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phase fibrous periodic composites with non-uniform imperfect contact
This work is an extension of previous reported results, where only the perfect
lectric composites under imperfect spring model was considered. The constit-
ibit transversely isotropic properties. A doubly periodic parallelogram array

der longitudinal shear is considered. The behavior of the shear elastic coeffi-
arrays related to the angle of the cell is studied. As validation of the present

xamples and comparisons with theoretical results verified that the present
alysis of composites with presence of imperfect interface and parallelogram
niform imperfection on the shear effective property is observed. The present

ark results for other numerical and approximate methods.
1. Introduction interphase zones. In these papers, the basic idea of replacing an
The paper addresses the problem of computation of the effec-
tive elastic properties of heterogeneous materials with imperfect
bonding between the matrix and the inhomogeneities. We address
the case of long fiber reinforced composite (plane strain problem
and anti-plane problem). There are two ways proposed in litera-
ture to model the mentioned imperfections: (A) continuum
approach when the layered inhomogeneity is considered directly
and (B) discrete model when the imperfection is modeled by
springs of certain stiffnesses distributed along the interface.

To the best of our knowledge, first results on inhomogeneous
interface has been obtained by Kanaun and Kudriavtseva (1983,
1986) where effective elastic properties are calculated for a
material containing spherical and cylindrical inhomogeneities,
correspondingly, surrounded by radially inhomogeneous
inhomogeneous inclusion by an equivalent homogeneous one
was formulated. Such a replacement was carried out by modeling
the inhomogeneous interface by a number of thin concentric layers
(piecewise constant variation of properties). The basic idea of
replacing inhomogeneous inclusions by equivalent homogeneous
ones has been utilized in the majority of works on the topic.

The idea of approximating radially variable properties by multi-
ple layers (piecewise constant variation of properties) was
explored by Garboczi and Bentz (1997) and Garboczi and Berryman
(2000) in the context of applications to concrete composites. An
alternative method was used by Wang and Jasiuk (1998). They
considered a general composite material with spherical inclusions
representing the interphase as a functionally graded material and
calculated effective elastic moduli using the composite spheres
assemblage method for the effective bulk modulus and the gener-
alized self-consistent method for the effective shear modulus. As
far as an arbitrary law of radial variation in properties is concerned,
apart from the above mentioned idea of multilayer approximation,
an interesting methodology was proposed by Shen and Li (2003,
2005), whereby the thickness of the interface is increased in an
incremental, ‘‘differential’’ manner, with homogenization at each
step. This idea, with modifications, has been utilized by



Fig. 1. The heterogeneous medium and extracted the rhombic periodic cell.
Sevostianov (2007) and Sevostianov and Kachanov (2007) for par-
ticles reinforced composites with interphase layers. The procedure
of homogenization is reduced to solving non-linear ordinary differ-
ential equation.

Elastic composites with imperfect contact adherence have differ-
ent area of applications. For instance, asphalt concrete (AC) is a typ-
ical multi-phase composite material. The characteristics of each
constituent material in this composite and their interactions all con-
tribute to the overall performance of the asphalt pavement, which
may also be affected by the distribution and the volume fractions
of these components. Particularly, these factors include the modulus
and fractions of coarse aggregates and asphalt mastic which consists
of asphalt and fine aggregates, air void fraction, and so on. The con-
ventional continuum based models cannot take account of these fac-
tors in the analysis and design, and hence fail to quantitatively
capture the complex mechanical behavior of the AC upon loading.

Other than the continuum approaches, micromechanical mod-
els can account for the roles of constituent materials playing in a
composite. Many micromechanical-based models have been pro-
posed to simulate the mechanical behavior of AC, for instance,
see Zhu et al. (2011). However, few researchers have reported
the work of the effect of the interfacial bonding strength between
aggregate and asphalt mastic on the behavior of AC, which may
have significant effect on the mechanical properties and failure
mechanisms as well as the strengths of AC. For example, it is ob-
served that the asphalt concrete can be easily debonded at the
interface between aggregate and asphalt mastic by a fatigue load-
ing. Craus et al. (1978) believed that the interfacial bonding
strength was due to the physic-chemical reaction, which was re-
lated to the property of asphalt, geometry, size as well as surface
activity of aggregate. Therefore, it is almost impossible to find a
perfect interfacial bond existing between asphalt mastic and
aggregates, and it may be inappropriate to describe the physical
nature and macro-mechanical behavior of AC by considering the
bond as the perfect kind.

An alternative approach has been, to the best of our knowledge,
first proposed by Hashin (1990) who analized imperfect interface
conditions in terms of linear relations between interface tractions
and displacement jumps. All the thermoelastic properties of unidi-
rectional fiber composites with such interface conditions are eval-
uated on the basis of a generalized self-consistent scheme model.
Hashin (2002) reported that the imperfect interphase conditions
are equivalent to the effect of a thin elastic interphase, and high
accuracy of the method is proved by comparison of solutions of
several problems in terms of the explicit presence of the interphase
as a third phase. Hashin’s approach was used for spherical particle-
reinforced inhomogeneities by Benveniste and Miloh (2001) and
Wang et al. (2005). Sevostianov et al. (2012) compared the two ap-
proaches for the case of incompressible layer between the phases
and calculatee effective properties of fiber reinforced composites
with periodic square arrays of fibers possessing imperfect contact
with the surrounding material. They identified the interval of
thickness at which the interphase does not influence the effective
properties and show how the imperfection effects described by dif-
ferent models can be expressed in terms of each other. Guinovart-
Díaz et al. (2013) used this approach for the case of a composite
with parallelogram-like cell of periodicity using approach devel-
oped by Molkov and Pobedria (1985). The present work generalizes
results of Guinovart-Díaz et al. (2013) to the case when the imper-
fectness of the contact between the matrix and the fibers is
non-uniform, i.e. properties of the interface depend on both the
angular and radial coordinates of a point. The aforementioned
works differ to Andrianov et al. (2005, 2008) among others where
homogenization method for evaluating effective properties and
determining the micro-mechanical response is applied under ideal
contact assumption at the interface.
2

2. Formulation of the problem

We consider a unidirectional periodic two-phase fiber rein-
forced composite shown in Fig. 1. All the fibers are assumed to
be of circular cross sections with radius R. The material properties
of each phase are transversely-isotropic with the axes of material
and geometric symmetry being parallel. The angle of the cell h is
assumed to remain constant so that a parallelogram cell with
periods w1, w2 can be defined. The periodicity of microstructure
determines the geometry of the periodic cell S (Fig. 2). The contact
between the matrix S1 and the fibers S2 is assumed to be non-per-
fect along the interface C ¼ z ¼ Reih; 0 � h � 2p

n o
.

In order to model various possible damages occurring on the
fiber–matrix interface composite the non uniform spring formula-
tion of imperfect bonded are considered using a generalized shear
lag model (Hashin, 1990, 1991a,b), which is also called the
mechanically compliant interface: tractions are assumed to be
continuous across the interface while displacements may be
discontinuous. The jumps in displacement components are further
assumed to be proportional, in terms of the ‘‘spring-factor-type’’
interface parameter, to their respective interface traction compo-
nent T3 ¼ rc3nc; c ¼ 1;2

Tð1Þ3 ¼ Tð2Þ3 ¼ K
_

sðR; hÞku3k; on C: ð1Þ

This traction component T3 is tangential to the interface and n is
the normal unit vector to the interface C. K

_

s is a function of the
position at the interface which is called proportional interface
parameter, and index ‘‘s’’ indicates the shear proportional spring
factor. The double bar notation is used to denote the jump of the
relevant function across the interphase C taken from the matrix
(1) to the fiber (2) i.e. kfk ¼ f1 � f2. The Eq. (1) is usually called a
weak interface condition. It has been originally proposed by
Goland and Reissner (1944) and used later in works of Benveniste
and Miloh (2001), Molkov and Pobedria (1988), Mahiou and
Beakou (1998), Andrianov et al. (2007).
3. Asymptotic homogenization method for the anti-plane
problem

In a two-dimensional situation of uniaxially reinforced compos-
ite, the system of equations of elasticity separate in plane-strain
and anti-plane-strain deformation states (see, for example, Pobe-
dria, 1984). First of them involves in-plane displacements u1 and
u2, while the other one, which is of particular interest in this work,



Fig. 2. The rhombic cell showing the domains S1 and S2 occupied by the matrix and
fibers materials; C is the common interface.
is characterized by an out-of-plane mechanical displacement u3

which is a function of the plane global variables x1 and x2. The main
aim of this paper is the determination of effective properties in
two-phase composites for the out-of-plane loading using the
homogenization method (similarly to Lopez-Lopez et al. (2005)
where the perfect bonding between the phases has been consid-
ered) accounting for mechanical imperfect conditions at the inter-
faces. In this case the relevant constitutive relations are

r13 ¼ 2C1313e13; r23 ¼ 2C2323e23 ð2Þ

where r13, r23 are out-of-plain shear stresses, 2e13 = u3,1 and
2e23 = u3,2 are shear strains (comma is used to mark derivatives);
and C1313 and C2323 are the elastic stiffnesses. The equilibrium equa-
tions take the form

C3c3bðyÞu3;b
� �

;c ¼ 0; ð3Þ

where the Greek indices run from 1 to 2, and y = x/e is the local var-
iable with e = l/L is a small geometrical parameter relating the dis-
tance l between the centers of two neighboring cylinders and L is
the characteristic size of the body.

Eq. (3) has S-periodic coefficients that are rapidly oscillating. In
order to obtain the homogenized equation and the corresponding
effective coefficients, the solution of (3) is sought using the method
of two scales by the ansatz:

u3ðxÞ ¼ v0ðxÞ þ ev1ðx; yÞ þ Oðe2Þ; ð4Þ

where v1 is a S-periodic function of y. Substituting (4) into (3),
applying the chain rule considering that x and y are independent,
and equating the terms of orders e�1; e0 to zero, one can obtain that
v1(x,y) = a3N(y)v0,a(x) where v0(x) is solution of the homogenized
equation C�3a3bv0;ab ¼ 0; where C�3a3b ¼ C3a3bðyÞ þ C3a3dðyÞa3N;dðyÞ

� �
are effective coefficients. The angular brackets define the volume
average per unit length over the unit cell, that is, Fh i ¼

R
S FðyÞdy.

The index a ¼ 1;2 denotes two different problems over the periodic
cell which have to be solved.

The computation of the effective coefficients depends on the
solution of local problems over the periodic cell in order to obtain
functions a3NðyÞ. The solution of such local problems (called in the
sequel as a3L) can be done using asymptotic homogenization tech-
nique (see, for instance, books of Pobedria, 1984 and Bakhvalov
and Panasenko, 1989).

We focus on the so-called local (or canonical) problems associ-
ated with the correction term v1 to the mean variations v0 that
appear in the formulae of the effective properties. There are two
of such problems, which are referred as 13L and 23L. A pre-index
is used to distinguish the functions such as displacements for
different local problems, which appear below.
3

Due to the linearity of the Eqs. (1)–(3), the correction term v1,
can be obtained as a linear combination of some of such displace-
ments and potentials. We do not discuss it here, since the main
objective of this paper is the characterization of the three effective
properties p11 ¼ C�1313, p12 ¼ C�1323, p21 ¼ C�2313 and p22 ¼ C�2323. The
symmetries of composite and constitutive materials lead us to find
one alternative form to obtain p11 and p22 and two alternatives for
obtaining p12 = p21 properties as follows,

p11 ¼ p1V1 þ p2V2 þ p13N;1
� �

; ð5Þ

p12 ¼ p21 ¼ p13N;2
� �

¼ p 23N;1
� �

; ð6Þ

p22 ¼ p1V1 þ p2V2 þ p23N;2
� �

; ð7Þ

where, pc ¼ C cð Þ
1313 with c ¼ 1;2 denotes the shear moduli of matrix

and fibers respectively; 13N and 23N are functions of z ¼ y1 þ y2

(Camacho-Montes et al., 2009) that are solutions of the local
problems 13L and 23L respectively. V2 = pR2/V and V1 = 1 � V2 are
the volume fractions of matrix and fiber respectively, and
V ¼ jw1jjw2j sin h is the area of periodic cell.

The mathematical statement of the problem consists to find
doubly periodic functions a3N = a3N(c)(y) if y 2 Sc, that satisfy the
following Laplace equation with the contact conditions in each
phase c ¼ 1;2 for the local problem a3L (a ¼ 1;2 )

r2
a3NðcÞ ¼ 0; in Sc; ð8Þ

imperfect contact condition

pcða3NðcÞ;1 n1 þ a3NðcÞ;2 n2Þ þ pcna ¼ K
_

sðhÞka3Nk on C; ð9Þ

continuity condition for the stress

kpcða3NðcÞ;1 n1 þ a3NðcÞ;2 n2Þ k ¼ �kpckna; on C; ð10Þ

a3Nh i ¼ 0; in S ¼ S1 [ S2; ð11Þ

n ¼ ðn1;n2Þ; is the outward unit normal vector to the interface C
and the proportional interface parameter depends on the angle h
only for a fixed fiber volume fraction, and pc ¼ C cð Þ

1313 with c ¼ 1;2
is the shear moduli of the matrix and fibers. The pre-index used
in (8)–(11) for the local function will be omitted hereafter. The
problem (8)–(11) should be converted into dimensionless problems
using the dimensionless variable n = y/l (this is not a small parame-
ter!), then NðcÞ;i ¼ uðcÞ;i and NðcÞ;ii ¼ uðcÞ;ii =l where uðcÞ ¼ NðcÞ=l and the
derivative u,i is with respect to the variable ni and u3 � u. The inter-
face parameter is replaced by K

_

s ¼ Ksp1=R0, Ks is a dimensionless
parameter and R0 is the true radius of the fibers in the composite.
Also the dimensionless parameter R = R0/l is introduced. The dimen-
sionless problem related to (8)–(11) over the periodic cell Y are now
rewritten below Laplace equation

r2uðcÞ ¼ 0; in Sc; ð12Þ

imperfect contact condition

pcðu
ðcÞ
;1 n1 þ uðcÞ;2 n2Þ þ pcna

p1
¼ KsðhÞ

R
kuk; on C; ð13Þ

continuity condition for the stress

pcðu
ðcÞ
;1 n1 þ uðcÞ;2 n2Þ

p1

�����
����� ¼ �ð1� jÞna; on C; ð14Þ

uh i ¼ 0; in S ¼ S1 [ S2; ð15Þ

where j = p2/p1 and u = u(c) if n 2 Sc.



4. Solution of local problems with non-uniform imperfect
spring parameters

The well-developed theory of analytical functions (Muskhelish-
vili, 1953) can be used to solve the problem (12)–(15). Thus, it is
necessary to solve the local problems a3L. Doubly periodic
harmonic functions in the matrix (c ¼ 1) and fiber (c ¼ 2) region
are to be found for the a3L local problems in terms of harmonic
functions uc zð Þ

u cð Þ ¼ Re uc zð Þ
n o

: ð16Þ

Now, we consider a partition of the interface
C ¼ [Cj; Ci \ Cj ¼ ;; i–j by n arcs, where a piecewise constant
function KsðhÞ ¼ Kj, hj < h < hjþ1 with j = 0, ..., n � 1, h0 � 0;
hn � 2p is assumed and hj denotes the angle of each arc (Fig. 3).

In each arc of the interface C we consider

uj
1 ¼

aj
0z
R
þ
X1
k¼1

o fðk�1Þðz=RÞ
ðk� 1Þ!

!
aj

k and

uj
2ðzÞ ¼

X1
p¼1

o z
R

� �p

cj
p; jzj ¼ Reih

ð17Þ

fðzÞ is the Weierstrass’s quasi periodic Zeta function defined as

fðzÞ ¼ 1
z þ
P1

m;n
0 1

z�Pnm
þ 1

Pnm
þ z

P2
nm

� �
, Pnm = nw1 + mw2, for m, n 2 Z,

and the prime over the summation symbol means that the pair
(m,n) = (0,0) is excluded. The Laurent’s expansion of function

uj
1ðzÞ is given by the following expression

uj
1ðzÞ ¼

z
R

aj
0 þ

X1
p¼1

o R
z

	 
p

aj
p �

X1
p¼1

o
X1
k¼1

o z
R

� �p
ffiffiffi
k
p

s
wkpaj

k; ð18Þ

where wkp ¼ ðkþp�1Þ!
ðk�1Þðp�1Þ!

SkþpRkþpffiffiffiffi
kp
p , Skþp ¼

P
m;nðmw1 þ nw2Þ�ðkþpÞ,

m2 þ n2–0, k + p P 2, S2 = 0. The constants aj
0; aj

p; cj
p and z = n1 + in2

are complex numbers; the over bar indicate complex conjugate
and the superscript ‘‘o’’ on the summation indicates that the sum
is carried out only over odd indices, w1; w2 are the periods and

aj
0 ¼ �R2H1aj

1 � R2H2aj
1, where H1 ¼ d1w2�d2w1

w1w2�w2w1
;H2 ¼ d1w2�d2w1

w1w2�w2w1
, with

di ¼ fðzþwiÞ � fðzÞ.
Replacing (16)–(18) into (13), and (14) and after some algebraic

manipulations, the following system of equations is obtained in or-
der to find the complex unknown coefficients aj

k for each arc by the
system

aj
p þ bj

1R2H1d1paj
1 þ bj

1R2H2d1paj
1 þ bj

p

X1
k¼1

owkpaj
k

¼ bj
1d1p d1a � id2að ÞR; ð19Þ
Fig. 3. Partition of the interface in n arcs.
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only survives where dkp is the Kroneckeŕs delta and bj
p ¼

Kjð1�jÞþjp
Kj 1þjð Þþjp

and Kj is the tangential component of the imperfect parameter for
each arc. Details of the derivation of (19) are given in Appendix A.
The series

P1
k;p¼1

ojwkpj is convergent and consequently the system
(19) is a normal infinity system of algebraic equations (see, for in-
stance, Kantarovich and Krylov, 1964) which could be truncated
in order to obtain approximations of the undetermined constants
aj

k. In order to find the solution of the system (19), the latter is re-
duced to two subsystems with real and imaginary separated parts.
The magnitudes ak ¼ xk þ iyk, Hc ¼ h1c þ ih2c, wkp ¼ w1kp þ iw2kp

where xk, yk, h1c, h2c, w1kp, and w2kp are real numbers, represent
the real or imaginary parts of complex numbers ak, bp, H1, H2, wkp

respectively.
The system (19) for p ¼ 1 in each arc is written in matricial

compact form as follows

I þ bj
1R2J

� �
Xj þ bj

1N1Xj
1 ¼ R1b

j
1B; ð20Þ

where I represents the 2 � 2-unit matrix, J is the square matrix de-

fined by J ¼ h11 þ h12ð Þ h21 � h22ð Þ
�h21 � h22ð Þ h11 � h12ð Þ

	 

, the infinite matrix N1ðnk1Þ

is composed by two rows or horizontal square blocks of order 2 of

the form nk1 ¼
w1k1 �w2k1

�w2k1 �w1k1

	 

; k = 2s + 1. Moreover, the trans-

pose vectors of unknowns XT
1 ¼ ðx1; y1Þ, BT ¼ ðd1a; d2aÞ and XT =

(x3, y3, . . ., xk, yk, . . .) are given.
The system (19) for p � 3 in each arc is transformed into

I þWð ÞXj
2 ¼ �N2Xj

1 ð21Þ

where the matrix W = W(nkp) is composed by square blocks of or-

der 2 of the form nkp ¼ vp
w1kp �w2kp

�w2kp �w1kp

	 

, k = 2s + 1, p = 2t + 1,

s = t = 1, 2, 3, . . . and N2 = N2(n1p) is formed by two columns or ver-
tical square blocks of order 2. From (21) follows

Xj
2 ¼ � I þWð Þ�1N2Xj

1 and substituting into (20) results

aj
1 ¼ 1; ið ÞR I þ bj

1R2J � bj
1N1 I þWð Þ�1N2

� ��1
B: ð22Þ

In order to determine the effective properties, it is necessary to
truncate the system of Eq. (19) into an appropriate order
k ¼ p ¼ N0. A very important first approximation is obtained if
we consider N0 ¼ 1, in this case only survives the unknowns with
subscripts k = 1 for the system (19). It is easy to solve this system
and its solution is

xj
1

yj
1

 !
¼ R I þ bj

1R2J
� ��1

B: ð23Þ

Introducing the notation for each arc in the form

Zj ¼ I þ bj
1R2J � bj

1N1ðI þWÞ�1N2; ð24Þ

the following explicit expressions of aj
1 are obtained from (22) for

the local problems 13L and 23L respectively

13aj
1 ¼ Rbj

1 z22 � iz21ð Þ=jZjj ð25Þ
23aj
1 ¼ � Rbj

1 z12 � iz11ð Þ
� �

=jZjj ð26Þ

where |Zj| denotes the determinant of numerical symmetric matrix
Z.



Table 1
Effective elastic moduli obtained by Jiang et al. (2004) and AHM for perfect contact
and periodic cell with angle h ¼ 75o Cð2Þ44 =Cð1Þ44 ¼ 120

� �
.

V2 C�44=Cð1Þ44 C�45=Cð1Þ44 C�55=Cð1Þ44

Jiang et al. AHM Jiang et al. AHM Jiang et al. AHM

0.10 1.21780 1.21780 0.00133 0.00133 1.21852 1.21852
0.20 1.48816 1.48816 0.00672 0.00672 1.49176 1.49176
0.30 1.83374 1.83374 0.01968 0.01968 1.84428 1.84428
0.40 2.29477 2.29477 0.04739 0.04739 2.32016 2.32016
0.50 2.95203 2.95203 0.10602 0.10602 3.00884 3.00884
0.60 4.00126 4.00123 0.23812 0.23812 4.12884 4.12884
5. Effect of non-uniform imperfect spring parameters on overall
properties

Eqs. (5)–(7) can be easily transformed to the area integrals
applying Greeńs theorem. Replacing N(c) = u(c)/l, dyi ¼ ldni, the
effective coefficients p11, p12, p21 and p22 are connected by the
following relations

p11 � ip21 ¼ p1V1 þ p2V2 �
p1

V
i
Z

C
uð1Þdn1 þ

Z
C

uð1Þdn2

	 


þ p2

V
i
Z

C
uð2Þdn1 þ

Z
C

uð2Þdn2

	 

; ð27Þ

p12 � ip22 ¼ �i p2V1 þ p2Vð Þ � p1

V
i
Z

C
uð1Þdn1 þ

Z
C

uð1Þdn2

	 


þ p2

V
i
Z

C
uð2Þdn1 þ

Z
C

uð2Þdn2

	 

; ð28Þ

where V1 and V2 ¼ pR2=V are the volume fractions of matrix and
inclusion respectively, V1 + V2 = 1 and V = |w1||w2| sinh denotes the
volume of the parallelogram periodic cell. In (27) u(c) is the solution
of the local problem 13L whereas in (28) u(c) is the solution of the
23L. Taking into account (16)–(18) the analytical formulae for effec-
tive properties are deduced from (27) and (28) depending on aj

1 as
follows

p11� ip21 ¼ p1 1� V2
pR

Xn�1

j¼0
13ajþ1

1 hjþ1�hj
� �" #

�p1V2
pR

Xn�1

j¼0

X1
p¼1

oe�
i pþ1ð Þ hjþhjþ1ð Þ

2

pþ1 sen
pþ1ð Þ hjþ1�hjð Þ

2

� 

213ajþ1

p � 1�jð Þd1pR
h i

þ2
X1
p¼3

o
13ajþ1

p
e

i p�1ð Þ hjþ1þhjð Þ
2

p�1 sen
p�1ð Þ hjþ1�hjð Þ

2

� 


8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð29Þ

p12� ip22 ¼�p1 iþ V2
pR

Xn�1

j¼0
23ajþ1

1 hjþ1�hj
� �" #

�p1V2
pR

Xn�1

j¼0

X1
p¼1

o e�
i pþ1ð Þ hjþhjþ1ð Þ

2

pþ1 sen
pþ1ð Þ hjþ1�hjð Þ

2

� 

223ajþ1

p þ i 1�jð Þd1pR
h i

þ2
X1
p¼3

o
23ajþ1

p
e

i p�1ð Þ hjþhjþ1ð Þ
2

p�1 sen
p�1ð Þ hjþ1�hjð Þ

2

� 


8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð30Þ

where aj
1 in (29), (30) are given by (25), and (26), respectively.

Details in the derivation of the effective coefficients (29), and (30)
are given in Appendix B.

The analytical expressions of effective properties (29), and (30)
are functions of the properties and volume fractions of constitu-
ents, of periodic cell w1; w2 and the imperfect parameters Kj in
each arc. The effective properties of a composite with perfect
adhesion between the constituents are obtained from (29), and
(30) taking K1 ¼ K2 ¼ K3 ¼ . . . Kj ¼ K !1 and the total separation
occurs when K1 ¼ K2 ¼ K3 ¼ . . . Kj ¼ K ! 0: From the symmetric
matrix Zj is deduced p12 = p21. The effective coefficients p11, p22

and p12 = p21 represent the effective axial coefficients of an ortho-
tropic fiber reinforced composite with defect at the interface C.

Once solved (19), the series expansion (17) depend on the con-
trast between the properties of the components and on the volume
fraction of the fibres. In the case of a high-contrast composite with
densely-packed fibres, the gradients of the local fields can grow
significantly. Then, the convergence of the series decreases and
evaluation of the accurate numerical results may become very
time-consuming. In this sense, the above computations were made
for N0 = 10, where N0 denotes the number of equations considered
in the solution of the infinite algebraic system of Eq. (19). The solu-
tion to the infinite order algebraic system (19) is achieved by
means of truncation to an infinite order and the Cramer’s rule. A
5

fast convergence of successive truncations is ensured because the
system is regular (see references in Rodriguez-Ramos et al.
(2001)) so that successive approximations can be applied. In gen-
eral, for low volume fraction of fiber (V2 < 0.4) the accuracy and
convergence of the results are good for much smaller values of
N0 (N0 6 2). More terms are required for high volume fraction of fi-
bers as well as high contrast of fiber and matrix, in particular,
N0 > 10 gives an approximation with absolute error less than 1%.
The absolute error between two consecutive truncations is very
low.

The explicit analytical form of the effective coefficients (29), and
(30) are large and complicated. They require computation of a
number of terms of series (17) and the solution of the system
(19). However, once the computational program is established
the time-consuming is very short.
6. Results and discussion

We now illustrate the theory with several examples. First, as a
validation of the model we consider different particular cases for
a two phase composites with various geometries of the periodic
cell. From now on, we will use the two-index notation for the elas-
tic constants.

Actually, it makes sense to mention that although the method is
not for dilute approximation (Movchan et al., 2002) it works per-
fect for volume fraction of inhomogeneities up to 50% as it was
checked by Sevostianov et al. (2006), Sevostianov and Sabina
(2007).

6.1. In Tables 1 and 2 a comparison between the model reported
by Jiang et al. (2004) and the present model is given. Table 1 pre-
sents the normalized effective elastic moduli C�44=Cð1Þ44 , C�45=Cð1Þ44 ,
C�55=Cð1Þ44 for perfect contact ðK ¼ 1012Þ computed by AHM and the
results reported in Table 4 of Jiang et al. (2004). The material
parameter used for this calculation is Cð2Þ44 =Cð1Þ44 ¼ 120 and the angle
of the periodic cell is h = 75�. Table 2 shows the behavior of the
effective longitudinal shear elastic moduli C�44;C

�
55 for a porous

material with the shear modulus of the matrix Cð1Þ44 ¼ 30GPa.
The uniform imperfect elastic spring contact are obtained as a

particular case of this work taking K1 = K2 = K3 = . . .Kj = K with
0 < K <1: Now, some comparisons with other theoretical
approaches are given in order to validate the imperfect uniform
model. Table 3 illustrates the normalized effective elastic moduli
C�44=Cð1Þ44 , C�45=Cð1Þ44 , and C�55=Cð1Þ44 for two types of imperfect uniform
contact (K ¼ 10�5; K ¼ 10) computed by the present model and
the results reported by Lopez-Realpozo et al. (2011). The material
parameter used for this calculation is Cð2Þ44 =Cð1Þ44 ¼ 120 and the angle
of the periodic cell is h ¼ 45�.

6.2. In order to show the novelty of this work, we consider the
non-uniform imperfect contact for two phase composites with

square cell. The material parameters used is Cð2Þ44 =Cð1Þ44 ¼ 120: We
consider the interface of the two phase composite divided into
two pieces C ¼ C1 [ C2 and different spring imperfect parameter
constants K1 and K2 are assigned on C1 and C2 respectively,



Table 2
Variations of effective longitudinal shear elastic modulus for a porous material with
Cð1Þ44 ¼ 30GPa.

V2 C�44 ¼ C�55

Square cell (h = 90�) Hexagonal cell (h = 60�)

Jiang et al. AHM Jiang et al. AHM

0.00 30.00000 30.00000 30.00000 30.00000
0.10 24.54550 24.54545 24.54530 24.54530
0.20 20.00000 19.99996 19.99590 19.99592
0.30 16.15330 16.15326 16.12740 16.12740
0.40 12.85340 12.85336 12.76050 12.76054
0.50 9.98430 9.98427 9.73960 9.73964
0.60 7.45030 7.45029 6.90960 6.90954
according to the following distribution function

KsðhÞ ¼
K1; 0 � h < h1;

K2; h1 � h � 2p:

�
(see Fig. 3). Different cases of imper-

fection spring parameters are considered. A wide range of situa-
tions could be taken into account but only the cases of imperfect
parameters given in Fig. 4 are chosen. The perfect case
ðK1 ¼ K2 ¼ 1012Þ and empty fibers ðK1 ¼ K2 ¼ 10�12Þ are upper
and lower bounds of the remaining imperfect situations for the
effective coefficient C�44 ¼ C�55. Moreover, it is well known that for
composites with square cell the effective coefficient C�45 is zero.
However, the non-uniform spring distribution strongly affects the
Table 3
Effective elastic moduli obtained by Lopez-Realpozo et al. (2011) and present model for
constituent properties is Cð2Þ44 =Cð1Þ44 ¼ 120.

K V2 C�44=Cð1Þ44 C�45=C

IJMS 2011 Present model IJMS

10�5 0.1 0.821 0.821 �0.0
0.4 0.455 0.455 �0.0

10 0.1 1.178 1.178 �0.0
0.4 2.062 2.062 �0.0

Fig. 4. Behavior of antiplane effective coefficients for two

6

anisotropic character of the composite, making the effective coeffi-
cient C�45 different from zero. The curves indicate an irregular
behavior for the coefficient C�45 where it is zero for perfect and void
cases and the behavior of this coefficient is strictly increasing for
K1 ¼ 1012;K2 ¼ 0 making this property in the composite stiffer
whereas the remaining cases are strictly decreasing, therefore,
the property is softer.

6.3. Fig. 5 illustrates the comparison of the axial effective prop-
erties of fibrous composite for two different periodic cells, square
(h ¼ 90�) and rhombic (h ¼ 45�) cells vs. the fiber volume fraction.
The composite has non uniform imperfection at the interface C and
the partition of the interface is given in two arcs ½0;90�	 and
½90�;360�	, with different lengths where two sets of piecewise con-
stant functions take the values K1 ¼ 1 and K2 ¼ 50, (solid line) and
K1 ¼ 50, K2 ¼ 1 (dashdot) on the arcs, respectively. The material
contrast is j ¼ p2=p1 ¼ 120: The behavior of the effective property
C�55 is affected for square or rhombic cell and the coefficient C�55

changes considerable under non-uniform adherence of the com-
posite as well. Besides, the configuration of the cell strong influ-
ences on the property of the composite C�45 where the curves
reflect the difference between square and rhombic cells. Moreover,
in recent contributions of Rodriguez-Ramos et al. (2011, 2012) and
Guinovart-Díaz et al. (2012) are pointed out that the configuration
of the cell affects the anisotropic properties of elastic and piezo-
electric composites. For example, composites with periodic cell
uniform imperfect contact and periodic cell with angle h ¼ 45�: Ratio between the

ð1Þ
44 C�55=Cð1Þ44

2011 Present model IJMS 2011 Present model

03 �0.003 0.815 0.815
33 �0.033 0.389 0.389
03 �0.003 1.172 1.172
91 �0.091 1.879 1.879

phase composite with non-uniform imperfect contact.



Fig. 5. Axial effective properties of fibrous composite for two different periodic cells, square and rhombic cells and two different non uniform spring imperfections (K1 ¼ 1
and K2 ¼ 50; K1 ¼ 50 and K2 ¼ 1) at the interface C.

Fig. 6. Axial effective properties of fibrous composite for square periodic cell with uniform and non-uniform contacts.
h ¼ 45� (the effective coefficient C�45 is different from zero) in gen-
eral has monoclinic symmetry which is different to composites
with configuration of square (h ¼ 90�) cell (the effective coefficient
C�45 is equal to zero) where the symmetry group is 4 mm. But in this
work is shown the relevant influence of the non-uniform imperfect
contact, which makes the same property C�45 different from zero for
square cell. The small value of imperfect parameters Ki indicates a
major weakening of interactions at the interface. As was to be ex-
7

pected, when to the arc ½90�;360�	 of major length corresponds the
minor value K2 ¼ 1 the effective properties C�55 is weaker without
regards to the periodic cell. In the same case, the effective coeffi-
cient C�45 is positive and in the other case is positive. Notice the
symmetry respect to horizontal axis of C�45 for square cell and the
other case.

6.4. Finally, the behavior between the uniform and non-uniform
imperfect interfaces is illustrated in Fig. 6. Notice that the behavior



of the axial effective properties of fibrous composite for square
periodic cell change considerable in composites with uniform
and non-uniform imperfect contacts. In this case, for the effective
property C�55 the uniform imperfect adherence K1 ¼ K2 ¼ 1 and
K1 ¼ K2 ¼ 50 in the composite are lower and upper bounds respec-
tively of the curves for non uniform imperfections. The effective
property C�45 is zero for uniform imperfect contact in composites
with square periodic cell but the anisotropic is affected and for that
reason this effective coefficient is different from zero.

7. Conclusions

An asymptotic homogenization technique is used for calcula-
tion effective shear moduli of an elastic fiber reinforced composite
with non-uniform imperfect bonding between constituents and
parallelogram periodic cell. We introduce different elastic spring
constants for each partition of the interface C, between the matrix
and inclusions, where a piecewise constant function KsðhÞ ¼ Kj,
hj < h < hjþ1 transmits a load from the matrix to the inclusion;
the transmission stress is proportional to the displacement jump
across the ‘‘matrix-inclusion’’ interface. Simple analytical expres-
sions (29), and (30) of the shear moduli using asymptotic homog-
enization approach are derived that show the anisotropic response
of the composite. In the asymptotic limit, we can simulate different
degrees of the interface’s response: (i) the case of the perfect bond-
ing K1 ¼ K2 ¼ K3 ¼ . . . Kj ¼ K !1, (ii) the case of the complete
separation K1 ¼ K2 ¼ K3 ¼ . . . Kj ¼ K ! 0 of the matrix and fibers,
(iii) the influence of one part of imperfect contact with respect to
the other one in the whole composite where the interface C is
partitioned. The non-uniform imperfect interface and the angle of
inclination of the cell play an important role in the global behavior
of the composite. The accuracies of the solutions were tested with
other theoretical models and experimental data and good agree-
ment were observed. Since the derived semi-analytic formulae
are not constrained in the whole range of fiber volume fraction,
enough good numerical results up to percolation limit are
obtained. These models can be extended to more complex compos-
ites in order to predict the overall properties in the design and
manufacturing of one-directional fibrous composite materials.
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Appendix A.

Derivation of the system given by (19)

The problem (12)–(15) is solved for both antiplane problem La3

with a = 1, 2. Using the imperfect contact conditions spring type
(13), the continuity condition for the stress (14) and taking into

account C 1ð Þ
55 ¼ C 1ð Þ

44 ¼ C 1ð Þ
a3a3 and j ¼ p2

p1
¼ C 2ð Þ

55

C 1ð Þ
55

we obtain

ðju;ð1Þ1 n1þju;ð1Þ2 n2Þ�jðju;21n1þju;ð2Þ2 n2Þþð1�jÞðd1an1þd2an2Þ
h i

C
¼0

ð31Þ
The function ju is considered for the matrix and fiber as a function of
complex variable, i.e.
juð1Þ ¼ ju1 þ ju2i; juð2Þ ¼ jv1 þ jv2i; ð32Þ
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and it satisfies the Cauchy-Riemann conditions for the differentia-
tion, therefore, substituting (32) into (31) it leads

jcj
p ¼ d1paj

0 � aj
p þ

X1
k¼1

ogkpaj
k þ 1� jð Þd1p d1a � id2að ÞR ð33Þ

The tangential imperfect parameter is defined in each arc by
KsðhÞ ¼ Kj, hj < h < hjþ1 with j ¼ 0; . . . ;n� 1; h0 � 0; hn � 2p,
thereby using (16)–(18), the expression (13) yields

ju2þ x2d1a�x1d2að Þ
� �hjþ1

hj
¼
Z hjþ1

hj

Kj
juð1Þ3 �juð2Þ3

� �
dh hj < h< hjþ1

jju2þj x2d1a�x1d2að Þ
� �hjþ1

hj
¼
Z hjþ1

hj

Kj
juð1Þ3 �juð2Þ3

� �
dh hj < h< hjþ1:

ð34Þ

The other expression for cj
p can be derived from (34)

Kj

p
þj

	 

cj

p¼Kj aj
0d1pþ

aj
p

p
þ
X1
k¼1

o gkpaj
k

p

!
�jRd1p d1a� id2að Þhj < h< hjþ1:

ð35Þ

Equating the expressions (33) and (35) leads to the infinite system
(19).

Appendix B.

Derivation of the effective coefficients given by (29) for the problem 13L

The integrals from the right side of (27), and (28) are required to
be calculated. Therefore, the contributions of each part in the inte-
grals are written as

i
Z

C
uð1Þ3 dx1 ¼ i

Xn�1

j¼0

Z hjþ1

hj

jþ1u 1ð Þ
3 dx1;

Z
C

uð1Þ3 dx2 ¼
Xn�1

j¼0

Z hjþ1

hj

jþ1u 1ð Þ
3 dx2;

i
Z

C
u 2ð Þ

3 dx1 ¼ i
Xn�1

j¼0

Z hjþ1

hj

jþ1u 2ð Þ
3 dx1;

Z
C

u 2ð Þ
3 dx2 ¼

Xn�1

j¼0

Z hjþ1

hj

jþ1u 2ð Þ
3 dx2;

using the expressions (16), and (17) over the circular contour deter-
mined by z ¼ Reih and the property Re zð Þ ¼ zþz

2 we obtain

i
Z

C
uð1Þ3 dx1 ¼

i
2

Xn�1

j¼0

Z hjþ1

hj

X1
p¼1

o ajþ1
0 d1p þ ajþ1

p þ
X1
k¼1

ogkpajþ1
k

!
eiph

"

þ
X1
p¼1

o ajþ1
0 d1p þ ajþ1

p þ
X1
k¼1

ogkpajþ1
k

!
e�iph

#
dx1 ð36Þ

Z
C

uð1Þ3 dx2 ¼
1
2

Xn�1

j¼0

Z hjþ1

hj

X1
p¼1

o ajþ1
0 d1p þ ajþ1

p þ
X1
k¼1

ogkpajþ1
k

!
eiph

"

þ
X1
p¼1

o ajþ1
0 d1p þ ajþ1

p þ
X1
k¼1

ogkpajþ1
k

!
e�iph

#
dx2 ð37Þ

i
Z

C
u 2ð Þ

3 dx1 ¼
i
2

Xn�1

j¼0

Z hjþ1

hj

X1
p¼1

ocjþ1
p eiph þ

X1
p¼1

ocjþ1
p e�iph

!
dx1 ð38Þ

Z
C

u 2ð Þ
3 dx2 ¼

1
2

Xn�1

j¼0

Z hjþ1

hj

X1
p¼1

ocjþ1
p eiph þ

X1
p¼1

ocjþ1
p e�iph

!
dx2 ð39Þ

Replacing (38) and (39) into the third term of the right side of (27),

and (28) and using dx2 þ idx1 ¼ Re�ihdh yields C 2ð Þ
55
V

R
C uð2Þ3 dx2þ

�

i
R
C uð2Þ3 dx1

�
¼ C 2ð Þ

55 R
2V

Xn�1

j¼0

Z hjþ1

hj

X1
p¼1

ocjþ1
p ei p�1ð Þhþ

X1
p¼1

ocjþ1
p e�i pþ1ð Þh

 !
dh.



Now, separating the first term of the sum with exponent ðp�1Þ and
rearranging the expression

C 2ð Þ
55
V

R
C uð2Þ3 dx2 þ i

R
C uð2Þ3 dx1

� �
¼ C 2ð Þ

55 R
2V

Xnþ1

j¼0

hjþ1 � hj
� �

cjþ1
1 þ C 2ð Þ

55 R
2V

Xn�1

j¼0

R hjþ1
hj

�
X1
p¼3

ocjþ1
p ei p�1ð Þh þ

X1
p¼1

ocjþ1
p e�i pþ1ð Þh

!
dh

ð40Þ

Moreover, from the expression (33) we have for p = 1

cjþ1
1 ¼ 1

j
ajþ1

0 � ajþ1
1 þ

X1
k¼1

ogk1ajþ1
k

 !
þ 1� jð Þ d1a � id2að ÞR

" #
if hj

< h < hjþ1

ð41Þ

Replacing (33) and (41) into (40) for the problem 13L ða ¼ 1Þ we
have
C 2ð Þ
55

V

Z
C

uð2Þ3 dx2þ i
Z

C
uð2Þ3 dx1

	 

¼C 1ð Þ

55 R
2V

Xn�1

j¼0

ajþ1
0 �ajþ1

1 þ
X1
k¼1

ogk1ajþ1
k þ 1�jð ÞR

" #
hjþ1�hj
� �

þC 1ð Þ
55 R
2V

Xn�1

j¼0

Z hjþ1

hj

X1
p¼1

o d1pajþ1
0 �ajþ1

p þ
X1
k¼1

ogkpajþ1
k þ 1�jð Þd1pR

" #
e�i pþ1ð Þh�

X1
p¼3

o ajþ1
p �

X1
k¼1

ogkpajþ1
k

!
ei p�1ð Þh

( )
dh

ð42Þ
Replacing (36) and (37) into the second term of the righ side of (27),
and (28) it yields
�C 1ð Þ
55

V

Z
C

uð1Þ3 dx2þ i
Z

C
uð1Þ3 dx1

	 

¼�C 1ð Þ

55 R
2V

Xn�1

j¼0

Z hjþ1

hj

X1
p¼1

o ajþ1
0 d1pþajþ1

p þ
X1
k¼1

ogkpajþ1
k

!
ei p�1ð Þhþ

X1
p¼1

o ajþ1
0 d1pþajþ1

p þ
X1
k¼1

ogkpajþ1
k

!
e�i pþ1ð Þh

" #
dh:
Now, separating the first term of the sum with exponent ðp� 1Þ and
rearranging the expression
�C 1ð Þ
55

V

Z
C

uð1Þ3 dx2 þ i
Z

C
uð1Þ3 dx1

	 

¼ �C 1ð Þ

55 R
2V

Xn�1

j¼0

hjþ1 � hj
� �

ajþ1
0 þ ajþ1

1 þ
X1
k¼1

ogk1ajþ1
k

!

� C 1ð Þ
55 R
2V

Xn�1

j¼0

Z h2

h1

X1
p¼3

o ajþ1
p þ

X1
k¼1

ogkpajþ1
k

!
ei p�1ð Þh þ

X1
p¼1

o ajþ1
0 d1p þ ajþ1

p þ
X1
k¼1

ogkpajþ1
k

!
e�i pþ1ð Þh

" #
dh ð43Þ
The expressions (42) and (43) are replaced into (27),
C�55 � iC�45 ¼ C55h i � C 1ð Þ
55 R
2V

Xn�1

j¼0

hjþ1 � hj
� �

2ajþ1
1 � 1� jð ÞR

h i
þ C 1ð Þ

55 R
2V

Xn�1

j¼0

Z hjþ1

hj

X1
p¼1

o �2ajþ1
1 þ 1� jð Þd1pR

h i
e�i pþ1ð Þh � 2

X1
p¼3

oajþ1
p ei p�1ð Þh

( )
dh
and using the average definition, the fiber volume fraction V2 ¼ pR2

V ;

after some algebraic manipulations we obtain
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C�55 � iC�45 ¼ C 1ð Þ
55 1� V2

pR

Xn�1

j¼0

hjþ1 � hj
� �

ajþ1
1

" #

� C 1ð Þ
55 R
2V

Xn�1

j¼0

X1
p¼1

o 2ajþ1
p � 1� jð Þd1pR

h i8><
>:

� e�
i pþ1ð Þhj

2 e�
i pþ1ð Þhjþ1

2
e

i pþ1ð Þ hjþ1�hjð Þ
2 � e�

i pþ1ð Þ hjþ1�hjð Þ
2

i pþ 1ð Þ

þ2
X1
p¼3

oajþ1
p e

i p�1ð Þhjþ1
2 e

i p�1ð Þhj
2

e
i p�1ð Þ hjþ1�hjð Þ

2 � e�
i p�1ð Þ hjþ1�hjð Þ

2

i p� 1ð Þ

9>=
>;
ð44Þ

The last formula (44) leads to the expression (29). Analogously, the
expression (30) for the local problem 23L is derived.
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