from line to line.
Straightforward computations lead to

va0a ) = B[ [ ()= 30— oy tog (380 ) i = ot

+/OT g <)\o(t)> (AN} — Yido(t)dt)

()
Qk]

)

IN

221 Agy, + Bay),

with

By, :=E"

’/OT log <);?((tt))> (dN; — YiAo(t)dt)
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and, by using (4.8),

I (Ao<t> ~ () ~ Aolt) log <A°(f>)>) (Vi ~ D)

< ( / ' (2a(0) = 20~ 2010 (31

< 2%710unF (Agpy + Agka),
with, for A € By, (H, Ao, n),

ta = /OTA(%(t)log?(j"é?)m)@MiﬂMﬂVg ([ oteytog? (Hegui0) o)
2k
o (572

< C(Ez()\o, ) + \MA—M,\O\%)<CU%

Agp = EE\?[

< PR (E§<xo, 5+

k

Agpn = < /OT(AO(t)—A(t))th>

T
= ([ (@ = 393000 - 500 e )

< %l (Aofﬁo(MAO — My)* + M3* (/OT <\//\o(t) - \/EY <M+ A(t)>2dt> k)

< 92k—1 (HS\OHEO(MAO _ M)\)Qk + 2kM§k(||5\OHOO + HS\HOO)kh?k(;\O’ 5\)) < CU,’%IC

k

Therefore,
Agy, < C(nv?)k,

To deal with By, we set for any T > 0,

T
My = /O log (?é’?) (AN, — Yido(#)dt),

so (Mr)r is a martingale. Using the Burkholder-Davis-Gundy Inequality (see Theorem B.15 in
Karr| (1991)), there exists a constant C'(k) only depending on k such that, since 2k > 1,

k
E{[|Mr[*] < O(k U/ ( )dNt ] .
Therefore, for k > 1,

By = EV[|Mp|]

k
+

' / log? (A ot > (AN, — Yido(t)dt)

()]

T (o)
| o ;(t)>un(t))\o(t)dt

< 3F1C(k) (E("

3"1C(k)(BY) + BY) + B)),

IN
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with

) (AN, — Yido(t)dt)

|

(
/OT log? (i?(t)> Y — @)l k]

k
This can be iterated: we set J = min{j € N: 2/ > k} so that 1 < k277 < 2. There exists a
constant Cy, only depending on k, such that for

o [T o (Dot k2t
By =B || [ 108 (305)) 0 = ) otor
’ 0 /\(75)
and i
T
(2) _ 93 ((Ao(t)
Bk21*3 27 ‘/ 10g ( )\(t) Mn(t)/\o(t)dt 5
) || [T 27 (Do(t) S A (2)
By, < Gy | E) U/O log? <)\(t) ) (dNy — Yido(t)dt) +Z(Bk21,j’2j + B o)
7j=1
r k2~
n r J )‘O(t) 4
= (E(AO) /0 log” </\(t) ) (dNe = Tidolt +Z kzl 320 +B,(€2)1 i 29)
7j=1

(n) T g+1 [ Ao(t k2 ! (2)
(E;; /0 10g2 ( )\(t > Yt)\O(t)dt:|> + Z k21 J 2] kgl—jygj)
7=1
T 71 Ao(t) k2 ! 2
]:1

= Ck: 2 J2J+1 +Z 21 32] +B(2)1 32])) :

Note that for any 1 < j < J,

T No(t) k27 T k27
1 j+1 0 n
Bea < ([ o™ (G) o) x| ([0 i) ]
_ (T L Mago(t) k277 »
< MZAOO’““/IZJ“ 2200 No(#)dt k2
< CO(My,[1Aollso) | log M) o(t) Xn
i (M o k2—J B
< C (101;;2J <]\/[)\0> + E9j+1 (Mo, )\)> x 2
A
< Cd)* < (),
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where we have used (4.8)). Similarly, for any j > 1,

T 3 k21—J
—j i [ My,Ao(t)\ <
Bl(fz)l-j 9 = (nsz,\o)kQ1 ’ (/ log? (AO_O()> )\O(t)dt>
’ 0

M k21=J )
C <10g2j <J\4)\0) + Eyi (Mo, 5\)> x nk2'™
A

< C(nvi)ml_j < C(nv?)F,

IA

Therefore, for any k > 1,
Var(Ao; A) < k(nvd)¥,

where k depends on Cg, k, H, A9, m1 and meo. Using previous computations, the case k = 1
is straightforward. So, we obtain the result for Vi (\g; A) with & > 2.

6.2 Proof of Proposition

We shall use the following lemma whose proof is given in Section [6.3]

Lemma 1 There exist constants £, K > 0, only depending on My,, o, m1 and ma, such that,
for any A1, there exists a test ¢y, so that

Egz)[lrn%l] < 2exp (—Kn|[A1 — Aollr x min{[[A; — Aoll1, m1})
and

sup Exllr, (1 —¢x,)] < 2exp (—=Kn|A — Aofl1 x min{[[A1 — Xo[l1, m1}).
At A=Al <€A —Aollx

We consider the setting of Lemma (1| and a covering of S, j(v,) with L;-balls with radius
§jvn and centers (A ;)i=1,..., p;, where Dj is the covering number of Sy, j(v,,) by such balls. We
then set ¢y, ; = max=1,. . D, qb,\lﬂj, where the gb,\lﬂj’s are defined in Lemma [I| So, there exists a
constant p > 0 such that

BN, [Irdng] < 2D5e7 00, sup BV (I, (1 gng)] < 267K, < oo
AESn ;i (vn)
and
B (e dng) < 2Dje %, sup BV, (1= 60)] € 275, i 2 pfun,
AESy, i (vn

where K is a constant (see Lemma . We now bound D;. First note that for any A = M\
and \ = M)\/)\/, _ B
A= N[t < MAJIA =Nl + [My — My|. (6.6)

Assume that My > M),. Then, we have

|M—Aﬂlz/f_wﬁMm—Aﬁmame

A>Xo
= M, /»AO()\(:B) — Xo(z))dz + (M) j Mio) /A»O o (@)s
> M,y /PAO(;\(:B) — Xo(z))dz = MAH)\;AOII‘
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Conversely, if My < M),,

1A= dofls > / (M ho() — MyA(z))da
Ao>A

_ _ M X = X
> MAO/ o) — Aa))dz = MaolA = Aol
Xo>X 2
So, 2||A — Xoll1 > (M, V My,)||A — Aoll1 and we finally have
My V My)||A— A
1A= ol > max{( AV MDA Aol —Mm} (6.7
So, for all A = My\ € S, (vy,),
- = 27+ Do, .
I3 Roll < 22ED ag gy < 4 1o, (6

0

Therefore, Sy, j(vn) C (Sn; N Fn) x {M : |M — My,| < (j + 1)v,} and any covering of
(Snj NFn) x {M: |M — My < (j+ 1)v,} will give a covering of Sy, j(v,). So, to bound D,
we have to build a convenient covering of (S, ; N JF,) x {M : |M — My,| < (j + 1)v,}. We

distinguish two cases.

e We assume that (j + 1)v, < 2M),. Then, implies that M) < 3M),. Moreover, if

- Ejun, §jvn
A=V < —>"— d |My— Myl < —r7—,
I ||1_3M)\0—|-1 an M )\|_3M)\0+1

then, by using , : e
My + 1)&jv,
3My, +1

By Assumption (i7) of Theorem |5, this implies that, for any 6 > 0, there exists Jy such
that for j > Jy,

A =N < < &jvn.

~ 3M 1 1
Dj < D((3Mag+1) ™ &jvns SnsNFns [I11)x (2<j 1 x 0t o L 2) S exp(dn(j+1)%p).
o We assume that (j + 1)v, > 2M,,. If
A= N < % and My — My| < f(M*ZM“

then using again and ,

EM, n E(Mx + My,) < 3EM)y, N £+ Do, - 7€(j 4+ 1)vp

/
— <
1A= Nh < 4 4 =4 2 = 8

S gjvna
for n large enough. By Assumption (i) of Theorem [5| this implies that, for any ¢ > 0,

Dj < D(E/4; Fu, || - 1) x log((j + 1)vn) < log(jun) exp(on).

It is enough to choose § small enough to obtain the result of Proposition
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6.3 Proof of Lemma [

For any \, we denote E&”}n[] = Eg\n) [1p, x -]. We set for any A, X,

1A= Nl = /Q () = X (8) i (1)l
On I',, we have
mil|A = Aollr < []A = Aolla, < mallA = Aoll1- (6.9)

The main tool for building convenient tests is Theorem 3 of Hansen et al. (2013) (and its proof)
applied in the univariate setting. By mimicking the proof of this theorem from Inequality (7.5)
to Inequality (7.7), if H is a deterministic function bounded by b, we have that, for any u > 0,

p{ (

where we recall that Ay = fot YsA(s)ds and v is a deterministic constant such that on T',,, almost

T
/ Ht(dNt — dAt)
0

> V2vu + l%u and Fn> < 2e Y, (6.10)

surely,

T
/ HXY\(t)dt < v.
0
For any non-negative function A;, we define the sets
A={teQ: \(t) > o(t)}, A :={teQ: \(t) < Xo(t)}

and the following pseudo-metrics

da(M, No) == /A P (t) — Ao()]fim(dt dac (A, M) = / Polt) — Aa(6)]in(t)d.

c

Note that ”)\1 _)\OHﬂn = dA()\l, )\0) +dAc()\1, )\0) For v > 0, if dA()\l,)\g) > dAc()\l,)\o), define
the test

Ox A(u) =1 {N(A) - / Ao(t)Yidt > pn(u)} , with pp(u) := /2nv(Ao)u + g,
A
where, for any non-negative function A,
o) = (1 + a)/ )i (1) (6.11)

Q
Similarly, if dA()\h )\0) < dge ()\1, )\0), define

onae(w) = 1{ V(1) - [ da(t¥iar < —pufu)}.

Ac

Since for any non-negative function A, on I',,, by using (4.4)),

] Y, ]
(1—a)/ﬂ)\(t)un(t)dt§/ﬂ)\(t)dtg (1+a)/ﬂ)\(t)un(t)dt, (6.12)

n

then inequality (6.10) applied with H =14 or H = 14¢, b =1 and v = nv(\g) implies that for
any u > 0,
Efor, [9rn.a()] 207 By [6aga0(w)] < 207 (6.13)

Now, we state the following lemma whose proof is given in Section
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Lemma 2 Let A be a non-negative function. Assume that

1-
A1+ a)

We set My,(\g) = Jo Ao()fin(t)dt and we distinguish two cases.

||>\ Al”ﬂn — 4 ”)\1 )\OHﬂn

1. Assume that da(A1, Ao) > dac(M1, o). Then,

E&?I)‘n[l - ¢>\1,A(UA)] < 2exp(—u4),

where

wy = moandi s 2) i s = Xolla, < 20 (M),
uranda(A, Xo),  if 1A = Dolla, > 2Mn(Xo),

and upa and uia are two constants only depending on o, My,, m1 and mo.

2. Assume that da(A1, Ao) < dac(A1, Ao). Then,

E(An%n[l — ¢y, ac(uae)] < 2exp(—uae),

)

where ~
e — upacndie(A, M) if A = Aolla, < 2Mn(No),
ulAcndAc()\l, )\0), if H/\l — )‘OHﬁn > 2Mn(/\0),

and upac and ujae are two constants only depending on o, My,, m1 and mo.

Note that, by using (6.9), if da(A1, Ao) > dac(A1, Ao),

Uy > min{ugAndzA(/\l, /\0), ulAndA(/\l, /\0)}
> nda(A, Ao) x minf{upada(Ai, No), urat
S nmi||A1 — Aol . {UOAmlH/\1 — Xoll1 }
> X min , ULA
2 2
> Kanl[A1 = Aoll1 x min{[[A1 — Aofl1, ma},

for K4 a positive constant small enough only depending on «, M),, m; and mo. Similarly, if
dA()\la )\o) < dAc(/\l, /\0),

A1 — A c A1 — A
B nmy | 12 ol xmin{uOA m1||21 0||1,u1Ac}

UAc

\%

KAan)\l — )\0”1 X min{H)\l — )\0”1, ml},

for K 4c a positive constant small enough only depending on «, M),,, m1 and mo. Now, we set

a1 = Oa,A(UA) L, (01, 20)>dac (A, Ao)} T Par,ac(Wae) Lia, (a1, Ao)<dac (M1, Ao)}

so that, with K = min{K 4, K4}, by using (6.13),

ES\Z?FHMM] = E&?Fn[¢>\1,A(UA)]1{dA(>\1,)\0)2dAc()\1,)\0)}+Eg\?rn[‘bAl,AC(UAC)]l{dA()\l,)\0)<dAc(>\1,)\O)}

<267 a0, 20)2dac (A, 20)b T 267 A 1 (0, Ao)<dac (A1, 20)}
< 2exp (—Kn[[Ar — Aof[r x min{[|A1 = Aoll1, ma}).
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If ||)\ - )\1”1 < f”)\l — )\0”1, 5 == m1(1 — a)/(4m2(1 +a)), then
1-—

A=A —_—

L Aol

and Lemma [2 shows that

E(An%n [1—ox] 267" AL d 4 (A, A0)>dac (0, 20) T 267 A Leg, (01, do)<dae (M1, o)}
2€Xp (—Kn”>\1 — )\0”1 X min{H)\l — )\0”1, ml}) s

which ends the proof of Lemma

<
<

6.4 Proof of Lemma [2]

We only consider the case dg(A1, \g) > dac(A1, Ao). The case da(A1, o) < dac(A1, \g) can be
dealt with by using similar arguments. So, we assume that d4(\1, Ao) > dac(A1, Ag). On T,
we have

[ u=xa@widt = a1 =) [ (a0 = do(®)in (01
> M ol 2 201 4 a) A~ A,
> 1+a/|)\ dt>2/|)\ (t)|Yedt.
Therefore, we have
BRI - onatea)] = P {0 — [ Awvide < putun) + [ 00 = n@vide}

= B (N - [ o< pun - [ n-anviar

+ [ on- A)(tmdt}
< B {N(A) - [ Momiae < putun) - 5 [ o —ontmdt}.

Assume H/\1 — )\0”,1” < QM,-L(/\())

This assumption implies that
da(A1, M) < M1 — Xolla, < 2Mn(Xo) < 2maMy,.

Since v(A\g) = (1+a)M,(\o), with ua = ugand% (A1, Xo), where uga < 11is a constant depending
on «, mq1 and mo chosen later, we have

UOAnd,%l()‘l? )\0)

pn(uA) < ndA()\l, AO)\/QUOA(l + a)Mn(/\()) + < \/UOAndA()\L )\Q)Kl

as soon as K > \/2(1 + )M, (o) + % VX004 " Observe that the definition of v()\) in (6.11))

gives

o) = (1+a) /Q Mo(®)im(B)dt + (1 + a) /Q () = Dot))fin(t)dt
0(0) + (14 @A = Aollan < v(o) + (1 +a) (IA = Atllan + A1 — Aollz)
< w00+ 2~ ol < .

IN
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where 01 only depends on «, M)y,, m; and mg. Combined with (6.12)), this implies that, on Iy,
if K1 <y \/7 which is true for ugs small enough,

1 1—a)n 2K\ /u
5 [ On 0¥t = patun) = L5 40, 00) 1~ 28]
A —
1—
> <4a)ndA()\1, Xo) > /2nCir +g > V2nu(\r + g
with )
v — nin J L= o) 31— a)da(M, M)
128C, ’ 8 ’
Inequality (6.10) then leads to
S, [1— 6, a(ua)] < 2¢7". (6.14)

For upa small enough only depending on M), o, m; and mg, we have

(1-— 2M,,(No)/UoA
@) >\/2 1+ )M, )+—( 0) Vo
41/UOA 3

so ((6.14) is true. Since r > uy for up4 small enough, then
E(;,Z%n[l — dr,a(w)] < 2e7M4A

Assume ||>\1 — )‘OHﬁn > QMn()\o)

We take ug = ujanda(A1, o), where ug 4 < 11is a constant depending on a chosen later. We still
consider the same test ¢, 4(ua). Observe now that, since da(A, Ao) > 2[|A1—Nollz, > M,(Xo),

pn(ug) = \/2nuAv()\o)+u?A

< n\/2(1 + a)uraMp(Xo)da(Ar, Xo) +

da(A1, Ao)nuia

3
< ( 2(1+a) + ) Vuranda(A1, o)
and, under the assumptions of the lemma,
v(A) < (14 @) Ma(Xo) + (L +a) (A = Alla, + A = Aolla,) < Cada(Mrs Ao), (6.15)

where C5 only depends on «. Therefore,

1 n(l —a)

3 [ == putw = M2 [ 00 - da(O)in(0ae — (VETF @)+ 3 ) Vandat,

2
l1—a

> <1 e ( 2(1+ o) +;> M) nda(A1, Ao)

> ndA(Ala >\0)7

where the last inequality is true for u;4 small enough depending only on «. Finally, using (6.15))
and since ug = ujanda(A1, \o), we have

1—a

uranda(Ai, Ao)
3

nda(Ai, o) > /2nCod (M, Mo)uianda(Ai, Xo) +

> 2nv(AN)ua + U?A
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for u1 4 small enough depending only on . We then obtain

E(An% [1— dr,.a(ua)] <2e 44,

nn

which ends the proof of the lemma.
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