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This paper deals with the use of the extended Finite Element Method (X-FEM) for rapid dynamic problems. To solve the equations of
motion, a common technique is the explicit direct integration with a Newmark scheme. Since this temporal scheme is only conditionally
stable, the critical time step must be determined. It is generally induced by mesh constraints. The idea of the paper is to weaken con-
straints on mesh generation algorithms so that the critical time step is as large as possible. Using the X-FEM one allows a non-confor-
mity between mesh and discontinuities such as cracks, holes or interfaces. In a first part, we present a summary about direct integration
schemes and about the eXtended Finite Element Method. Then, we focus on the theoretical description of a 1D X-FEM finite element
and its generalization to 2D and 3D finite elements. Then, dynamic numerical simulations are shown. They concern structures under
impact with holes or external boundaries not exactly matched by the mesh. Comparisons are made with numerical results coming from
the ABAQUS software. It shows that developments are satisfactory. We conclude with some outlooks concerning this work.
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1. Introduction

The complexity of current numerical simulations in
rapid dynamics leads to problems with very high CPU time
requirements and often cumbersome pre- or post-process-
ing steps. Direct integration methods that are used to solve
the equations of motion require relatively small time steps
in order to keep the stability of the temporal scheme. The-
oretically, the critical time step is based on the highest pul-
sation of the structure which, in practice, depends on the
smallest finite element within the discretized model (and
its constitutive law). Often, mesh constraints related to
the rigorous respect of complex surface geometries produce
“small” finite elements. Even if the mesh can be optimized

later on in order to make it more uniform, the procedure
can be difficult and may not succeed despite of the progress
of meshing tools.

The objective of this paper is therefore to avoid such
meshing constraints and to have an easier control on the
size of the elements. For this reason, the work is based
on developments of the eXtended Finite Element Method
(X-FEM), which has been successfully applied to static
problems exhibiting discontinuities or heterogeneities such
as cracks, holes or material interfaces. The governing idea
of this method is to enrich the classical FEM approxima-
tion thanks to the Partition of Unity technique with specific
functions representing surfaces of discontinuities or hetero-
geneities. Level sets are used to locate the physical surfaces
on the mesh. Their sign indicate the side on which a point is
located. Level sets use node-valued functions and are inter-
polated with the basis functions of the finite element. This
description allows to release the underlying mesh from the



description of surfaces of discontinuity or external
boundaries.

As previously described, the X-FEM allows one to treat
problems showing discontinuities or heterogeneities. Some
works have been done for dynamic problems relative to
crack propagations: different techniques of enrichment
have been developed to take into account the discontinuity
produced by a crack. Some discontinuous enrichments can
be used such as in [5] for time-dependent problems. Other
authors purpose a generalization of X-FEM by introduc-
ing enrichment strategies for time-dependent problems
[16]. The discontinuities can also be enriched in time as
in [15,7]. In this paper, we restrict our work to the treat-
ment of holes and external boundaries. The X-FEM
approach is easier to manage in this case since no specific
enrichment functions are necessary. A direct use of enrich-
ment functions is problematic for explicit schemes because
a lumping technique is not easily available for such
approximation. A work in this direction for cracks may
be found in [11].

In the first part of this paper, the explicit direct integra-
tion method is first summarized: we recall the definition of
the critical time step and the definition of stability and dis-
persion properties. Then we present the X-FEM for static
problems. The second part of the paper introduces a 1D
X-FEM finite element: we propose here a theoretical
approach to treat the presence of void volume within this
1D finite element as well as a specific technique of mass
lumping. Results from this simple 1D model are then gen-
eralized for triangular (2D) and tetrahedral (3D) finite
elements. In the last part of this work, some numerical sim-
ulations in 1D, 2D and 3D cases are carried out. They are
related to pierced structures under impact loads and are
compared to simulations carried out on conforming meshes
with the ABAQUS software. We show several results about
convergence and stability of the technique. The conclusions
drawn from these results finally guides the outlook con-
cerning the X-FEM for rapid dynamics.

2. Foreword about the explicit Newmark scheme and the
X-FEM

2.1. Explicit direct integration method

The following set of relations (1) gives the equations of
dynamics, under matrix form, for a solid body at the finite
element level

MU + KU = F*™, (1)

The most general approach to solve (1) in time consists in
using direct integration methods because the size of the sys-
tem is usually very large. Among many techniques, the
Newmark scheme [3,4,13] is commonly used for rapid
dynamics: for each time step Az, the accelerations (2) are
computed and then allow to update the displacement and
velocity fields

.. . AP ..
Upr =M™! <F§’$1 —-K [Un + AtU, + =5 Un} ) (2)

Eq. (2) shows that the explicit Newmark method possesses
the advantage in the fact that during the resolution of equi-
librium equations, only the mass matrix requires to be in-
verted. Furthermore, it is possible to apply mass lumping
techniques which render this mass matrix diagonal. This
leads to a very efficient numerical scheme.

However the explicit Newmark scheme also possesses
the disadvantage of the necessity to impose a critical time
step in order to maintain its stability. This constraint is also
called CFL (Freidrich-Lévy—Courant) condition [3,4,9,13].

Stability is insured when the norm of the greatest eigen-
value of system is strictly inferior to one. Rather than iden-
tifying this previous eigenvalue which is quite time
consuming, one can use the highest eigenvalue of each
finite element taken separately. It is easier and much faster
to find the smallest finite element within the most disadvan-
tageous material to impose the critical time step. It can be
shown [9] that this time step (3) constitutes a lower bound
of the one issued from the complete structure, and that
therefore respects the CFL condition. It is also a good
approximation if the mesh is almost uniform

= Atc. (3)

This reveals a potential problem with the explicit approach:
if the discretized structure has just one very small finite ele-
ment, the latter will constrain the critical time step for the
simulation of the whole structure. That is the reason why
some freedom is offered to the users of commercial soft-
ware in choosing an “appropriate’ time step (possibly big-
ger) with stabilization techniques. Nevertheless, the choice
of the time step is generally limited by instability as upper
bound and by the phenomenon of dispersion as lower
bound:

o Instability occurs if the time step is greater than the crit-
ical time step. Overestimated forces are transmitted and
reflected within some finite elements. The process
repeats itself at each time step and it quickly leads to
the divergence of the numerical scheme.

¢ Dispersion occurs if the time step is much lower than the
critical time step. Small disturbances are generated and
they are transmitted with a wave speed higher than
physical wave speed. It implies an attenuation of the real
efforts. It should be noticed that even if the quality of the
solution is somewhat degraded, it is generally accurate.
The smallest dispersion is however obtained for a time
step equal to the critical time step.

2.2. The X-FEM

Within the finite element method the presence of discon-
tinuities or heterogeneities such as cracks, inclusions or
material interfaces constrains the mesh to be in conformity
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Fig. 1. Example of conforming and non-conforming meshes to model an inclusion: (a) conforming mesh classical FEM; (b) non-conforming mesh

X-FEM.

with the geometry of these entities (Fig. 1a). In this case,
surface management has to be completely integrated into
the meshing process and can be very time consuming, spe-
cifically for the three-dimensional simulations.

For a couple of years now, a new approach has been
developed: the eXtended Finite Element Method. Its main
characteristic is to separate the previous problem into two
parts:

o The first part corresponds to the discretization of whole
domain, which does not include some or all the surfaces
related to discontinuities or boundary conditions. The
approximation of the displacement field is consequently
the classical approximation used in FEM, and mesh gen-
eration is generally straightforward.

The second part consists in supplementary shape func-
tions added to some nodes of the previous approxima-
tion. The goal of these additional functions is to
enrich the basic approximation of the existing displace-
ment field with less regular functions able to model
jumps on the surfaces which are not meshed. In
Fig. 1b, black circles indicate these nodes. The determi-
nation of these nodes can be made with the help of a
level set representation of the surface [17]. When nodes
have been selected, specific enrichment functions are
then associated to these and offer for instance the possi-
bility to take the deformation discontinuity at a material
interface into account.

Due to the Partition of Unity method [10], the approx-
imation of the displacement field, described in Fig. 1b, fol-
lows Eq. (4), where N represents all the nodes of the global
domain and D represents the nodes belonging to elements
which are cut by the material interface

u(x) = uipi(x) + ) ap;(x)(x). (4)

ieN ieD

The additional degrees of freedom generally have no point
wise significance, but they allow one to model discontinu-

ities. This is an important point because lumping tech-
niques for the mass matrix are commonly used to get a
more efficient resolution. These techniques are based on
some physical representation of phenomena: a straight
application of enrichment functions is problematic for ex-
plicit schemes because a lumping technique is not directly
available for such approximation. In this paper, we restrict
our work to the treatment of holes and external bound-
aries. The X-FEM approach is easier to manage in this case
since no specific enrichment functions are necessary. The
linear and bilinear weak forms are simply integrated on
the matter part of the elements [8,12].

3. X-FEM elements for explicit dynamic in 1D, 2D
and 3D cases

3.1. The X-FEM bar element

Fig. 2 shows the elementary finite element bar: it is com-
posed of two domains. The first one of length ¢/, contains
matter while the second one of length (1 — ¢)/, corresponds
to an empty space. The total length of the finite element is /,.

A classical sub-clement integration gives the consistent
stiffness and mass matrices (5). In order to respect the nat-
ure of each domain constituting the finite element, integra-
tion is only done inside the matter, i.e. using a range going
from 0 to &/,

eEST 1 —1
(KE“):T[A I };
1 &—3e+3 —e(2e—-3)/2
o =gosit| SO0 IR )

As said previously, the explicit direct integration generally
uses a lumped mass matrix. Indeed, for systems with
numerous degrees of freedom, lumping the mass matrix
leads to an efficient algorithm inverting the matrix is
straightforward. Among all techniques of lumping, the
most common consists in replacing the diagonal matrix
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Fig. 2. Description of the X-FEM bar element.

terms by the sum of all terms from the corresponding row.
That is equivalent to consider that the total mass of ele-
ment is equally concentrated on the finite element nodes.
By applying this approach to the mass matrix from (5),
one obtains

eEST 1 -1 1 2—¢ 0
K,) = . (M) = = pSel, .
(Ke) 13{_1 1} ()2p8[0 p]

(6)

The critical time step associated to this system which satis-

fies the condition of Freidrich—Lévy—Courant, is therefore
2 loA/e(2 — ¢

Ao < 2 2 leVe2=8) (7)

wmax 4

Eq. (7) shows that the critical time step depends on ¢. If ¢
tends to zero, the critical time step also tends to zero mak-
ing the algorithm unpractical. One idea to solve this prob-
lem is to avoid distributing the mass to nodes according to
the domain length, but to equally distribute it on each node
regardless of ¢. For instance, if the total mass of the mate-
rial domain is peS/,, each node receives one half of this
mass; then the X-FEM mass and stiffness matrices are
given by

8ES|: 1 -1

(K.)

o -1 1

} (Me);pSsle[é ﬂ (8)

The critical time step associated to this X-FEM bar ele-
ment is then
2 L

The difference between (8) and (6) lies in the fact that in the
X-FEM context, summing the elements of each row does
not equally distribute the mass over the nodes.

The latter lumping technique yields a critical time step
independent of the material fraction within the element.
This fact hints at a possible smoothing of critical time steps
within a structure. For instance, we suppose that the mesh
is quite regular except at a boundary where they are small
finite elements. Regular finite elements possess a mass and
stiffness matrices defined by (10) and a critical time step
defined by (11). The rest of finite elements located near
the boundary induces a smaller critical time step because
of their size. Classical simulation will then use this time step
that causes a high computational cost. One possible solu-
tion is to replace these small finite elements with X-FEM
ones. In this case, the critical time step can be smoothly

computed and this fact can offer an additional flexibility
concerning the numerical simulation

EST1 -1 1 10
Ke =5 ; Me4 =3 Sle ) 10
ko= 1 ] s =gesi [ V] 0
2 .
Dmax c

To fully describe the X-FEM bar element, we precise how
to take loads into account. One simple way is to distribute
the force as in Fig. 3, using interpolation functions (12).
This distribution will be justified in the numerical
applications

node I: Nl(e) «F = (1 —¢)F, 1
{node 2: N2(¢)*xF =¢F. (12)
As the characteristics of the X-FEM element are defined,
we can now focus on the convergence of the explicit New-
mark method. The main objective is to prove that the use
of this element provides at least results that are similar to
those of the FEM.

Therefore, lets take the dynamic problem of a bar which
is clamped on one side and submitted to a step load F on
the other side. The bar possesses a length L, a Young’s
modulus E and a section S. This problem admits an analyt-
ical solution given by (13) where x denotes the distance to
the clamped point and t the current time

_F 8L (—1) . [(2i—1)mx
u(x,t)fE—S x+¥ 2 it 1) sm( 7 )
X COS (m)) (13)
Matter

Void space

‘— Load F

€le (1-g)le

Fig. 3. Load distribution for the X-FEM bar element.



In the case of a classical numerical simulation with a con-
forming regular mesh, the explicit Newmark method gives
the exact solution for every nodes and at every discrete time
step. However, if the solution is required at an intermediate
time or position, an error appears due to the interpolation
that is used. This error is summarized in Fig. 4: for a given
critical time step, displacements issued from numerical sim-
ulation are exact at both nodes. Owing to the interpolation
functions of finite element, the displacement field is linearly
approximated between nodes. To treat the approximation
in time (dashed curve), we decided to also use a linear inter-
polation because the critical time step is linked to mesh size
by material celerity (11). Let us now calculate the L2 norm
error (14) between the approximation (dashed curve) and
the analytical solution (solid curve)

T L
CIT = \// / (Uanalytical - Ucalculated)dedL (14)
o Jo
The analytical expression of the two curves are
Ugm =21 for 0 <r<2,
oh , (15)

ah
’

for 0 <¢
<

0 <
U =
! W [—ct+ah] for r<h

4 Displacement

Numerical solution_\___‘

The displacement error is then

F2h(e2L — al® + Lah + L* + h* — 2Lh)
CIT = P
3cE"S
FhS/Z
S3veEs T

This result shows that the order of convergence for the L.2-
norm in displacement, in the case of a bar impacted by a
step load, is 3/2. This result is due to the fact that the im-
pacted bar solution is not smooth. Indeed, for more general
cases, under smoothness conditions, the order of conver-
gence is 2 [2,6,18]. We keep in mind that the convergence
results shape those obtained for a uniform mesh and a time
step equal to the critical time step.

Fig. 5 represents some convergence curves coming from
numerical simulations using the X-FEM element. The
material ratio ¢ is respectively 1%, 50% and 99%. The X-
FEM finite element utilization does not modify the conver-
gence rate of 3/2.

(16)

3.2. Generalization to 2D and 3D constant strain finite
elements

The extension of the technique for 2D and 3D constant
strain elements is easily carried out. Indeed, in the 1D case,

U=hF/ES

| Exact solution

Time

*r—r

ahlc We

Fig. 4. Exact and numerical displacements over a time step.

Convergence curves for £=1%, 50% and 99%
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Fig. 5. Convergence curves for different ratio of matter.



& represents a ratio between the length occupied by the mat-
ter and the total length of bar. In the 2D case, this quantity
will represent a ratio between the material surface and the
total surface of the finite element. The same is true for the
3D case with volumes.

As for the X-FEM bar element, the stiffness matrix is
obtained by consistent integration on the material domain
using interpolation functions of classical finite elements. As
for the mass matrix, it is built by the adapted lumping
method, i.e. each node will receive an identical quantity
of the mass issued from the material domain. Thus, just
like in the 1D case, the critical time step does not depend
on the material fraction within finite elements but only
on the dimensions of the X-FEM finite element, as in stan-
dard FEM.

To illustrate the generalization of the method, we pro-
pose to identify the eigenvalue of a triangular T3 FEM
and X-FEM finite element (Fig. 6). Both finite elements
are defined in plane stresses and they possess a unit
Young’s modulus, a unit thickness, a Poisson’s ratio equal
to 0.5 and a unit density. The interpolation functions in
reduced coordinates of the element are given in Eq. (17).
In this example, the material fraction is equal to 8%

Nl(s,t)=1—s—1t,

N2(s, 1)
N2(s,t)

(17)

:S’
=1

After calculating the FEM and X-FEM stiffness matrices,
one can see the proportionality factor of 12.5 (i.e. material
fraction of 8%) between these two matrices

S5 3 -4 -1 -1 =27

5 -2 -1 -1 —4

KeT3X-FEM:@: ! 100
12.5 6x12.5 1 1 0

1 0

Lsym 4 |

(18)

The special lumping technique gives the following mass
matrix:

T3 FEM element

0,0 0.4,0) (1,0

— O O

0.04
Kersxrem = =3

- O O O
- O O O O
- o O O O O

L Sym

As a consequence, the eigenvalue of this T3 X-FEM finite
element, which will be used to satisfy the CFL condition, is
3.6457 and is identical to the pulsation of the T3 FEM
finite element.

To conclude it is worth noting that stiffness and mass
matrices for the X-FEM finite elements can be directly
obtained from the “full material” regular FEM matrices,
just multiplying them by the factor ¢; this fact is always true
for linear interpolation on simplex elements even in the
case of nonlinear constitutive laws.

4. Numerical examples
4.1. Numerical simulation of an impact on a bar

This section deals with the numerical simulation of an
impacted bar shown in Fig. 7. The length of the bar is
denoted L. The left side, located at x =0, is clamped and
the other side, located at x = L, is subjected to a step load
F. The bar is homogeneous and is composed of an isotropic
elastic material. The bar is discretized using four finite ele-
ments; each of length /.. This mesh is not conforming on
the right side of bar (x = L): indeed, the last finite element
only contains material over a length él,.

The material is steel for which Young’s modulus E is
equal to 2.1x 10" Pa and the density p is equal to
7800 kg/m?>. The bar’s length L is 1.5 m and its section S
is 0.1 m® The simulation time lasts 1.5 ms. The impact load
(F) on the right side of bar is 10,000 N. The last finite ele-
ment has a material fraction ¢ of 10%.

Four types of simulations (Fig. 8) are carried out:

e Case 1: A fine uniform conforming discretization of the
bar is done. It respects the physical geometry of bar.

e Case 2: The mesh is not uniform but still conforming.
The critical time step is given by the shortest element.

T3 X-FEM element

Void
surface

0.4,0) (1,0)

fraction (0,0)

Fig. 6. T3 FEM and X-FEM finite elements.
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Fig. 7. Description of the impact of bar.

e Case 3: The mesh is uniform but not conforming. The
right finite element implements the new developed
X-FEM technique. Therefore, the critical time step is
the same for all finite elements.

Case 1: uniform fine conforming mesh — At=¢L./c

éLe

Case 2: non uniform conforming mesh — At=¢L./c

e Case 4: An artificial mass [1] is added on nodes of the
last finite element so that the critical time step of case
4 is identical to the case 3. This additional mass allows
one to increase the critical time step of the last element
to the value of the other elements (this simulation’s pur-
pose is informative).

Figs. 9 and 10 show numerical results for the displace-
ments at points located at x = L (after interpolation of dis-
placements) and at x=L —¢L,. These results are
compared to the analytical solution.

The first conclusion with regard to these figures are very
satisfactory: X-FEM results agree closely to the analytical
results. It establishes that the developments of the X-FEM
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Fig. 8. Different numerical simulations carried out.
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Fig. 9. Displacement of the node, located at x = (1 — ¢)L for the bar under impact.
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Fig. 10. Displacement of the point, located at x = L for the bar under impact.

are successful. Moreover, the behavior of the X-FEM is
quite similar to the one that of a classical FEM numerical
simulation (case 2). For both, the approximation is accept-
able. However, it can be seen that the mass scaling option
does not yield satisfactory results. Note that more evolved
mass scaling strategies exist in the literature [14] and might
not yield such unphysical results.

Table 1 summarizes some calculation characteristics. It
points out that X-FEM finite element also allows one to
decrease strongly the number of time step while offering
solution in agreement with the analytical solution.

To investigate the good approximation properties of the
new finite element, a set of numerical simulation were done
for ¢ varying from 0 to 1. A comparison between numerical
and analytical results is made using the L2 norm error
defined by (14). The numerical solution is interpolated lin-
early in time between the computed instants. The results
are plotted in Fig. 11. It shows that the error remains
acceptable when compared to the analytical solution.

In addition, Fig. 11 shows also another interesting
aspect: the dispersion is weaker with the new finite element
than with classical FEM, and this is particularly true for
very small value of ¢. Indeed, when the mesh is conforming,
very small elements are needed. This induces small time
step in order to respect the CFL condition. This small time
step increases the dispersion in the FEM results. Therefore,
if there exists small elements, which can be seen as distur-

Table 1
Summary of the results for the bar under impact

bance of the discretization of the structure, the use of the
X-FEM finite element may yield better results than conven-
tional FEM.

4.2. Numerical simulation of dynamic loading of pierced
plates

This example deals with the impact of a plate which is
clamped at one side and subjected to a sudden pressure
of 100,000 Pa, on its other side, which remains constant
after. The dimensions of the plate are 500 mm X
250 mm x 2 mm. The plate possesses three holes (50 mm
in diameter) located respectively at 125 mm, 250 mm and
375 mm in X-coordinate and at 125 mm in Y-coordinate.
The constitutive material is steel (£ = 210,000 MPa,
v=0.3, p = 7800 kg/m>). The total time of the simulation
is Sms in order to observe stress waves propagating over
several periods.

Two triangular meshes were used (under the assumption
of plane stress). The first mesh is in conformity with the
geometry and uses standard T3 FEM elements while the
second one uses T3 X-FEM finite elements and does not
conform to the three holes (Fig. 12). For both meshes, the
average element size is about 15 mm. The simulation for
the conforming elements is made with ABAQUS software.

Fig. 13 summarizes the vertical displacements observed
for nodes denoted “hole” and “border” (Fig. 12). It shows

Case 1: Uniform fine Case 2: Non-uniform

Case 3: Non-conforming mesh —  Case 4: Conforming mesh — mass

conforming mesh conforming mesh X-FEM option scaling option
Number of elements 31 4 4 4
Time step 9.325395 ms 9.325395 ms 93.25395 ms 93.25395 ms
Number of time steps 161 161 16 16
Maximum 1.41 pm 1.46 pm 1.38 pm 0.36 um

displacement
(x=1L)
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L2 displacement error norm as a function of the mesh size and

that the results are very close for the FEM and the X-FEM
results. Indeed, for the “hole” node as well as for the “bor-
der” node, the displacements agree very well for both
simulations.

In addition, the critical time step identified by ABAQUS
code is 1.00 ms and it is induced by a small finite element
around the upper hole. In the X-FEM code, the critical
time step is 1.60 ms. Releasing the mesh from constraints
is shown here to improve the critical time step and thus
increases performance.

As previous results seem to be reliable, we aim to study
the convergence of the simulation. Therefore, we focus
again on the dynamic problem of a plate clamped at one
side and subjected, on the other side, to a sudden pressure
of 100,000 Pa. The dimensions of the plate are now of
50 mm x 50 mm x 2 mm. The plate, in this case, possesses

Conforming mesh from ABAQUS Non conforming X-FEM mesh
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Fig. 12. Modeling of a plate subjected to a dynamic compression.

only one hole of variable diameter (from 15 to 30 mm by
step of 0.5 mm). The hole is located at the center of plate.
The constitutive material is steel (£ = 210,000 MPa,
v=0.3, p = 7800 kg/m?). The total time of the simulation
is also equal to 0.5 ms in order to observe the stress waves
propagating over several periods.

Two triangular meshes were used under the assumption
of plane stress. The first mesh (Fig. 14) is in conformity
with the geometry and uses standard T3 FEM elements
while the second one (Fig. 15) uses T3 X-FEM finite ele-
ments. For both meshes, the size of the elements varies
from one time the thickness (2 mm) to five times the thick-
ness by steps of 0.5 mm.

The variable size of the hole and the element size aim at
studying the behavior T3 X-FEM eclements compared to
classical FEM elements. Results are collected for a point
located at x =50 mm and y =25 mm and relate to hori-

Numerical comparisons between Abaqus / X-FEM
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Fig. 13. Comparisons between ABAQUS and X-FEM codes for the displacement field at two different location.
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Fig. 14. Conforming mesh for the plate with one hole.
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Fig. 15. Non-conforming mesh for the plate with one hole.

zontal displacements. Fig. 16 shows, for a given case (size
of the hole of 17.5 mm), that results about displacements
agree well with explicit classical FEM computations.

In order to investigate the behavior of the new
approach, we computed the L2 norm (16) for each simula-
tion, taking as reference a classical FEM calculation made
with a very refined mesh. Fig. 17 shows that the X-FEM
method in rapid dynamics does not modify the overall
numerical behavior when compared to classical FEM.
The trends are nearly identical. A remark, on the other
hand, is to be raised concerning the absolute value of the
error: for a sufficiently discretized mesh, the error is less
in the X-FEM case.

As the study relative to the displacement fields leads to
good conclusions, we now focus on stresses within the
plate. The results in this section are presented for a plate
with a hole of 17.5 mm of diameter. The mesh size varies
from 1 mm to 5Smm for both FEM and X-FEM cases.
Moreover, in order to have a good comparison, we impose
to the mesh processing to create two ““fixed” finite elements
on specific locations. The first one is depending on the mat-
ter ratio that is included in the range from 0.01% to
99.99%. It belongs to the internal boundary, i.e. it is near
the hole (location around the point of coordinates
x=25mm ; y =33.75 mm). The second finite element is
located near the external boundary (near the point of coor-
dinates x =25 mm and y = 50 mm). This latter possesses
characteristic length imposed by mesh size.

For these two elements and for each numerical simula-
tion, we extract the von Mises stress along time. To com-
pare their evolution, we take as reference the results
coming from refined uniform meshes which are based on
the finite element size near the hole. It must be noted that
we cannot compute a reference for the case of 0.1% and
0.01% of matter due to the too large number of degree of
freedom.

Fig. 18 summarizes, for the finite element located near
the hole, the evolution of the stresses according to the ratio
of matter. The stresses are collected at the final time of sim-
ulation which is 25 ps. We represent on the graph only the

Displacement results for the different meshes
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Fig. 16. Comparisons of the displacement results for different meshes.
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Error as a function of the mesh size
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Fig. 18. Evolution of the longitudinal stress for an element near the hole for different mesh sizes and matter ratio e.

curves coming from the sizes of mesh of 1, 3 and 5 mm in
order to clarify the figure. The first conclusion is that FEM
and X-FEM behaviors are quite similar: indeed, the stress
of von Mises increases as the mesh size decreases. However,
that raises the following problem: if a level set imposes that
an element is cut very near to a node, the stress will be
overestimated within this X-FEM finite element. Neverthe-
less, it should be noticed that compared to FEM simula-
tion, the time step used will be much less important with
X-FEM: as comparison, for the numerical simulation
where the mesh size is about 1 mm and for which the mat-
ter ratio is 0.01%, the time step used by X-FEM is approx-
imately 5.75x 10~% s whereas it is 9.6 x 10~'% s for FEM.
Another important advantage is shown in Figs. 19 and
20: the curves represent the evolution along time of von
Mises stresses in the two finite elements (near the hole
and on external boundary) for FEM, X-FEM and refer-
ence simulations. The results come from the case where
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the size of mesh is 1 mm and where the percentage of mat-
ter is 0.01%. Fig. 19 again shows that evolution of stress
near the hole is similar in FEM and X-FEM cases.
Fig. 20 shows on the other hand that von Mises stress in
the outside element (which is a ‘“‘standard” finite element
in both cases) is better evaluated for X-FEM than for
FEM: indeed, in this last case, the time step employed is
imposed by the small finite element located near the hole.
As we said previously, this last one is approximately hun-
dred times smaller than for X-FEM case. Some phenomena
of dispersion are then observed which slightly disturb the
FEM results. This fact is of course not observed for X-
FEM since we use the critical time step, which is close to
one for all finite elements.

In conclusion, the use of X-FEM finite elements gets the
double advantage of not being dependent on the mesh gen-
eration and on using a time step more “homogeneous”.
Even if one sometimes observes some finite elements for



Longitudinal stress for an element near the hole (located around
x=25 mm and y=33.75 mm)
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Longitudinal stress for node on external boundary (located
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14

1.2

1

0.8

0.6

04

Longitudinal stress (MPa)

0.2

0

0.0E+00 5.0E-03 1.0E-02

1.5E-02 2.0E-02

Time (ms)

Fig. 20. Comparisons of the longitudinal stresses in an element near the external boundary for FEM and X-FEM.

which the ratio of matter is small and which could induce
an abusive increase of stresses, the preceding advantages
mask this disadvantage.

4.3. Numerical simulation of a diabolo under dynamic
loading

In order to show the relevance of the approach for 3D
cases, we propose in this part a simulation on a “diabolo”
subjected to dynamic loading. The results obtained with
the X-FEM code are compared at various locations of
the part with the results coming from the ABAQUS code.

The part (Fig. 21) consists of a unit cube whose matter
has been extracted in a torus whose center is located at the
center of cube. The ring’s radius is equal to half-diagonal
(0.51/ 2 m) of the cube and the width radius of ring section
is equal to 0.3 m.

The material characteristics are those of steel (E=
2.1x 10" Pa, p = 7800 kg/m* and v = 0.3). The boundary
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Fig. 21. Diabolo geometry.



Fig. 22. ABAQUS mesh of the diabolo.

Fig. 23. X-FEM mesh for the diabolo (6 elements per edge).

conditions are a complete clamping of the lower face and a
sudden traction of 10 MPa applied on the upper face
(Fig. 21).

Fig. 24. Iso-zero level set used in X-FEM code to represent the boundary.

The mesh consists of tetrahedral elements. For the con-
forming mesh shown in Fig. 22 (used in ABAQUS code),
there are 10 elements along the edges of the model resulting
in 5063 elements. For X-FEM simulations, a coarser mesh
(Fig. 23) is used and has only 6 elements along the edges,
resulting in 2456 finite elements. For the X-FEM mesh,
the geometry of the diabolo is represented by a level set
(Fig. 24).

The comparisons between displacements in X-FEM and
the ABAQUS codes are carried out for points located at
the following coordinates: (1,0, 1) (point no. 1) and (—.289,
0,.289) (point no. 2).

Figs. 25 and 26 show the results for the displacement at
points 1 and 2. The comparison shows that the results com-
ing from both simulations are equivalent: it should be
noted here that the mesh complexity is higher than in pre-
vious 2D cases, because the volume of “empty space” is
about half that of the initial cube.

The time steps used in calculations are respectively
8.77ms for the X-FEM (6 elements per edge) and
8.27ms for ABAQUS (10 elements per edge). An X-
FEM computation with a coarser mesh, which offers a time

Displacement for the point°®1
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Fig. 25. X-FEM/ABAQUS comparison for the point no. 1 of measurement.
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Fig. 26. X-FEM/ABAQUS comparison for the point no. 2 of measurement.

step equivalent to that of an ABAQUS computation,
allows one to obtain a solution of very good quality.

5. Conclusions

We exposed in this paper the work carried out in con-
nection with an X-FEM type finite elements in its applica-
tion to rapid dynamics. One of the major problems in this
case relates to the critical time step, which is controlled by
both the smallest characteristic size of finite element and
the most unfavorable material celerity. It is possible to
identify two cases which can strongly penalize an explicit
numerical simulation: the first case is related to a material
heterogeneity within the structure and second case is
related to mesh constraints imposed by a precise descrip-
tion of defects, interfaces or holes. The latter is considered
in this study: avoiding constraints in mesh generation for
complex models.

We first propose a 1D bar X-FEM finite element. The
objective is to be able to model the behavior of an element
composed of both material and empty space. Thanks to the
adapted lumping technique, we could get back a critical
time step that is identical to that of a completely filled finite
element. We then proposed the generalization of this tech-
nique to 2D and 3D constant strain finite elements. This
generalization is done in a straightforward manner: as in
the 1D case, one represents the percentage of material
according to the ratio of surfaces (in 2D) or volumes (in
3D). The technique of adapted lumping proposed in the
1D case remains valid.

Next, some numerical results are shown. The results of
numerical and analytical comparisons in the 1D case dem-
onstrate that errors remain acceptable when compared to
the present existing solutions (mass scaling, imposition of
small time steps, etc.). Moreover, these results also high-
light another interesting aspect: the dispersion with the
X-FEM approach is smaller than that of the classic FEM
approach, especially when the material fraction & tends to
zero. Numerical simulations of a perforated plate subjected
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to compression or tensile loads show the quality of the
results obtained by the X-FEM when compared to the clas-
sic FEM in the 2D case. The displacements that are mea-
sured in various points of the plate are coherent and
relative errors remain small when compared to reference
cases. Finally, we propose a 3D simulation of a diabolo.
As for the 1D and 2D cases, the results agree well with
the ABAQUS software.

The outlooks of this study is to extend the technique for
quadrangular and hexahedron finite elements. In this case,
the interpolation functions are not linear and there are
some potential issues with the adapted lumping technique.
It should be noted that quadrangular and hexahedral finite
elements are very popular among structural analysts.
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